Hour Exam #1 (AM) Chemistry 343	Last Name	·	0002
Professor Gellman			
8 October 2012	First Name		

General Instructions:

- (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.
- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. Misconduct will lead to failure in the course.
- 1. (10 points) Draw a structure that corresponds to each of the following names. Show all atoms in each structure, including hydrogen atoms.
- (a) E-3-methyl-3-octene

(b) 1-bromo-3-fluorocyclohexene

	Name
2. (16 points) $H_2C=CFCF_3$ is a relatively new refrigerant that has lower global warming effect) than currently popular refrigerants equestions.	
(a) Provide a drawing of H ₂ C=CFCF ₃ that indicates the three-dim	ensional structure.
(b) Indicate the H-C-H bond angle (approximation) in the box.	

(c) Provide an energy diagram that shows how the relevant atomic orbitals combine to form the molecular orbitals of the C-F bond involving the central carbon, and where the bonding electrons are expected to reside. Assume that F is sp3 hybridized.

- 3. (12 points) For each equilibrium shown below, do two things:
 - (i) Put a SQUARE around the WEAKER ACID, of the two species that are serving as acids in the equlibrium.
 - (ii) Put a CIRCLE around the SIDE of the equilibrium that you expect to be LESS FAVORED.

4. (25 points)

Draw an energy diagram for rotation about the indicated carbon-carbon bond (dotted arrow) of the molecule below. Show the structure for each energy minimum and each energy maximum.

CIRCLE the most stable structure(s).

N	ame			

5. (12 points) Provide a mechanism ("curved arrows") for the reaction shown below. Show every atom in each structure you draw.

6. (25 points)

A molecule with the formula $C_6H_{10}F_2$ does not undergo any reaction when combined with H_2 in the presence of the catalyst Pd/C. Propose FIVE possible structures for this molecule (via appropriate drawings).

Name 00029

Problem #	<u>Score</u>
1	/10
2	/16
3	/12
4	/ 25
5	/12
6	/ 25

Total: /100

Elements	
the	
of	
Table	
Periodic	

2 He 4.003	10 Ne 20.18	18 Ar.	36 Kr	24 × × × × × × × × × × × × × × × × × × ×	86 Rn	(777)
	9 F 19.00	17 CI 35.45	35 Br	53	85 At	(212)
	8 O 16.00	16 S 32.06	34 Se	\$2 Te 127.60	84 Po (209)	
	N 14.01	15 P 30.97	33 . AS 74.92	51 Sb 121.75	83 Bi 208.98	
	6 C 12.011	. S . 28.09	32 Ge 72.59	S0 Sn 118.69	82 Pb 207.19	
	5 B 10.81	13 Å! 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37	
			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
	Z.		29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
			28 Ni 58.71	46 Pd 106.4	78 Pt 195.09	
•			Co Co 58.93	45 Rh 102.91	77 Ir 192.2	109 Uina* (266)
			26 Fe 55.85	44 Ru 101.07	76 Os 190.2	108 Uno* (265)
			25 Min 54.94	43 Tc 98.91	75 Re 186.2	Uns* (262)
			24 Cr 52.00	42 IMo 95.94	74 W 183.85	Unh* (263)
800°		<u> </u>	23 V 50.94	41 N b 92.91	73 Ta 180.95	Unp* (262)
	•		22 Ti 47.90	40 Zr 91.22	72 FHf 178.49	Unq*
			21 Sc 44.96	30 Y 88.91	57 La 138.91	$\mathbf{\overset{89}{Ac}}$
4	Be 9.01	Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra 226.03
	6.94	Na 22.99	19 K 39.10	37 Rb 85.47	CS CS 132.91	87 Fr (223)

	•	UUUZ.	و نەر
			J nalf-lif
7.1	103		ongest 1
70 Vb	102	No (259)	tope of 1
69 Tm	101	(258)	active isc
68 F. F. 1	001	Fig. (257)	ble radio
67 Ho	66	E.S (254)	es: availa
66 Dy 162.50	86	(249)	Numbers in parentheses: available radioactive isotope of longest half-life.
65 Tb 158.93	97	(249)	bers in p
64 Gd 157.25	96	(247)	Lin Z
63 En	95	(243)	
62 Sm 150.35	94 D.	(244)	
61 Pm (145)	93. N	(237)	
60 Nd 144.24	92 U	238.03	•
59 Pr 140.91	91 Pa	(231)	
58 Ce 140.12	1	232.04	visional.
Lanthanides	Actinides		ol (and name) provisional

*Symbol (and name) provisional.