Chem 654, Spring 2003 Handout

PS#1 revised, 01/27/03

Problem Set 1. due 02/03/03

- 1. Draw the repeating unit chemical structures of the linear polymers made from the following ingredients and describe their preparation methods.
 - a) Alternating copolymer of styrene and maleic anhydride
 - b) Polyurethane from toluene di-isocyanate and butanediol
 - c) Polycarbonate from bisphenol A and phosgene
 - d) Poly(3-hexylthiophene)
 - e) Polyimide from pyromellitic anhydride and phenylene diamine
- 2. Draw the local chemical structures of the networks resulting from the following chemicals.
 - a) Pentaerythritol and phthalic anhydride
 - b) Phenol and formaldehyde
 - c) Urea and formaldehyde
 - d) Epichlorohydrin, bisphenol A and hexamethylene diamine
- 3. Identify principal components with structures for the following trade name polymers.
 - a) Nylon 6,6
 - b) Orlon
 - c) Dacron
 - d) Kapton
 - e) Mylar
 - f) Formvar
 - g) Plexiglas
 - h) Tygon
 - i) Neoprene
- 4. a) For the following discrete binary mixture of monodisperse polymers, determine the number average, weight average, z-average and (z+1)-average molar masses:

i	w _i / g	M _i / (kg/mol)
1	10	1
2	1	10

b) For the following discrete ternary mixture of monodisperse polymers, determine the number average, weight average, and z-average molar masses:

i	w _i / g	M_{i} / (kg/mol)
1	3	10
2	2	20
3	1	30

Chem 654, Spring 2003 Handout

5. Consider polycondensation products of an $\alpha, \overline{\omega}$ -hydroxyacid, HO-R-COOH, to form a polyester. The chain length distribution can be derived to be continuous, commonly known as the most probable distribution, and the weight fraction of x-mer at an extent of reaction p is given by

$$W_{x} = xp^{x-1}(1-p)^{2}$$
(1)

a) Show that the z-fraction of x-mer is given by

$$Z_{x} = x^{2} p^{x-1} (1-p)^{3} (1+p)^{-1}$$
(2)

and both W_x and Z_x are normlized over $1 \le x \le \infty$.

Notes on binomial expansions:

$(1 \pm p)^{-n} =$	1 ∓ np +		$\frac{n(n+1)p^2}{2!}$		$\mp \frac{n(n+1)(n+2)p^3}{2!}$			+ <u>n(n</u>	+ $\frac{n(n+1)(n+2)(1+3)p^4}{4!}$			±,	(p ² <	< 1)
$(1-p)^{-1} = 1$	+	р	+	p^2	+	3: p	+	p ⁴	+	4! 5 p	+			
$(1-p)^{-2} = 1$	+	2p	+	$3p^2$	+	4p ³	+	5p ⁴	+	6p ⁵	+			
$(1-p)^{-3} = 1$	+	3р	+	6p ²	+	10p ³	+	15p ⁴	+	20p ⁵	+			
$\sum_{x=1}^{\infty} x^2 p^{x-1} =$	1 +	4p +	9p ²	+ 25p	$p^3 + .$, (<u></u>	p ² <	1)						
=	$\frac{1}{(1 - 1)^2}$	$\frac{p}{p^3}$												

- b) Find the extent of reaction p at which the weight fraction of 1000-mer is the greatest in the polymerization mixture; find p which gives W_{1000} the maximum in a profile of W_x vs. x.
- c) Find the extent of reaction p when the weight fraction of 500-mer is the greatest during the entire course of the polymerization reaction; find p which gives W_{500} the maximum in a profile of W_{500} vs. p.
- d) Plot W_x vs. x for p = 0.990, 0.995, 0.998, 0.999 over a range, $0 \le x \le 6000$.
- e) Plot W_x vs. p for x = 300, 400, 500, 700, 900 over a range, $0.990 \le p < 1.000$.