| Λ | 0 | n | a | a | |---|---|---|---|----| | v | v | u | - | כי | | Hour Ex | xam# | 1 (PM) | |----------------|---------|--------| | Chemis | stry 34 | 3 | | Profess | sor Ge | llman | | 8 Octob | oer 20 | 12 | | First Name |
 | | |------------|------|--| | , | | | | | | | ## General Instructions: (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed. Last Name - (ii) Print your name on each page. - (iii) Please keep your paper covered and your eyes on your own work. Misconduct will lead to failure in the course. - 1. (10 points) Draw a structure that corresponds to each of the following names. Show all atoms in each structure, including hydrogen atoms. - (a) Z-2-bromo-2-octene (b) 1,6-heptadiene | 2. (16 points) CFCl ₃ was one of the first widely-used refrigerants, but it is very harmful to Earth's ozone layer. Therefore, this compound was replaced by CHFCl ₂ , which is less destructive to the ozone layer; however, CHFCl ₂ is now in disfavor because it has a strong greenhouse effect (causes global warming). Answer the questions below. | |--| | (a) Provide a drawing of CHFCl ₂ that indicates the three-dimensional structure. | | | | | | | | | | | | b) Indicate the F-C-Cl bond angle (approximation) in the box. | | | Name (c) Provide an energy diagram that shows how the relevant atomic orbitals combine to form the molecular orbitals of one C-Cl bond, and where the bonding electrons are expected to reside. Assume that Cl is sp3 hybridized. Name _____ - 3. (12 points) For each equilibrium shown below, do two things: - (i) Put a SQUARE around the STRONGER BASE, of the two species that are serving as bases in the equlibrium. - (ii) Put a CIRCLE around the SIDE of the equilibrium that you expect to be MORE FAVORED. ## 4. (25 points) (a) Draw the energy diagram for rotation about the indicated carbon-carbon bond (dotted arrow) of the molecule shown below. Draw appropriate chemical structures for each minimum and each maximum in the energy function. CIRCLE the most stable structure(s). NOTE: A methyl group is larger (causes more steric repulsion) than a Cl atom. | Name | | |---------|------| | ITGIIIC |
 | 5. (12 points) Provide a mechanism ("curved arrows") for the reaction shown below. You do <u>not</u> have to account for the way that $\rm H_3O^+$ is formed. Show every atom in each structure you draw. | Name | |
 | |------|--|------| 6. (25 points) Draw FIVE isomers with the formula C_7H_{14} that would ALL give the same major product upon reaction with HCI (without any rearrangement) and that would ALL generate 3-methylhexane upon reaction with H_2 and Pd/C. Name _____ ⁰⁰⁰⁹⁹ | Problem # | <u>Score</u> | |-----------|--------------| | 1 | /10 | | 2 | /16 | | 3 | / 12 | | 4 | / 25 | | 5 | / 12 | | 6 | / 25 | Total: /100 | Elements | |------------| | of the I | | Table c | | Periodic ' | | Γ | | | <u></u> | Т | T | 7 | |------------------|-------------------|--------------------------|--------------------------------------|----------------------------|---------------------------|-------------------------------| | 2
He
4.003 | 10
Ne
20.18 | 18
Ar
39.95 | 36
K Ţ
83.80 | 54
Xe
131.30 | 86 Rn (222) | | | | 9
F | 17
CI
35.45 | 35
Br
79.90 | 53
1
126.90 | 85
At
(210) | | | | 8
O:00:91 | | 34
Se
78.96 | 52
Te
127.60 | 84
Po (209) | | | | N 14.01 | 15
P | 33
AS
74.92 | 51
S b
121.75 | 83
Bj
208.98 | | | | 6
C
12.011 | | 32
Ge | 50
S n
118.69 | 82
Pb
207.19 | | | | 5
B | 13
A1
26.98 | 31
Ga
69.72 | 49
III
114.82 | 81
TT
204.37 | | | | | | 30 Zin 65.37 | 48
Cd
112.40 | 80
Hg
200.59 | | | | Ly | | 29
Cu
63.55 | 47
Ag
107.87 | 79
Aµ
196.97 | | | • | | | 28
Ni
58.71 | 46
Pd
106.4 | 78
Pt
195.09 | | | | | | ²⁷
Co
58.93 | 45
Rh
102.91 | 77
Ir
192.2 | 109
Una *
(266) | | | | | 26
Fe
55.85 | 44
Ru
101.07 | ⁷⁶ Os
190.2 | 108
Uno*
(265) | | | | - | 25
Min
54.94 | 43
T.c
98.91 | 75
Re
186.2 | 107
Uns* | | | | | ²⁴
C r
52.00 | 42
M0
95,94 | | 106
U nh *
(263) | | | | | 23
V
50.94 | 41
Nb
92.91 | 73
Ta | 105
Unp* | | 1.008 | , | | 22
Ti
47.90 | 40 Zr 91.22 | 72
Hf
178.49 | 104
Unq*
(261) | | | ı | | 21
Sc
44.96 | 39.
¥
88.91 | 57
La
138.91 | 89
Ac (227) | | | 4 Be 9.01 | Mg
24.31 | 20
Ca
40.08 | 38
Sr.
87.62 | 56 Ba (37.34 | 88
Ra
226.03 | | | 3.
Li.
6.94 | Z 22.99 | 19
K
39,10 | 37
Rh
85.47 | 55
Cs
132.91 | 87
Fr
(223) | | Į | | | | | | | | | 00000 | نق | |-----------------------------|---------------------------|--| | | | _
ralf-tif | | 7.1
L.u
174.97 | 103
Lr
(260) | longest h | | 70
Yb
173.04 | 102
No
(259) | otope of | | 69
Țn
168.93 | 101
Md
(258) | active is | | 68
Er
167.26 | 100
Fin
(257) | available radioactive isotope of longest half-li | | 67
Ho
164.93 | 99
Es | 1 | | 66
Dy
162.50 | 98
Cf
(249) | Numbers in parentheses | | 65
Tb
158.93 | 97
Bk
(249) | nbers in | | 64
Gd
157.25 | 96
Cm
(247) | Z | | 63
Eu | 95
Am
(243) | | | 62
Sm
150.35 | 94
Pu
(244) | | | 61
Pm
(145) | ⁹³ Np (237) | | | 60
Nd
144.24 | 92
U
238.03 | | | 59
Pr
140.91 | 91
Pa
(231) | | | 58
Ce
140.12 | 90
Th
232.04 | visional. | | Lanthanides | Actinides | ool (and name) provisional | *Symbol (and name) provisional.