Hour Exam #3 Chemistry 345 Professor Gellman 30 April 2014

First Name			

General Instructions:

- (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.
- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. No electronic devices may be used. Misconduct will lead to failure in the course.

Last Name

1. (17 points) Show the product(s) expected from the reactions indicated below.

(c)
$$O_1$$
 O_2 O_2 O_3 O_4 O_4 O_5 O_4 O_5 O_5

2. (21 points) Show the reagents and other organic molecules required to convert the starting material to the indicated product. Be sure to differentiate clearly between distinct steps, by using "1)", "2)", etc. over or under the arrow.

(d)
$$NH_2$$
 NH_2

3. (19 points) Provide a mechanism (curved arrows) for each reaction shown below. Draw all important resonance structures for intermediates.

(Single enantiomer)

(Racemic)

00099

3. (cont.)

(b)
$$H_2N$$
 H_0 H_0 H_0

4. (8 points) Rank the four compounds below (A, B, C and D) according to pK_a at the indicated H, with the HIGHEST pK_a on the RIGHT.

INCREASING pK_a to the RIGHT:

<	<	<	
 _	 -		

[Place the letters A, B, C and D in the blanks above, in the proper order.]

5. (15 points) Draw the structures of molecules X, Y and Z in the indicated boxes below. Your structures must be consistent with the spectroscopic data given for these compounds.

Strong IR signal at 1680 cm⁻¹

No IR signal > 3100 cm⁻¹

¹³C NMR shows 8 resonances, only one of which is < 100 ppm.

No IR signal between 1670 and 1750 cm⁻¹ Strong IR signal at 3300 cm⁻¹

¹³C NMR shows 10 resonances, 4 of which are < 100 ppm.

Z =

Strong IR signal at 1710 cm⁻¹

No IR signal > 3100 cm⁻¹

13C NMR shows 10 resonances,5 of which are < 100 ppm.

\sim	\sim	\sim
- 11	i II	iuc
U	W.	ノフン

Name			
NAILIE			

6. (20 points) Propose an efficient synthetic route from the indicated starting material to the target. You may use any other starting materials and reagents.

Name ______00099

Problem #	Score
1	/ 17
2	/ 21
3	/ 19
4	/ 8
5	/ 15
6	/ 20

Total:

/100

Numbers in parentheses: available radioactive isotope of longest half-life,

Elements
of the
Table of
Periodic

			Т			1
2 He 4.003	Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)	
	9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)	
	8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (209)	
	N 14.01	15 P 30.97	33 AS 74 92	51 Sb 121.75	83 Bi 208.98	
	6 C 12.011	. Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19	
	5 B 10.81	13 A1 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37	
	_		30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
	$\vec{\eta}'$		29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
		9	28 Ni 58.71	46 Pd 106.4	78 Pt 195.09	
			27 Co 58.93	45 Rh 102.91	77 Ir 192.2	109 Una* (266)
9			26 Fe 55.85	44 Ru 101.07	76 Os 190.2	108 Uno* (265)
			25 Mn 54.94	43 Tc 98.91	75 Re 186.2	Uns* (262)
			24 Cr 52.00	42 IMo 95.94	74 W 183.85	106 Unh* (263)
			23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Unp* (262)
1 H 1-008			22 T i 47.90	40 Zr 91.22	72 Hf 178.49	104 U nq* (261)
<u> </u>			21 Sc 44.96	39 Y 88.91	57 La 138.91	89 Ac 1
	Be 9.01	12 IMg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra 226.03
	3. Li 6.94	Na N22.99	19 K 39.10			87 Fr (223)

Lanthanides	S8 Ce	59 Pr	PZ	61 Pm	Sm.	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	89	69 Tm	70 Y.b	71
	140.12	140.91	144.24	(145)	150.35	151.96	157.25	158.93	162,50	164.93	167.26	168.93	173.04	174.97
Actinides	90 Th 232.04	91 Pa (231)	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (249)	98 Cf (249)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)

*Symbol (and name) provisional.

	Type	of	absorp	tion
--	------	----	--------	------

*(s) = strong; (m) = medium; (w) = weak.

d

0:

Frequency, cm⁻¹ (Intensity)*

Comment 🦞

- 5	,	Alkanes
C—H stretch	2850-3000 (m)	occurs in all compounds with aliphatic C—H bonds
	A	likenes
C==C stretch		¥ 0
—CH≕CH ₂	1640 (m)	
_c=сн ₂	1655 (m)	
others	1660-1675 (w)	not observed if alkene is symmetrical
=C−H stretch	3000-3100 (m)	
==CH bend		
CH=-CH ₂	910–990 (s)	
C=CH ₂	890 (s)	
C=C	960–980 (s)	
H H	675–730 (s)	position is highly variable
r 	800-840 (s)	2
	Alcohols	and Phenois
OH stretch	3200-3400 (s)	#
C—O stretch	1050-1250 (s)	also present in other compounds with C—O bonds: ethers, esters, etc.
	A	lkynes
C≡C stretch	2100-2200 (m)	not present or weak in many internal alkynes
≡C—H stretch	3300 (s)	present in 1-alkynes only
	Aromatic	c Compounds
C—C stretch	1500, 1600 (s)	two absorptions
C—H bend	650-750 (s)	
overtone	1660–2000 (w)	

(Table continues)

Type of absorption	Frequency, cm ⁻¹ (Intensity	y)* Comment
	Al	dehydes
C=O stretch ordinary α, β -unsaturated benzaldehydes	1720–1725 (s) 1680–1690 (s) 1700 (s)	
C—H stretch	2720 (m)	
	1	Ketones
C—O stretch ordinary	1710–1715 (s)	increases with decreasing ring size (Table 21.3, p. 996)
α , eta -unsaturated aryl ketones	1670-1680 (s) 1680-1690 (s)	
	Carb	oxylic Acids
C=O stretch ordinary benzoic acids	1710 (s) 1680–1690 (s)	
O—H stretch	2400–3000 (s)	very broad
	Esters	and Lactones
C==O stretch	1735–1745 (s)	increases with decreasing ring size (Table 21.3, p. 996)
	Aci	d Chlorides
C=O stretch	_δ 1800 (s)	a second weaker band sometimes observed at 1700–1750
	A	nhydrides
C=O stretch	1760, 1820 (s)	two bands; increases with decreasing ring size in cyclic anhydrides
	Amide	es and Lactams
C=O stretch	1650–1655 (s)	increases with decreasing ring size (Table 21.3, p. 996)
N—H bend	1640 (s)	
NH stretch	3200-3400 (m)	doublet absorption observed for some primary amides
		Nitriles
C≡N stretch	2200–2250 (m)	
	120	Amines
NH stretch	3200-3375 (m)	several absorptions sometimes observed, especially for primary amines

^{*(}s) = strong; (m) = medium; (w) = weak.

APPENDIX III. PROTON NMR CHEMICAL SHIFTS IN ORGANIC COMPOUNDS

This appendix is subdivided into a table of chemical shifts for protons that are *part of* functional groups and a table of chemical shifts for protons that are *adjacent to* functional groups.

A. Protons within Functional Groups

Group	Chemical shift, ppm
 ССН 	0.7–1.5
c=c\H	4.6-5.7
—0—Н	varies with solvent and with acidity of O—H
—С≡С—Н	1.7-2.5
H	6.5–8.5

Group	Chemical shift, ppm
О СН	9–11
О 	7.5-9.5
	0.5–1.5
NH-	2.5–3.5

B. Protons Adjacent to Functional Groups

In this table, a range of chemical shifts is given for protons in the general environment

$$\mathbf{H} - \overset{\mid}{\mathsf{C}} - \mathsf{G}$$

in which G is a group listed in column 1, and the two other bonds are to carbon or hydrogen. The remaining columns give the approximate chemical shifts for methyl protons (H_3C-G) ,

methylene protons (—CH₂—G), and methine protons (—CH—G), respectively. The shifts in the following table are typical; some variation with structure of a few tenths of a ppm can be expected. The chemical shifts of methine protons are usually further downfield than those of methylene protons, which are further downfield than methyl protons. Each additional carbon substitution increases the chemical shift by 0.3–1.0 ppm.

2.1 (R = alkyl) R—C— 2.1 (R = aryl) 2.4 (R = aryl) 2.7 (R = aryl) 3.4 (R = aryl) RO—C— (R = alkyl, H) O 2.1 2.2 2.5	ift of
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ppm
-CR ₃ 0.9 1.2 1.8 -F 4.3 4.5 4.8 -CI 3.0 3.4 4.0 -Br 2.7 3.4 4.1 -CR=-CR ₂ 1.8 2.0 2.3 -R H, alkyl) -C==CR (R = alkyl, H) 3.3 (R = alkyl) 3.5 (R = H) RO— (R = alkyl, H) 2.4 2.6 3.0 RO— (R = alkyl, H) 2.4 2.6 3.0 RO— (R = alkyl, H) 2.4 2.6 (R = aryl) 3.4 (R = alkyl) 3.5 (R = aryl) 2.7 (R = aryl) 3.4 (R = alkyl) 3.4 (R = alkyl) 3.8 (R = aryl) 3.8 (R = aryl) 3.8 (R = aryl) 3.8 (R = aryl) 3.8 (R = alkyl, H) RO— C— 2.1 2.2 2.5 RO— C— 2.1 2.2 2.4 2.8 RO— C— 2.8 3.4 3.8	
-F 4.3 4.5	
-CI 3.0 3.4 4.5 -Br 2.7 3.4 4.1 -L 2.2 3.2 4.2 -L 2.2 3.2 4.2 -CR=CR ₂ (R = H, alkyl) -C=CR (R = alkyl, H) -C=CR -C=CR (R = alkyl, H) -C=CR -C-CR -C=CR -C-CR -C-	
-Br	
-1 2.2 3.2 -CR=CR ₂ (R = H, alkyl) -C=CR (R = alkyl, H) 2.3 2.6 2.8 RO— (R = alkyl, H) 3.3 (R = alkyl) 3.5 (R = H) RO— (R = aryl) 3.7 4.0 4.6 RO— (R = alkyl, H) 2.4 2.6 3.0 RO— (R = alkyl, H) 2.5 (R = alkyl) 2.7 (R = alkyl) 2.7 (R = aryl) RO— (R = aryl) 2.1 (R = alkyl) 2.7 (R = aryl) 2.1 (R = alkyl) 2.7 (R = aryl) 2.1 (R = alkyl) 2.7 (R = aryl) 2.1 (R = alkyl) 2.2 2.5 RO— (R = alkyl, H) - RO—	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.3 2.6 2.8 RO—(R = alkyl, H) 3.3 (R = alkyl) 3.4 3.6 RO—(R = aryl) 3.7 4.0 4.6 RS—(R = alkyl, H) 2.4 2.6 3.0 O R—C— 2.1 (R = alkyl) 2.7 (R = aryl) 3.4 (R = alkyl) 2.6 (R = aryl) 3.4 (R = alkyl) 3.4 (R = alkyl) 3.4 (R = alkyl, H) O R—C—— 2.1 2.2 2.5 O R—C—— 3.6 (R = alkyl) 4.1 (R = alkyl, aryl) (R = alkyl, aryl) (R = alkyl, H) O R ₂ N—C— 2.0 2.2 2.4 O R ₂ N—C— 2.0 2.2 2.4 O R ₃ N—C— 2.8 3.4 3.8 (R = alkyl, H) 2.2 2.8 (R = alkyl, H) 3.8 (R = aryl) 3.6 (R = alkyl, aryl) 3.8 (R = aryl) 3.8 (R = alkyl, H)	
RO— (R = alkyl, H) 3.3 (R = alkyl) 3.5 (R = H) RO— (R = aryl) 3.7 4.0 4.6 3.0 RO— (R = aryl) 2.1 (R = alkyl) 2.2 (R = alkyl) 2.7 (R = aryl) 2.6 (R = aryl) 2.7 (R = aryl) 2.1 2.2 2.5 RO—C— (R = alkyl, H) 0 R—C—— 3.6 (R = alkyl) 3.8 (R = aryl) (R = alkyl, aryl) 0 R, N—C— (R = alkyl, H) 0 R—C—N— R (R = alkyl, H) 2.8 3.6 (R = alkyl, H) 2.8 3.8 (R = alkyl, H)	
RO— (R = aryl) 3.7 4.0 4.6 RS— (R = alkyl, H) 2.4 2.6 3.0 O R—C— 2.1 (R = alkyl) 2.4 (R = alkyl) 2.6 (R = aryl) 3.4 (R = alkyl, H) O R—C— 2.1 2.2 2.5 (R = alkyl, H) 3.8 (R = aryl) (R = alkyl, aryl) (R = alkyl, aryl) (R = alkyl, H) O R—C—N— 2.0 2.2 2.4 (R = alkyl, H) O R—C—N— 2.8 3.4 3.8 (R = alkyl, H) O R—C—N— 2.8 3.4 3.8	
RO—(R = alkyl, H) RS—(R = alkyl, H) 2.4 2.6 RS—(R = alkyl, H) 2.6 (R = alkyl) 2.7 (R = aryl) 2.7 (R = aryl) 2.5 RO—C— (R = alkyl, H) 0 R—C—O— (R = alkyl, H) 0 R,N—C— (R = alkyl, H) 0 R,N—C— (R = alkyl, H) 0 R—C—N— R (R = alkyl, H) 0 R—C—N— R (R = alkyl, H) 0 R—C—N— R 2.8 3.6 2.7 3.6 (R = alkyl) 3.8 (R = aryl) 4.1 (R = alkyl, aryl) (R = alkyl, aryl) 0 R—C—N— R 2.8 3.8 3.8 3.8	
R	
RO-C- (R = alkyl, H) O R-C-O- (R = alkyl, H) O R ₂ N-C- (R = alkyl, H) O R _{3.8} (R = aryl) O R ₂ N-C- (R = alkyl, H) O R-C-N- (R = alkyl, H)	R = alkyl) R = aryl)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= alkyl, aryl)
O R - C - N - 2.8 3.4 3.8 (R = alkyl, H) 2.2 2.4 2.8 (R = alkyl, H) 3.6	
$-NR_2$ 2.2 2.4 2.6 $(R = alkyl, H)$	3
3.6	8
Ř	.6
(R = alkyl, H) 2.0 2.4 2.9	2.9

APPENDIX IV. ¹³C NMR CHEMICAL SHIFTS IN ORGANIC COMPOUNDS

This section is divided into a table of chemical shifts for carbons within functional groups and a table of chemical shifts for alkyl carbons adjacent to functional groups. A typical range of shifts is given for each case.

A. Chemical Shifts of Carbons within Functional Groups

—CH ₃ 8-23 —CH ₂ — 20-30	
CH ₂ 20-30	<u></u>
	#
CH	
	v v
c=c 105-150*	
—C≡C— 66-93*	
R 125–150*	ν^*
O C 200-220	Z =
0 	X
O	
—C≡N 110-120	

^{*}Alkyl substitution typically increases chemical shift.

B. Chemical Shifts of Carbons Adjacent to Functional Groups

In most cases, alkyl substitution on the carbon increases chemical shift. Methyl carbons will have shifts in the low end of the range; tertiary and quaternary carbons will have shifts in the upper end of the range.

A-8 APPENDICES

Group G	Chemical shift of carbon in G—C—
R₂C==CR—	14–40
HC≡C—	18–28
<u></u>	29–45
F	83–91
CI—	44-68
Br	32–65
-	5–42
HO—	62–70
RO— R = alkyl, H	70–79
O	43–50
RO-C- $R = alkyl, H$	33-44
R_2N — R = alkyl, H	41-51 (R = H) 53-60 (R = alkyl)
N=C	16–28