Λ	0	n	a	a
v	v	u	-	כי

Hour Ex	xam#	1 (PM)
Chemis	stry 34	3
Profess	sor Ge	llman
8 Octob	oer 20	12

First Name	 	
,		

General Instructions:

(i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.

Last Name

- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. Misconduct will lead to failure in the course.
- 1. (10 points) Draw a structure that corresponds to each of the following names. Show all atoms in each structure, including hydrogen atoms.
- (a) Z-2-bromo-2-octene

(b) 1,6-heptadiene

2. (16 points) CFCl ₃ was one of the first widely-used refrigerants, but it is very harmful to Earth's ozone layer. Therefore, this compound was replaced by CHFCl ₂ , which is less destructive to the ozone layer; however, CHFCl ₂ is now in disfavor because it has a strong greenhouse effect (causes global warming). Answer the questions below.
(a) Provide a drawing of CHFCl ₂ that indicates the three-dimensional structure.
b) Indicate the F-C-Cl bond angle (approximation) in the box.

Name

(c) Provide an energy diagram that shows how the relevant atomic orbitals combine to form the molecular orbitals of one C-Cl bond, and where the bonding electrons are expected to reside. Assume that Cl is sp3 hybridized.

Name _____

- 3. (12 points) For each equilibrium shown below, do two things:
 - (i) Put a SQUARE around the STRONGER BASE, of the two species that are serving as bases in the equlibrium.
 - (ii) Put a CIRCLE around the SIDE of the equilibrium that you expect to be MORE FAVORED.

4. (25 points)

(a) Draw the energy diagram for rotation about the indicated carbon-carbon bond (dotted arrow) of the molecule shown below. Draw appropriate chemical structures for each minimum and each maximum in the energy function.

CIRCLE the most stable structure(s).

NOTE: A methyl group is larger (causes more steric repulsion) than a Cl atom.

Name	
ITGIIIC	

5. (12 points) Provide a mechanism ("curved arrows") for the reaction shown below. You do <u>not</u> have to account for the way that $\rm H_3O^+$ is formed. Show every atom in each structure you draw.

Name		

6. (25 points)

Draw FIVE isomers with the formula C_7H_{14} that would ALL give the same major product upon reaction with HCI (without any rearrangement) and that would ALL generate 3-methylhexane upon reaction with H_2 and Pd/C.

Name _____ ⁰⁰⁰⁹⁹

Problem #	<u>Score</u>
1	/10
2	/16
3	/ 12
4	/ 25
5	/ 12
6	/ 25

Total:

/100

Elements
of the I
Table c
Periodic '

Γ			<u></u>	Т	T	7
2 He 4.003	10 Ne 20.18	18 Ar 39.95	36 K Ţ 83.80	54 Xe 131.30	86 Rn (222)	
	9 F	17 CI 35.45	35 Br 79.90	53 1 126.90	85 At (210)	
	8 O:00:91		34 Se 78.96	52 Te 127.60	84 Po (209)	
	N 14.01	15 P	33 AS 74.92	51 S b 121.75	83 Bj 208.98	
	6 C 12.011		32 Ge	50 S n 118.69	82 Pb 207.19	
	5 B	13 A1 26.98	31 Ga 69.72	49 III 114.82	81 TT 204.37	
			30 Zin 65.37	48 Cd 112.40	80 Hg 200.59	
	Ly		29 Cu 63.55	47 Ag 107.87	79 Aµ 196.97	
•			28 Ni 58.71	46 Pd 106.4	78 Pt 195.09	
			²⁷ Co 58.93	45 Rh 102.91	77 Ir 192.2	109 Una * (266)
			26 Fe 55.85	44 Ru 101.07	⁷⁶ Os 190.2	108 Uno* (265)
		-	25 Min 54.94	43 T.c 98.91	75 Re 186.2	107 Uns*
			²⁴ C r 52.00	42 M0 95,94		106 U nh * (263)
			23 V 50.94	41 Nb 92.91	73 Ta	105 Unp*
1.008	,		22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	104 Unq* (261)
	ı		21 Sc 44.96	39. ¥ 88.91	57 La 138.91	89 Ac (227)
	4 Be 9.01	Mg 24.31	20 Ca 40.08	38 Sr. 87.62	56 Ba (37.34	88 Ra 226.03
	3. Li. 6.94	Z 22.99	19 K 39,10	37 Rh 85.47	55 Cs 132.91	87 Fr (223)
Į						

	00000	نق
		_ ralf-tif
7.1 L.u 174.97	103 Lr (260)	longest h
70 Yb 173.04	102 No (259)	otope of
69 Țn 168.93	101 Md (258)	active is
68 Er 167.26	100 Fin (257)	available radioactive isotope of longest half-li
67 Ho 164.93	99 Es	1
66 Dy 162.50	98 Cf (249)	Numbers in parentheses
65 Tb 158.93	97 Bk (249)	nbers in
64 Gd 157.25	96 Cm (247)	Z
63 Eu	95 Am (243)	
62 Sm 150.35	94 Pu (244)	
61 Pm (145)	⁹³ Np (237)	
60 Nd 144.24	92 U 238.03	
59 Pr 140.91	91 Pa (231)	
58 Ce 140.12	90 Th 232.04	visional.
Lanthanides	Actinides	ool (and name) provisional

*Symbol (and name) provisional.