Chem 654, Spring 2003 Problem Set

#5, 04/03/01 Solutions to #5-1

Problem Set 5. due 04/14/01

1. Starting from

$$\frac{\mu_1 - \mu_1^{\circ}}{RT} = \ln(1 - \phi_2) + (1 - \frac{1}{x_n})\phi_2 + \chi_1 \phi_2^2$$
 (1)

for a polydisperse polymer solution where the number average degree of polymerization is represented by \mathbf{x}_n ,

A) show that

$$\phi_{2,c} = \frac{1}{1 + \sqrt{x_n}} \tag{2}$$

$$\chi_{l,c} = \frac{(1 + \sqrt{x_n})^2}{2x_n} \tag{3}$$

$$\psi_1(\frac{\Theta}{T_c} - 1) = \frac{1}{\sqrt{x_n}} + \frac{1}{2x_n} \tag{4}$$

where

$$(\mu_1 - \mu_1^*)^{E} = -KT\psi_1(I - \frac{\Theta}{T})\phi_2^2$$
 (5)

B) Plot $-\frac{\mu_1 - \mu_1^{\circ}}{RT}$ vs. ϕ_2 at $x_n = 1000$ for $\chi_1 = 0.50$, 0.53, 0.532, 0.54, and 0.60, and find $\phi_{2,c}$ and $\chi_{1,c}$.

2. The following light scattering data are given for monodisperse fractions of poly(styrene) in benzene $(n_0 = 1.4977)$ at 20°C with a He-Ne laser as the light source. Find the molar mass M, RMS radius of gyration R_g and second virial coefficient A_2 by constructing a Zimm plot.

c/mg/mL	(K · c / R _θ)· 10 ⁶ /mol·g ⁻¹					
	$\theta = 20^{\circ}$	40°	60°	80°	100°	120°
1.0	3.205	3.25	3.32	3.40	3.49	3.57
2.0	4.025	4.07	4.14	4.22	4.31	4.39
3.0	4.85	4.89	4.96	5.04	5.13	5.21
4.0	5.67	5.71	5.78	5.86	5.95	6.03

3. For polydisperse systems, prove that the molar mass and mean square radius of gyration obtained from light scattering via

$$\frac{Kc}{R_{\theta}} = \frac{1}{M} \left\{ 1 + \frac{16}{3} (\frac{\pi}{\lambda'})^2 \cdot R_g^2 \cdot \sin^2(\theta/2) + \cdots \right\} + 2A_2c + \cdots$$
 (6)

represent a weight average and z-average quantity, respectively.

Calculate the diffusion coefficient and sedimentation coefficient of hemoglobin, a globular protein assuming it to be spherical in shape, in the limit of infinite dilution in water at 20° C. Its M= $6.45 \cdot 10^{4}$ g/mol, the partial specific volume \overline{v}_2 in water is $0.75 \text{ cm}^3/\text{g}$, and the viscosity of water at 20° C is $1.005 \cdot 10^{-2}$ g/cm²·s, i.e., 1.005 centipoise.

$$D = \frac{kT}{6\pi nRs} \tag{7}$$

$$S = \frac{MD(1 - \overline{v}_2 \rho)}{RT}$$
 (8)