Hour Exam #1 Chemistry 345 Professor Gellman 19 February 2014 Last Name Answer

First Name

Ken

General Instructions:

- (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.
- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. No electronic devices may be used. Misconduct will lead to failure in the course.
- 1. (17 points) Show the product(s) expected from the reactions indicated below.

Name	

2. (15-points)_______

For each molecular drawing below, with reference to the H indicated by the arrow of the H indicated by the Arr

...Put a CIRCLE around any homotopic H's.

...Put a TRIANGLE around any enantiotopic H's.

...Put a SQUARE around any diastereotopic H's.

Name	•

- 3. (16 points) If benzene is heated with D₂SO₄ (D is deuterium), H atoms on the ring are slowly replaced with
- D. Shown below is the result of a single replacement.

(a) This reaction is an example of electrophilic aromatic substitution. Draw the <u>cationic intermediate</u> for formation of the mono-deuterated product shown above (all resonance structures).

(b) Under special conditions, this intermediate is stable enough that a proton NMR spectrum can be obtained. Below, indicate in the box how many types of H resonances you expect for this intermediate (don't worry about splitting). In the space below the box, provide a drawing of this intermediate in which all H's are shown and for which you indicate each set of magnetically equivalent H's with a distinct symbol (circles, squares, triangles, crosses, etc.).

Name		
name		

4. (17 points) We have learned that an acyl group can be added to an aromatic ring via a two-step procedure ("Friedel-Crafts acylation"). Shown below is an example of the first step in such a procedure; the second step involves addition of water to generate the final product. Provide a mechanism (curved arrows) for the reaction shown below. Draw all important resonance structures for intermediates. AICI₃ + HCI +1 or Con 1-arrows intermediate - 1 For incorrect changes

Name	

5. (7 points) Propose a structure for product X formed in the reaction shown below. Your proposal should be consistent with the available data.

The ¹H NMR spectrum of the starting material includes the following features:

Three resonances in the range δ 7-8, with a 1:2:2 integration ratio

Two resonances in the range δ 5-6, each with integration for 1 H

Several resonances in the range δ 0-2, with integration for a total of 9 H.

The ¹H NMR spectrum of product X includes the following features:

Four resonances in the range δ 7-8, each with integration for 1 H

No resonances in the range δ 5-6

Several resonances in the range δ 0-2, including a singlet with integration for 6 H and other resonances with integration for a total of 6 H.

Name

6. (28 points) For each of the molecules indicated, place as many of the indicated numerals as appropriate on the line below the structure

1 = Consistent with an IR signal at 3400 cm⁻¹

2 = Consistent with an IR signal at 3300 cm⁻¹

3 = Consistent with an IR signal at 3050 cm⁻¹

4 = ¹³C NMR spectrum contains 3 resonances

5 = ¹³C NMR spectrum contains 6 resonances

6 = ¹³C NMR spectrum contains 7 resonances

8 = One ¹H NMR resonance in the range δ 4.5-6.0; all other resonances δ < 2.5

9 = ¹H NMR spectrum is two triplets, one at δ 3.7 and the other at δ 1.8

