Hour Exam #1 Chemistry 345 Professor Gellman 18 February 2015

Last Name	
Firet Name	

General Instructions:

- (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.
- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. No electronic devices may be used. Misconduct will lead to failure in the course.
- 1. (18 points) Show the product(s) expected from the reactions indicated below.

Na	am	е	
145	am	е	

For each molecular drawing below, put a circle around sets of H atoms that you expect to be NMR-equivalent to one another (achiral solvent). In many cases you will have to draw in the H atoms yourself. Designate sets of non-equivalent H atoms as "#1", "#2", etc., as illustrated in the example below (propane). (Note: The numerical order (1, 2, etc.) does not matter.)

3. (14 points)

Name _____

For each molecule drawn below, with reference to the H indicated by the arrow, label other H's as indicated...

- ...Put a CIRCLE around any homotopic H's.
- ...Put a TRIANGLE around any enantiotopic H's.
- ...Put a SQUARE around any diastereotopic H's.

(Be sure to label only those H's that are appropriate.)

116	1 1
1 /()	, ,

4. (12 points) In class we discussed nitration of aromatic rings with a mixture of HNO_3 and H_2SO_4 . Provide a mechanism (curved arrows) for the reaction shown below, which begins <u>after</u> the key electrophile has been generated. Draw all important resonance structures for intermediates.

Name _	
	_

5. (12 points) Propose a structure for products A and B formed in the reaction shown below. Your proposal should be consistent with the available data.

The ¹H NMR spectrum of this molecule has the following features:

A singlet δ 2.3

Two doublets in the range δ 7-8, coupling constant ~8 Hz.

Singlet integration 3x larger than each doublet integration.

A :	=			

¹H NMR spectrum includes the following:

Two singlets near δ 2.3, 1:1 integration

Three resonances in the range δ 7-8, each a doublet-of-doublets. For one, both coupling constants are large (~8 Hz); for the other two, one coupling constant is large (~8 Hz) and the other is small (~1 Hz).

В			ě
D	=		

¹H NMR spectrum includes the following:

Two singlets near δ 2.3, 1:1 integration

Three resonances in the range δ 7-8. Two are doublets, one with a large coupling constant (~8 Hz) and the other with a small coupling constant (~1 Hz). The third is a doublet-of-doublets, with one large coupling constant (~8 Hz) and one small (~1 Hz).

6. (15 points) For each of the molecules drawn below, place as many of the indicated numerals as appropriate on the line below the structure

1 = IR spectrum contains a strong signal at 1710 cm⁻¹

 $2 = {}^{13}C$ NMR spectrum contains exactly 2 resonances

 $3 = {}^{13}C$ NMR spectrum contains exactly 3 resonances

 $4 = {}^{13}C$ NMR spectrum contains exactly 7 resonances

 $5 = {}^{13}C$ NMR spectrum contains exactly 9 resonances

6 = ^{13}C NMR spectrum contains one and only one resonance at δ > 200

7 = All 1 H resonances at at δ < 3.0

8 = The only kind of resonance in the ¹H NMR spectrum is a singlet

9 = ¹H NMR spectrum contains only one triplet and one quartet

Name		

D

7. (12 points) For each set of four molecules shown below, rank them in order of INCREASING reactivity for an electrophilic aromatic substitution reaction (e.g., chlorination).

EAS reactivity increases in the order: ____ < __ < _

(b)

$$NO_2$$
 NO_2
 NO_2
 NO_2

A

B

D

EAS reactivity increases in the order: ____ < _