
List of updates in download file

The source code, force field file, examples, etc., available for download will be updated from

time to time as we implement new changes in the code or force field parameters that we feel may

be useful for others. Because of the relatively small size of the code, we are not indexing a

version number, rather we just replace the old download with the newer one. While all new

versions of the code are tested and we believe are free of any major bugs, we do not issue any

guarantees. We would appreciate any comments or suggesting regarding the above

considerations.

2/22/2013

We have implemented the ability to use a Feynman-Hibbs effective potential (see source code

for citations) to incorporate nuclear quantum effects (we have used this for simulating hydrogen

adsorption in MOFs at low temperature). The Feynman-Hibbs contribution to the energy will

either be calculated with a cutoff, or with a PME implementation, and this choice will be made

based on the setting of “pme_disp”, so that it is consistent with the treatment of the dispersion

energy.

9/12/2013

Quite a few updates here.

MC code: changed the indexing of Drude oscillators. Before, we assumed a Drude oscillator on

every atom. This was inefficient though, for large molecules with a lot of Hydrogen atoms,

where there is not a Drude oscillator on every atom. Therefore, now we introduce an array with

maps Drude oscillators to their atom, so we don’t have to make such an assumption. Also we

have added the ability to calculate 3-body dispersion interactions

Lattice code: Added this source to the download. Made the same change with Drude oscillator

indexing. Also scripted the execution of the three steps to a lattice model isotherm, namely the

construction on the lattice free energy grid, discretizing the coarse grained potential, and running

the lattice simulation.

1/13/2015

Quite a few updates here.

MC code:

1) changed code so that a hybrid lj/bkghm force field could be run, this was done so that we

could compute h2o adsorption in MOFs using the SWM4-NDP water model for solute-solute

interactions, and our force fields for solute-framework interactions

2) fixed small bug in pair_int.f90 evaluating lj energies. In lj_bkghm .eq. 2, if statement

 ! don't shift potential to values at cutoff (for molecule close to cutoff)

 if(r_ij > lj_cutoff_use) then

 sum_long = sum_long + min (E_short + E_long -

lj_shift_store(atom_id1,atom_id2) , 0d0)

 else

 sum_short=sum_short + E_short

 sum_long=sum_long + E_long - lj_shift_store(atom_id1,atom_id2)

 endif

seems to be using uninitialized variable r_ij, which is only defined for the lj_bkghm .eq. 1 case.

Pretty sure that this is the source of the bug in the previous version compile info.

3) implemented a Verlet neighbor list for lj interactions. This was done for lj energy and force

routines. In order to do this, the subroutines were reorganzied a bit, which is better for code

readability anyway

4) changes made were creating look up tables for the Tang-Toennies functions for

C6,C8,C10,C12. Also, the subroutines were clogged up with Case and if statements. We

removed the scale_damp_exponents parameter since this probably never will be used again, and

it added an if statement, and created an array for atom type pairs that flags whether the pair gets

damped. All of this saves if statements, also reorganized into new subroutines to save case

statements

5) found a very inefficient portion of code in the pme energy and force routines

 in the reciprocal space energy and force pme routine, we need to form the product F(Q) * C *

B , where Q, C, B are the standard matrices of the pme algorithm, and F(Q) is the fourier

transform of Q

 since F(Q) is complex, this product matrix is complex. But B, C are real. We previously used

the code

 FQ=FQ*cmplx(CB,0.,16)

where we are overwriting FQ with the new product and CB is already C*B

change this to

 FQ=FQ*CB

gives the same result but is much faster, and this makes a significant difference in the net time

of the reciprocal space pme subroutines

6) added the "md" option for variable select_ensemble. This will perform an nve molecular

dynamics simulation. This was trivial to implement, as we already have the hybrid_md_mc

move subroutine. We use this subroutine, without resampling velocities, and always accepting

moves. The time step must be small, and not updated.

 To use the md option, one should be careful to use a small time step, and use appropriate energy

options so that the forces are accurate. For instance, certain energy evaluations don't have forces

coded in (which wasn't necessary for monte carlo); Three-body dispersion, pme dispersion, etc.

 We tested the energy conservation on OPLS methane, and SAPT methane, and found nearly

perfect energy conservation (<< 1kJ/mol drift) over hundreds of pico seconds for both systems

using a long (20 A) cutoff.

 We tested neat methanol SAPT force field, and found significant energy drift. We think this is

due to the Drude oscillators. This is being investigated.

7) Because the MD simulations take a long time, we tried to improve the speed of the pme-force

calculation which is a bottleneck. A new subroutine "pairwise_ewald_real_space_force" was

created, allowing for the option of gridding the pairwise real-space interactions for each atom-

type pair. We tested the speed-up of using such table look-up functions, but found that large

table arrays (1000000) were required for good accuracy, and the memory allocation introduced

by these large arrays slowed the program down such that there was no speedup in using these

lookups. So we probably won't use these lookups, but left them coded in as an option,

 Also, in this same subroutine, we introduce a cutoff distance "screen_distance_max_sq" so that

Tang-Toennies screening functions are not evaluated in this pme force calculation after this

distance, which leads to negligable error, but saves some time.

8) added the ability to read in charges from the .fconf file

Lattice code:

1) The source code has been modified so that the lattice free energy grid can be scripted for

large-scale parallelization, by using input parameters start_grid_a, finish_grid_a, etc, that tell the

code which grid points to construct free energies for.

2) module has been added to calculate Qeq charges for the crystal framework

3) Fixed an important bug. In the pme.f90 subroutine, drude_force_usegrid, there was a bug in

converting from scaled to absolute forces. In particular, the line

force(i_mole,i_atom,:) = force(i_mole,i_atom,:) + matmul(ftmp(:),inv_box(:,:))*dble(pme_grid)

was changed to

force(i_mole,i_atom,:) = force(i_mole,i_atom,:) + matmul(inv_box(:,:),ftmp(:))*dble(pme_grid)

because, the inv_box matrix is diagonal for orthorhombic cells, this bug was only expressed for

non-orthorhombic unit cells, and because it's a force subroutine, it only matters if there are drude

oscillators. The origin of the bug comes from the fact that the inv_box matrices in the monte

carlo and lattice model codes are transposes of each other. This is unfortunate, and probably

should be fixed. So be careful!

4) added the ability to read in charges in the read_fconf subroutine in initialization_routines.f90.

This subroutine automatically detects the presence of charges by the number of arguments on

each line, and overwrites the previous chg array if charges exist here. This modification is

important to do high-throughput screening with ab-initio charges

