Hour Exam #1 (AM) Chemistry 343 Professor Gellman 8 October 2012 Last Name

Answe

First Name

Key

General Instructions:

- (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.
- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. Misconduct will lead to failure in the course.

1. (10 points) Draw a structure that corresponds to each of the following names. Show all atoms in each structure, including hydrogen atoms.

(a) E-3-methyl-3-octene

 $CH_3CH_2 \setminus H$ C = C $CH_2CH_2CH_3$

The sound of the s

(b) 1-bromo-3-fluorocyclohexene

HzC C BC

(FST)

+2 if His not trawn in , but correct

	1M
Name	1/1/1

2. (16 points) $H_2C=CFCF_3$ is a relatively new refrigerant that has a smaller greenhouse effect (i.e., lower global warming effect) than currently popular refrigerants such as $CHFCl_2$. Answer the following auestions.

(a) Provide a drawing of H₂C=CFCF₃ that indicates the three-dimensional structure.

for anything that doesn't

(b) Indicate the H-C-H bond angle (approximation) in the box.

(c) Provide an energy diagram that shows how the relevant atomic orbitals combine to form the molecular orbitals of the C-F bond involving the central carbon, and where the bonding electrons are expected to reside. Assume that F is sp3 hybridized.

orbita

- 3. (12 points) For each equilibrium shown below, do two things:
 - (i) Put a SQUARE around the WEAKER ACID, of the two species that are serving as acids in the equilibrium.
 - (ii) Put a CIRCLE around the SIDE of the equilibrium that you expect to be LESS FAVORED.

t2 for each correct circle & square.

4. (25 points)

Draw an energy diagram for rotation about the indicated carbon-carbon bond (dotted arrow) of the molecule below. Show the structure for each energy minimum and each energy maximum.

+4 for each sorred Neuman projection CIRCLE the most stable structure(s). Must civile gomethings to receive credit Нμ ĊH₃ N CHZ energy 436 360° 60° 120° 240° 300° 180° 00 dihedral angle

5. (12 points) Provide a mechanism ("curved arrows") for the reaction shown below. Show every atom in each structure you draw.

	AM.
Name	<i>///</i>

6. (25 points)

A molecule with the formula $C_6H_{10}F_2$ does not undergo any reaction when combined with H_2 in the presence of the catalyst Pd/C. Propose FIVE possible structures for this molecule (via appropriate drawings).

MANY POSSIBILITIES V

Some shown below ...