| Hour Exam #1 (AM)
Chemistry 343 | Last Name | · | 0002 | |------------------------------------|------------|---|------| | Professor Gellman | | | | | 8 October 2012 | First Name | | | ## General Instructions: - (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed. - (ii) Print your name on each page. - (iii) Please keep your paper covered and your eyes on your own work. Misconduct will lead to failure in the course. - 1. (10 points) Draw a structure that corresponds to each of the following names. Show all atoms in each structure, including hydrogen atoms. - (a) E-3-methyl-3-octene (b) 1-bromo-3-fluorocyclohexene | | Name | |--|---------------------| | 2. (16 points) $H_2C=CFCF_3$ is a relatively new refrigerant that has lower global warming effect) than currently popular refrigerants equestions. | | | (a) Provide a drawing of H ₂ C=CFCF ₃ that indicates the three-dim | ensional structure. | | (b) Indicate the H-C-H bond angle (approximation) in the box. | | (c) Provide an energy diagram that shows how the relevant atomic orbitals combine to form the molecular orbitals of the C-F bond involving the central carbon, and where the bonding electrons are expected to reside. Assume that F is sp3 hybridized. - 3. (12 points) For each equilibrium shown below, do two things: - (i) Put a SQUARE around the WEAKER ACID, of the two species that are serving as acids in the equlibrium. - (ii) Put a CIRCLE around the SIDE of the equilibrium that you expect to be LESS FAVORED. ## 4. (25 points) Draw an energy diagram for rotation about the indicated carbon-carbon bond (dotted arrow) of the molecule below. Show the structure for each energy minimum and each energy maximum. CIRCLE the most stable structure(s). | N | ame | | | | |---|-----|--|--|--| | | | | | | 5. (12 points) Provide a mechanism ("curved arrows") for the reaction shown below. Show every atom in each structure you draw. ## 6. (25 points) A molecule with the formula $C_6H_{10}F_2$ does not undergo any reaction when combined with H_2 in the presence of the catalyst Pd/C. Propose FIVE possible structures for this molecule (via appropriate drawings). Name 00029 | Problem # | <u>Score</u> | |-----------|--------------| | 1 | /10 | | 2 | /16 | | 3 | /12 | | 4 | / 25 | | 5 | /12 | | 6 | / 25 | ____ Total: /100 | Elements | | |----------|--| | the | | | of | | | Table | | | Periodic | | | 2
He
4.003 | 10
Ne
20.18 | 18
Ar. | 36
Kr | 24 × × × × × × × × × × × × × × × × × × × | 86
Rn | (777) | |------------------|--------------------------|--------------------------|----------------------------|--|---------------------------|-----------------------------| | | 9
F
19.00 | 17
CI
35.45 | 35
Br | 53 | 85
At | (212) | | | 8
O
16.00 | 16
S
32.06 | 34
Se | \$2
Te
127.60 | 84
Po
(209) | | | | N
14.01 | 15
P
30.97 | 33
. AS
74.92 | 51
Sb
121.75 | 83
Bi
208.98 | | | | 6
C
12.011 | . S . 28.09 | 32
Ge
72.59 | S0
Sn
118.69 | 82
Pb
207.19 | | | | 5
B
10.81 | 13
Å!
26.98 | 31
Ga
69.72 | 49 In 114.82 | 81
TI
204.37 | | | | | | 30
Zn
65.37 | 48
Cd
112.40 | 80
Hg
200.59 | | | | Z. | | 29
Cu
63.55 | 47
Ag
107.87 | 79
Au
196.97 | | | | | | 28
Ni
58.71 | 46
Pd
106.4 | 78
Pt
195.09 | | | • | | | Co
Co
58.93 | 45
Rh
102.91 | 77
Ir
192.2 | 109
Uina*
(266) | | | | | 26
Fe
55.85 | 44 Ru 101.07 | 76
Os
190.2 | 108
Uno*
(265) | | | | | 25
Min
54.94 | 43
Tc
98.91 | 75
Re
186.2 | Uns* (262) | | | | | 24
Cr
52.00 | 42
IMo
95.94 | 74
W
183.85 | Unh* (263) | | 800° | | <u> </u> | 23
V
50.94 | 41
N b
92.91 | 73
Ta
180.95 | Unp*
(262) | | | • | | 22
Ti
47.90 | 40
Zr
91.22 | 72
FHf
178.49 | Unq* | | | | | 21
Sc
44.96 | 30
Y
88.91 | 57
La
138.91 | $\mathbf{\overset{89}{Ac}}$ | | 4 | Be
9.01 | Mg
24.31 | 20
Ca
40.08 | 38
Sr
87.62 | 56
Ba
137.34 | 88
Ra
226.03 | | | 6.94 | Na 22.99 | 19
K
39.10 | 37
Rb
85.47 | CS
CS
132.91 | 87
Fr
(223) | | | • | UUUZ. | و
نەر | |---------------------------|-----------|-----------------|---| | | | | J
nalf-lif | | 7.1 | 103 | | ongest 1 | | 70
Vb | 102 | No (259) | tope of 1 | | 69
Tm | 101 | (258) | active isc | | 68
F. F. 1 | 001 | Fig. (257) | ble radio | | 67
Ho | 66 | E.S
(254) | es: availa | | 66
Dy
162.50 | 86 | (249) | Numbers in parentheses: available radioactive isotope of longest half-life. | | 65
Tb
158.93 | 97 | (249) | bers in p | | 64
Gd
157.25 | 96 | (247) | Lin Z | | 63
En | 95 | (243) | | | 62
Sm
150.35 | 94
D. | (244) | | | 61
Pm
(145) | 93.
N | (237) | | | 60
Nd
144.24 | 92
U | 238.03 | • | | 59
Pr
140.91 | 91
Pa | (231) | | | 58
Ce
140.12 | 1 | 232.04 | visional. | | Lanthanides | Actinides | | ol (and name) provisional | *Symbol (and name) provisional.