| Hour Exam #1 (AM)
Chemistry 343 | Last Name | |--|--| | Professor Gellman
5 October 2011 | First Name | | General Instructions: | | | | exam to work out answers; final answers must ace on the exam itself for credit. Models are | | (ii) Print your name on each page | e. | | (iii) Please keep your paper cove
Misconduct will lead to failu | ered and your eyes on your own work.
are in the course. | | 1. (15 points) Draw a structure th Show all atoms in each structure, | at corresponds to each of the following names. including hydrogen atoms. | | (a) 2-chloroheptane | | | | | | | | | | | | | | | • | | | (b) Z-3-bromo-3-nonene | | | | | | | | | | | (c) cyclopentyl-cyclohexane 2. (14 points) For each set of structures shown below, redraw the structures in the order of DECREASING basicity, left to right. (Note: Negative charges are balanced by a sodium (Na) counterion (positive charge).) (a) CH₃NH₂ СН₃ОН - CH₃NH - _{Na}⊕ $$(b) \qquad \vdots \\ O : \\ O : \\ Na O : \\ Na \\ O : O$$ 3. (7 points) On the structure shown below, indicate for EACH CARBON ATOM whether that atom is 1° , 2° , 3° or 4° . 4. (20 points) (a) Shown below is 1,1,1-tribromopentane; draw the energy diagram for rotation about the bond between carbon-1 and carbon-2. Provide an appropriate drawing to identify at least one maximum and at least one minimum in this energy function. (b) Draw a Newman projection of the most stable conformation about the bond between carbon-2 and carbon-3. | Name | | |------|--| | | | 5. (14 points) Provide a mechanism (curved arrows) for the reaction shown below. Show all atoms, bonds and lone pairs in each structure in your mechanism. [Note: The chloride counterion is just a 'bystander' in this process.] | Name | | |-------|--| | Hanne | | | (30 points) | |-------------------------------| |-------------------------------| (a) A hydrocarbon with the formula C_8H_{12} is exposed to excess H_2 in the presence of Pd/C as catalyst. TWO equivalents of H_2 are consumed, to generate a product with formula C_8H_{16} (this product does not react further with H_2 in the presence of Pd/C). Propose THREE possible structures for the starting material C_8H_{12} (via appropriate drawings). (b) A different hydrocarbon with the formula C_8H_{12} is exposed to excess H_2 in the presence of Pd/C as catalyst. ONE equivalent of H_2 is consumed, to generate a product with formula C_8H_{14} (this product does not react further with H_2 in the presence of Pd/C). Propose THREE possible structures for the starting material C₈H₁₂ (via appropriate drawings). Name _____ ⁰⁰²⁵¹ | Problem # | <u>Score</u> | |-----------|--------------| | 1 | / 15 | | 2 | /14 | | 3 | / 7 | | 4 | /20 | | 5 | /14 | | 6 | /30 | ----- Total: /100 | | | | | | | | Pe_1 | |---|------------------------------|---------------------------|--------------------------|----------------------------|-----------------------------|---|--| | | 7 | 90 | 5 | 44 | w | N | Period | | | 87
Fr
(223) | 55
Cs
132.91 | 37
Rb
85.468 | 39.006€
X | 1.1
Na
22,9898 | 1.
6.941 | 1 A A | | Lant
· | 88
Ra
(226) | 56
Ba
137.33 | 38
Sr
87.62 | 10 CO 32 | 12
Mg | 9.01 72 | 2
2A | | Lanthanides
Actinides | 103
Lr
(262) | 71
Lu
174.97 | 39
Y
88.906 | 21
Sc
44.956 | 3
3
3
8 | The second second | | | 57 La 138.91 89 Ac (227) | 104
Raf
(267) | 72
Hf
178.49 | 40
Zr
91.224 | 22
Ti
47.867 | 4
4B | elements) (Atomic w longest life | A Pe | | 58
Ce
140.12
90
Th
232.04 | 105
Db
(268) | 73
Ta
180.95 | 41
Nb
92.906 | 23
V
50.942 | 5
5B | or carcurate) weights in the control of the carcurate in | Prioce The E The E The | | 59 Pr 140.91 91 Pa 231.04 | 106
Sg
(271) | 74
W
183.84 | 42
Mo
95.96 | 24
C r
51.996 | 6B | n parenth | A Periodic Table of the Elements Group numbers recommended by the Older group numbers are in red. (The Older group numbers are in red. (The Older group numbers are in red.) | | 60
Nd
144.24
92
U | 107
Bh
(272) | 75
Re
186.21 | 43
Tc
(98) | 25
Mn
54.938 | Transitio
7
7B | ial charge
eses are fo | A Periodic Table of the Elements Group numbers recommended by the Older group numbers are in red. (The Older from the Colder f | | 61
Pm
(145)
93
Np
(237) | 108
Hs | 76
Os
190.23 | 44
Ru
101.07 | 26
Fe
55.845 | Transition elements 7 8 7B | elements.) (Atomic weights in parentheses are for the isotope of longest life.) | A Periodic Table of the Elements Group numbers recommended by the IUPAC are in Older group numbers are in red. (These are used in the first formulations are in red.) | | 62
Sm
150.36
94
Pu
(244) | 109
Mt
(276) | 77
Ir
192.22 | 45
Rh
102.91 | 27
Co
58.933 | 1s —— 8B — | -group
ope of | A Periodic Table of the Elements Group numbers recommended by the IUPAC are in green. Older group numbers are in red. (These are used in | | 63
Eu ·
151.96
95
Am
(243) | 110
Ds
(281) | 78
Pt | 46
Pd
106.42 | 28
Ni
58.693 | 10 | | en. | | 64
Gd
157.25
96
Cm
(247) | 1111
Rg
(280) | 79
Au
196.97 | 47
Ag
107.87 | 29
Cu
63.546 | 11
1B | | | | 65 Tb 158.93 97 Bk (247) | 112
Uub
(285) | 80
Hg
200.59 | 48
Cd
112.41 | 30
Zn
65.38 | 12
2B | • | | | 66 Dy 162.50 98 Cf (251) | . 113
Uut
(284) | 81
11
204:38 | 49
In
114.82 | 31
Ga
69.723 | 13
A 1
26.9815 | 10311
B | 3A 13 | | 67
Ho
164.930
99
Es
(252) | 114
Uuq
(289) | 82
Pb
207.2 | 50
Sn
118.71 | 32
Ge
72.61 | 14
SI
28,085 | | The sanca | | 68
Er
167:26
100
Fm
(257) | 115
Uup
(288) | 83
Bi
208.98 | 51
Sb
121.76 | 33
As
74.922 | 15
P
30.974 | 7
N
7 | The shaded elements will be encountered most frequently, in the test. 14 15 16 4A 5A 6A | | 69 Thm 168.934 101 Md (258) | 116
Uuh
(293) | 84
Po
(209) | 52
Te | 34
Se
78.96 | 20.00 | 34 | ments of perfect for the perfe | | 70
Yb
173.06
102
No
(259) | 117
Uus | 85
At
(210) | 1969CI | 35
Br
79,904 | 17
02
18,453 | ~ | arty. | | | 118
Uuo
(294) | 86
R n
(222) | | 1 | 18
AJ | | 18
8A
2
2
1He |