Physical Chemistry Seminar

Tuesday, March 2, 2010

11:00 a.m.

Room 1315 Chemistry Building

Exploring the Earliest Stages of the Amyloid β Protein Aggregation Pathway

Professor John E. Straub

Department of Chemistry Boston University

The aggregation Amyloid β (A β) peptide has been linked to the neurodegenerative Alzheimer's Disease and implicated in other amyloid diseases including cerebral amyloid angiopathy. A β peptide is generated by cleavage of the amyloid precursor protein (APP) by transmembrane proteases. It is crucial to determine the structures of β -amyloid peptides in a membrane environment in order to provide a molecular basis for the cleavage mechanism. We report the structures of amyloid β peptide (A β 1-40 and A β 1-42) as well as the 672-726 fragment of APP (referred to as A β 1-55) in a membrane environment determined by replica-exchange molecular dynamics simulation. A similar but distinct structural ensemble is observed for A β 1-40 and A β 1-42 at the membrane interface. The fragment of APP (A β 1-55) is observed to have a long transmembrane helix. The position of the transmembrane region and ensemble of membrane structures are elucidated. A proposed conformational transition between the A β 1-55 and A β 1-40 structures provides insights into APP structure and cleavage mechanism that are essential to a complete understanding of the A β peptide aggregation pathways.

Refreshments will be available prior to the seminar at 10:45 a.m. outside room 1315