Chem 664, Fall 2002 Handout

#3, 09/11/01

Definitions of symbols in "Polymer Physics" by Rubinstein & Colby

symbol	name	defined as	equal to	proviso
М	molecular weight	mass of one mole of polymerr	$M = M_0 N$	end groups' contribution neglected
Mo	monomer molecular weight	mass of one mole of repeating units in a polymer chain		primary structure specified
N	degree of polymerization	number of repeating units in a polymer chain		end groups not counted
ĩ		numerical approximation		
*		proportional with dimensionless const		
~		proportional with dimensional const		
r	linear dimension	a measure of size of an object		
m	mass	a mass of an object		
D	fractal dimension	exponent of linear dimension's	$m \sim r^D$,	
		proportionanty to mass	$m_1 = C_m m_2$	
			$\mathbf{r}_1 = \mathbf{C}_r \mathbf{r}_2$	
			$D = logC_m/logC_r$	
с	polymer concentration	mass of polymers of all sizes per unit volume of solution	$c = \sum_{N=1}^{\infty} c_N$	
c _N	concentration of N-mer	mass of N-mer per unit volume of solution		
φ	volume fraction	fraction of occupied volume of polymers per unit volume of solution	$\phi = c / \rho$	polymer density in bulk is the same as in solution
ρ	polymer density	density of polymer in bulk state		
v _m	molar volume of monomer	volume of one mole of repeating unit	$v_m = M_o / \rho$	
Vo	monomer molecular volume	volume of a repeating unit	$v_o = v_m / N_{AV}$	
V	pervaded volume	volume of solution spanned by a		
		polymer chain in solution		

Chem 664, Fall 2002 Handout

#3, 09/11/02					
¢*	overlap volume fraction	volume fraction of occupied volume of a polymer chain in a pervaded volume	$\phi^* = N v_0 / V$		
Р	overlap parameter	ratio of volume fraction to overlap volume fraction	$P = \phi V / N v_0$		
n _N	mole fraction of polymer with dp equals N, or mole fraction of N-mer	number of moles of N-mer relative to number of moles of polymers of all sizes.	$n_{\rm N} = \frac{c_{\rm N}/M_{\rm N}}{\sum (c_{\rm N}/M_{\rm N})}$		
w _N	weight fraction of N-mer	mass of N-mer relative to the total mass of polymers of all sizes	$w_{\rm N} = \frac{c_{\rm N}}{\sum c_{\rm N}}$		
z _N	z-fraction of N-mer		$z_{\rm N} = \frac{c_{\rm N}M_{\rm N}}{\sum c_{\rm N}M_{\rm N}}$		
"C"	molar concentration of polymer	total number of moles of polymers of all sizes per unit volume of solution	$C = \Sigma \left(\frac{c_N}{M_N} \right)$		
"C _N "*	molar concentration of N- mer	number of moles of N-mer per unit volume of solution	$C_{N} = \frac{c_{N}}{M_{N}}$		
"ρ _n "	number density of polymer	total number of molecules of all sizes	$\rho_{n} = N_{AV} \cdot \Sigma \left(\frac{c_{N}}{M_{N}} \right)$		
M _n	number average molecular weight		$\mathbf{M}_{n} = \sum \mathbf{M}_{N} \cdot \mathbf{n}_{N}$		
M _w	weight average molecular weight		$\mathbf{M}_{\mathbf{w}} = \sum \mathbf{M}_{\mathbf{N}} \cdot \mathbf{w}_{\mathbf{N}}$		
Mz	z-average molecular weight		$M_z = \sum M_N \cdot z_N$		
р	extent of reaction of polycondensation		p ≤ 1		
n (p, N)	mole fraction of N-mer at p for polycondensation		$n(p,N) = p^{N-1} \cdot (1-p)$		