Hour Exam #2 Chemistry 345 Professor Gellman 18 March 2015

First Name		

General Instructions:

- (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. Models are allowed.
- (ii) Print your name on each page.
- (iii) Please keep your paper covered and your eyes on your own work. No electronic devices may be used. Misconduct will lead to failure in the course.

Last Name

1. (17 points) Show the product(s) expected from the reactions indicated below.

(The starting material is a single enantiomer.)

(c)
$$H_2O, \Delta$$

Name	
------	--

2. (23 points) Show the reagents and other organic molecules required to convert the starting material to the indicated product. Be sure to differentiate clearly between distinct steps, by using "1)", "2)", etc. over or under the arrow.

Name ____

3. (7 points) Rank the four reactions below (A, B, C and D) in terms of the expected relative rates, from SLOWEST (on the left) to FASTEST (on the right). All starting materials and products are racemic.

$$CH_3O$$
 CH_3O
 CH_3

$$CH_3OH$$
 CH_3OH
 C

Relative rate (slowest on the left, fastest on the right):

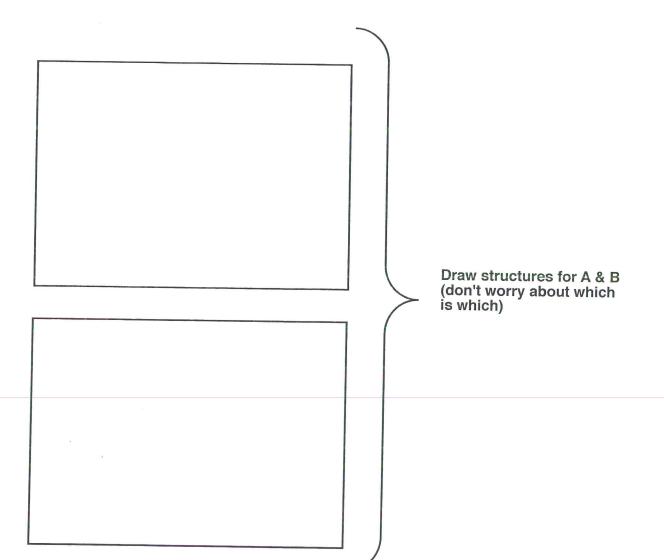
_____ < ____ < ____ < ____ <

- /	\sim	1	\sim	
	11 1		nx	
٠,				

4. (26 points) Provide a mechanism (curved arrows) for each reaction shown below. Draw all important resonance structures for intermediates.

(a)
$$O_2N$$
 + CH_3ONa + NaF_2O_2N

\sim	α	\sim
U	1 11	ınx


4. (cont.)

Note: Do not be concerned about stereochemistry of starting material or product.

5. (12 points) The reaction scheme below gives rise to two products, A and B. If either A or B is allowed to react with H_2 in the presence of Pd/C, both reactions yield the same product. Based on this information, and the 13 C NMR information below, provide structures for A and B in the indicated boxes.

¹³C NMR data:

Compound A and compound B have different 13 C NMR spectra, but these two spectra are similar in that both have four 13 C resonances below 50 ppm, and one 13 C resonance in the range 130-135 ppm.

6. (15 points) Propose an efficient synthetic route from the indicated starting material to the target. You may use any other starting materials and reagents.

00068

Name _____

Problem #	Score	
1	/ 17	
2	/ 23	
3	/ 7	
4	/ 26	
5	/ 12	
6	/ 15	

Total:

/100