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General Monte Carlo Code:

This code is a general Monte Carlo program that can perform simulations in standard
ensembles (nvt, npt, uvt, etc.). It can also be used for Molecular Dynamics simulations
(currently, nve only). The primary motivation for writing this code is that we needed a Monte
Carlo program that was compatible with our symmetry-adapted perturbation theory (SAPT)
based force-fields.!> As these force fields utilize Drude oscillators to explicitly model many-
body polarization (see Ref 5 for a complete description of the force fields), the efficient
implementation of Drude oscillators was a central goal of the code. Here we briefly list the
important capabilities (as well as limitations) of this code.

Capabilities:

e Supports nvt, npt, uvt (grand-canonical), egc (expanded grand-canonical) ensembles for
Monte Carlo simulations. Supports nve Molecular Dynamics as well.

e Supports standard force fields (Lennard-Jones) as well as our SAPT-based force fields
(When utilizing our SAPT-based force fields, an explicit energy decomposition is
available with the trajectory)

e Supports fast and accurate particle-mesh Ewald (PME) treatment of long-range

electrostatic interactions
(Also supports PME treatment of solute-framework dispersion interactions in
GCMC simulations)

e Supports collective hybrid MD/MC moves, as well as standard single molecule moves

e Supports Drude oscillators

e Supports three-body, Axilrod-Teller dispersion interactions

e Supports Feynman-Hibbs effective potentials for treatment of nuclear quantum effects

Limitations (that could be remedied with further development)
e All molecules are treated as rigid bodies. Molecule flexibility could be easily

implemented in hybrid MD/MC moves as forces are already coded in.
e Currently, there are no thermostats/barostats for Molecular Dynamics module.

Section 1: Outline of Source Code



This program is written in Fortran 90, and besides the source code files listed below, it
requires MKL libraries (for fast-Fourier transforms) and Open-MP libraries (for threading) for
successful compilation (see Section 2). The source code contains modules that range from
being very general for molecular simulation programs, such as energy (total_energy forces.fo0,
pme.f90, pair_int.f90, electrostatics.f90) and sampling (sampling.f90,
rigid_body_kinematics.f90) routines, to modules that are very specific for our force field
implementation (sapt_ff_routines.f90, penetration_ff_routines.f90). However, one can get a
pretty good idea of how the code is structured by just focusing on the general modules such as
(in structure-flow order) main_mc.f90, sampling.f90, and total_energy_forces.f90.

As a primary use of this code is to run Monte Carlo simulations employing our SAPT-based
force fields, hybrid MD/MC type moves are most often used for these simulations as such
simulations employ Drude oscillators. This is because single molecule MC moves are very
inefficient, as one cannot use an order(N) energy calculation to find energy differences
between two such configurations for a non-pairwise additive potential. The hybrid MD/MC
moves serve to create new molecular configurations by moving all molecules simultaneously,
guided by the forces on each molecule, to generate new trial configurations which are accepted
or rejected using the standard Metropolis criteria. At each trial configuration, the Drude
oscillators on all solute molecules are optimized self-consistently to their minimum energy
configurations.

Source files:

main_mc.f90 :: This contains the main program call, which controls the loop over
MC/MD moves.

read_simulation_parameters.f90 :: This reads the simulation_parameters.pmt file

mc_routines.f90 :: The module in this file controls everything to do with the
initialization of the program.

sapt_ff_routines.f90 :: The module in this file is used specifically to initialize the use of
our “decomposed”, SAPT-based force fields.

general_routines.f90 :: This file contains a scattered collection of subroutines that are
commonly used by many other modules.

sampling.f90 :: The module in this file controls the generation and acceptance of all
types of Monte Carlo moves (and controls MD integration).



rigid_body_kinematics.f90 :: This file contains routines designed to integrate Newton’s
equations for arbitrary rigid bodies.

eq_drude.f90 :: This file contains a subroutine to self-consistently optimize Drude-
oscillator positions using a conjugate gradient algorithm.

pme.f90 :: This file contains subroutines to carry out Particle-mesh Ewald
electrostatics, as well as a PME dispersion treatment of solute-framework interactions for
GCMC adsorption simulations.

electrostatics.f90 :: The subroutines in this file include electrostatic cutoff routines, and
old Ewald routines that were used for debugging. Note that most likely the electrostatics will
be treated using Particle-mesh Ewald, and therefore most of the time the electrostatic
subroutines in this file will not be used.

pair_int.f90 :: The module in this file controls the calculation of all non-electrostatic,
pairwise-additive energy and force terms for either a Buckingham or Lennard-Jones potential.

explicit_three_body_interaction.f90 :: This file contains routines that calculate explicit
three-body interactions, such as Axilrod-Teller like three-body dispersion energies.

total_energy_forces.f90 :: The subroutine here outputs the total energy and forces of
of the system.

insertion_bias_routines.f90 :: This file contains subroutines for orientation-bias and
energy/cavity-bias molecule insertion/deletion moves.

expanded_grand_canonical_routines.f90 :: The subroutines in here are related to the
use of the expanded grand canonical ensemble.

penetration_ff_routines.f90 :: These subroutines are used for piecewise force fields, in
which pairwise interactions are switched between the standard “ZIF FF” functional form, and a
single repulsive term at close distances.

glob_v.f90 :: This module contains global variables for the program. One can look at
this file to see (change?) the values of parameters which have been hard-coded in for the
convenience of condensing input files. The size of many data arrays are set through the
parameters “MAX_N_MOLE” and “MAX_N_ATOM” which are found in this module. One can
lower these values to free up memory, or increase them if more molecules or atoms are
needed than allowed.



Section 2: Notes for compiling and running

A Makefile is included with the source code, and this can be used to compile the code
after a couple paths are changed. In particular, the code uses the discreet Fourier transform
routines from the Intel math kernel (MKL) library. The required links are listed in the
“LDFLAGS” variable, but the user must set the “MKLLIB” to the appropriate path where these
libraries can be found. In addition, the code uses the open MP algorithms (OMP) for shared-
memory parallelization. Therefore the user must also set the “OMPINCLUDE” variable to the
appropriate path where the open MP libraries can be found. After these paths are set,
executing the command “make” in the source directory should compile the code and produce
the executable “main_mc”.

Concerning memory requirements, most of the global data arrays are not allocatable,
and the size of most of these arrays is governed by the parameters “MAX_N_MOLE” and
“MAX_N_ATOM?”, with values hard coded in the file glob_v.f90. Depending on the size of the
systems that are studied, the user may want to change the values of these parameters before
compiling the code. MAX_N_MOLE should be set to a value larger than the total number of
molecules in the system (which may be somewhat undetermined in a GCMC simulation), and
MAX_N_ATOM should be set to a value larger than the maximum number of atoms per
molecule. Because this code is threaded, setting these values too large may require explicitly
setting the stack size on the compute node before running the program.

Thus it may be necessary to explicitly set the variable OMP_STACKSIZE before running
the code. A command such as “export OMP_STACKSIZE=20M” will do this. If this variable is not
explicitly set, a “segmentation fault” might occur when trying to run the code.

The code can then be run (assuming the executable and all required input files are in the
current directory) using the command

./main_mc ifile.conf [ifile.fconf] ifile.pmt simulation_parameters.pmt ofilel ofile2

Where “ifile.conf” is the solute configuration input file, “ifile.fconf” is the [optional] crystal
framework configuration input file used in a nvt/uvt gas adsorption simulation, “ifile.pmt” is the
force field parameters input file, “simulation_parameters.pmt” is the simulation parameters
input file, “ofile1” is the first output file containing configurations of the trajectory, and “ofile2”
is the second output file containing run information as well as energetics of the trajectory.

Section 3: List of examples.



***Note: In all of the examples below, the “name.out” output file
containing the trajectory xyz-coordinates has been removed to limit the file size of
the download***

a) ZIF-68 (“ZIF FF”)/CO, (“SYM”) simulation at 298K, .4bar.

This is an example calculation of a GCMC simulation for CO; in ZIF-68 at 298K, .4bar.
The “SYM” force field is used to describe CO2/CO; interactions, and the “ZIF FF” force field is
used to describe CO,/ZIF-68 interactions. The solute (CO) configuration input file is named
“co2.conf”, and it contains 62 CO, molecules. Note that the “box vectors” in “co2.conf” are
unimportant, as these will always be taken from the “*.fconf” (in this case,
“zif68 relabel 2x2x2.fconf” ) crystal configuration input file. The only time the box vectors will
be taken from the solute configuration file is if a neat fluid simulation in carried out. The crystal
configuration file, “zif68_relabel _2x2x2.fconf”, contains the configurations for a 2x2x2 super
cell, and the atoms have been labeled to correspond to the atomtypes in the force field,
“co2_zif68.pmt”, file. This super cell consists of 4800 atoms, and the code will treat the
framework atoms individually when calculating interactions within the cutoff range. ZIF-68 has
a “non-cubic” unit cell, and therefore at the bottom of the “zif68 relabel 2x2x2.fconf” file,
three vectors are given describing the box edges in Cartesian coordinates.

The force field file, “co2_zif68.pmt”, begins with the “solute_species” section, which
lists the unique atom types for all solute molecules (in this case just C and O), and their force
field parameters for solute-solute interactions. These are the “SYM” force field parameters. As
we are using different solute parameters for solute-framework interactions, these are given
under the next section labeled “solute parameters for framework cross terms”. These are the
“ZIF FF” parameters for carbon and oxygen of CO2. The next section titled “solute dhf cross
terms” is to give the “SYM” C-O Adhf parameter as this can’t be generated using a combination
rule. The next section titled “solute-solute exponents” gives the “SYM” exponents for (in order)
C-C, C-0, and O-0 interactions, as the C-O exponent can’t be generated using a combination
rule. The final section, titled “framework_species”, gives the “ZIF FF” parameters for all atom
types in the ZIF-68 crystal. Note that the atomtype labels are consistent with those in the
“zif68_relabel_2x2x2.fconf” crystal configuration file. Note also that charges are given, which
have been derived by fitting point charges to a distributed multipole analysis (DMA), (see Ref 3
for details), and charges are available for nine different ZIFs in the supporting information of
reference 4.

The “simulation_parameters.pmt” file contains general simulation parameters, and the
options are described in detail in section 6. Note that the chemical potential given in this file,
as described in section 6, must not contain any rotational/vibrational contribution. The script



“co2_chempot_eos.pl” (located in the /useful_scripts/ directory) can be used to generate the
chemical potential for CO; as a function of temperature and pressure using the Peng Robinson

equation of state.

This example job can be submitted and run using the script “submit.sh”. The first
output file for this job, “zif68 298K _.4bar.out”, contains the trajectory of solute molecules
during the simulation, with snapshots printed in order for every “n_output” (found in
simulation_parameters.pmt) number of MC moves. The second output file,
“zif68_298K_.4bar.outl”, contains simulation parameter information, along with a brief (non-
comprehensive) list of force-field parameter information. After these sections, energy
information is printed for the corresponding snapshots (of the first output file) from the
trajectory. Because we are using our “SAPT-based” force fields, we have an explicit energy
decomposition for each of these snapshots, and this is accessible in this output file. Also
printed is the kinetic energy, number of solute molecules, volume, and long range dispersion
correction ( which is always zero for a crystal simulation ). A trajectory of the density of gas
molecules can be generated using the script “density.pl” ( *./density.pl zif68_298K_.4bar.outl’).
Note that the total potential energy reported in the “zif68 298K _.4bar.outl” file is the total
potential energy of all solute molecules in the unit (super) cell. The only crystal-crystal
interactions that are calculated during the simulation ( reciprocal space pme electrostatics )
have been subtracted out, so that the potential reported is entirely the potential energy of the
solute molecules.

b) ZIF-69 (“ZIF FF”)/N2 (“SYM”) simulation at 298K, .6bar.

This is very similar to the example above, only this is a simulation of N, uptake in ZIF-69,
again using the “SYM” force field for solute-solute interactions, and “ZIF FF” for solute-
framework interactions. The important thing to notice here is that the exponents in the force
field parameter file “N2_zif69.pmt” are the ZIF FF exponents scaled by a factor of 0.98, as
detailed in reference 4. The chemical potential for N as a function of temperature and
pressure can be calculated with the script “N2_chempot_eos.pl” using the Peng Robinson
equation of state.

c) ZIF-8 (UFF)/CO; (“EPM2”) simulation at 303K, 1bar.

Again, this example is very similar to the previous two, but in this case a Lennard-Jones
force field is used with the UFF parameters describing the ZIF-8 framework atoms, and the
EPM2 force field (J. G. Harris and K. H. Yung, JPC 1995, 99, 12021-12024) is used for the CO>
molecules (notice the change in bond length of CO, molecules in the co2.conf file!). The format
of the force field parameter “*.pmt” file is similar, but simpler, as the only necessary



parameters are charge, epsilon, and sigma values (with some additional zero’s entered to make
the parameter reading subroutines happy). Also notice the changes in the
“simulation_parameters.pmt” file, which are consistent with the LJ force field and UFF
parameters. In the “*.outl” output file, the energy is now only explicitly divided into two
components, a contribution from point charges (“Electro_static”), and everything else (listed
under “Buckingham”, sorry Lennard-Jones).

d) MOF-5 (“ZIF FF”) / CO2 (“SYM”) simulation at 298K, 15bar.

This example illustrates the use of an “exact” PME treatment of long range van-der-
Waals interactions (between the crystal and solute molecules), to limit the errors introduced
when employing a cutoff. While long-range corrections are routinely used in isotropic systems
to remedy errors introduced by cutoffs, there is no such satisfactory correction for a non-
isotropic, crystalline system. By using an Ewald sum for these interactions, no such errors are
introduced. To use the PME treatment for dispersion, the parameter “pme_disp” is set to “yes”
in the simulation_parameters.pmt input file.

e) Neat Acetone npt simulation with 3-body dispersion.

Here, we illustrate how to run a neat fluid simulation in the npt ensemble, using our
SAPT-based force fields with 3-body Axilrod-Teller dispersion interactions. The parameter input
file is similar to before, with the addition of a three body dispersion parameter section, and the
format for this section is commented on in the input file. There are a few changes to be aware
of in the simulation_parameters.pmt file. First, the parameter
“damp_solute_solute_dispersion” is set to “yes”, as should always be done for interactions that
employ a C6/R"6 + C8/R"8 + C10/RM10 + ... treatment of dispersion. This will employ a Tang-
Toennies dampling function for all such interactions. The reason that this parameter was set to
“no” in the previous examples is that for CO,-CO; and N2-N; interactions, we were using the
“SYM” forcefield, which employs an “effective” C6/R"6 dispersion interaction, and is thus
undamped. Second, a parameter called “three_body_dispersion” is included and is set to
“yes”. In addition, there are parameters specific to the npt ensemble that control volume steps
( pressure, vol_step, cycles_per_vol_step, max_vol_step, target_acceptance_v ). Since we are
simulating a neat fluid, we can employ a long-range correction to the cutoff van-der Waals
interaction, and this is done by setting dispersion_Irc = 1 (and hence we use a shorter cutoff of
li_cutoff =12 ). The last settings that we mention are for the 3-body dispersion evaluation;
parameters “na_nslist”, “nb_nslist”, and “nc_nslist” are grid sizes for the cell-list algorithm
used for looping over 3-body interactions, and three_body_dispersion_cutoff determines the

cutoff for these interactions.



f) Neat Acetone OPLS npt simulation.

Here we illustrate how to run a simple (rigid-body) OPLS npt simulation of neat acetone.
These input files should be simple and self-explanatory. The only thing one would have to
change for any other standard Lennard-Jones force field is the combination rule setting in
simulation_parameters.pmt ( Ij_comb_rule = “opls” uses the opls combination rule which is a
geometric mean for both epsilon and sigma, |j_comb_rule = “standard” uses Lorentz-Berthelot
combination rules). This simulation was run at STP, and one can compare the density and
enthalpy of vaporization from this simulation (0.794 g/cm3 and 7.32 kcal/mol respectively) to
the values reported in the original OPLS paper- JACS, 118, (1996), 11225-11236 (0.795 g/cm?3
and 7.24 kcal/mol ). The minor differences are due to the fact that we have used a rigid model
for acetone, whereas the reference work uses a flexible model with OPLS bonded parameters.

Section 4: Solute and Crystal configuration input files ( *.conf,
*.fconf)

a) “*.conf” file

The *.conf file contains the initial configuration of the system. For a neat fluid
simulation, this should therefore contain coordinates of all the molecules in the system. The
reason why we refer to this as the “solute” configuration file, is that for the case of a GCMC gas
adsorption simulation in a porous material, the system is separated into “solute” and
“framework” components. This file would then contain the initial coordinates for the solute
only. For a GCMC simulation, while the initial number of solute molecules can vary, at least one
molecule must be present in this file, as the molecular geometry and atom types are
determined by the labels and configurations. Also for a simulation in a crystal framework, care
must be taken to provide an initial configuration where there is no “overlap” between solute
molecules and the framework atoms.

The format of this file is as follows:
First line (unformatted): Number of total solute atoms in this initial configuration.

Next (# solute atoms) lines: Configurations of molecules, this is FORMATTED INPUT! The
format for these lines must be (in Fortran 90 syntax) '(15,2A5,15,3F14.6)', corresponding to the
molecule number, molecule name, atomtype, # of atom entry, and x, y, z Cartesian coordinates
(given in Angstroms) respectively. Note this is very similar to GROMACS .gro file formats, with
the main difference being coordinates are given in Angstroms rather than nanometers and no
velocities are given.



Last line(s)(unformatted): This line(s) gives the box vectors (in Angstroms). Note that these box
vectors are only used in a neat fluid simulation; if a “*.fconf” file is used, the box vectors from
that file are used in the simulation. The box vectors can be entered in two different ways. For
a rectangular box, only the lengths of the sides are needed, and these can be entered on the
same line, and read in as “length1 length2 length3”. If this is the only line present, then this
input format is assumed, and the three box vectors are taken to be orthogonal. For a non-
orthogonal box, (or, if you want, for an orthogonal box), the cartesian coordinates of the three
box vectors are given explicitly one after the other, on separate lines. So the first line should
contain Ax, Ay, Az; the second line Bx, By, Bz; and the third line Cx, Cy, Cz for box vectors A, B,
C.

b) “*.fconf” file

This file is used for a simulation of a solute in a fixed crystal framework. For neat fluid
simulations, this file is omitted. The format of this file is as follows:

First line: Number of crystal framework atoms

Next (# atoms) lines: These give the coordinates of all atoms in the crystal. These lines are read
in as atomtype, X, y, z Cartesian coordinates (in Angstrom). These lines are not read in by an
explicit fixed format.

(As an option, charges can explicitly be read in for each atom from the *.fconf file. In this case,
the previous lines will be read in as atomtype, x, y, z Cartesian coordinates, charge. Whether or
not charges are being read will automatically be detected by the code based on the number of
arguments given for these lines. If charges are read in here, they will overwrite any charges
read in from the *.pmt file)

Last line(s) :: The last line(s) give the unit (or super) cell vectors for the crystal. These vectors
are read in the same way as in the “*.conf” file (see above).

Section 5: Force field input file ( *.pmt )

The file has many possible formats, due to the fact that there originally was a lot of
experimentation with force field functional forms and parameters. Unless a simple Lennard-
Jones type force field is being used, the subroutines that read this file are all contained in
“sapt_ff_routines.f90”. The best way to generate an appropriate “*.pmt” file is probably to use



one of the example files as a template. Here, we will briefly describe the main aspects of this
file.

Units:

Charges are in a.u., all other units are in a combination of energy units of kJ/mol and
distance units of Angstrom. So for a Lennard Jones force field, epsilon should be given in
kJ/mol, and sigma should be given in Angstroms. For our SAPT force fields, the various
exponential prefactors (Aexch, Aclec, Aind, €tcC. ) should be given in kJ/mol, the exponents,”B”,
should be in inverse Angstroms, and C6, C8, C10, C12 coefficients should be in kJ/mol*A”6 ,
kJ/mol*A”8 , kl/mol*Ar10, kl/mol*A”r12 respectively. Polarizabilities of solute atoms should
be in Angstrom”3 .

General Structure:

The .pmt file is divided into sections, and the number of sections and format of each
section depend on the type of simulation and the force field employed.

a) “solute_species” section.

This section is required for all types of simulations, and it is the only section required for
neat fluid simulations. This section is (and must) be labeled with the keyword “solute_species”.
After this heading line, a comment line must be included, followed by a line with the number of
unique atom types for all the solute molecules. After this, every solute atom type is listed
followed by the force field parameters (the format of which depends on the type of force field
used, see below).

b) “framework_species” section.

The phrase “framework_species” is needed for recognition of this section. This section
is used only for a simulation of adsorbates in a porous crystalline framework. After the
heading line, a comment line must be included, followed by a line with the number of atom
types for the crystal framework. After this, every framework atom type is listed, followed by
the force field parameters.

Specific Force Fields:

Specific force fields require specific formats for entering the force field parameters as
well as possibly extra sections in the “*.pmt” file. Here we discuss these specifics, according to
the type of force field



SAPT Force fields-SYM CO2/N2 model: While the SYM force fields for CO2 and N3
require a somewhat “specialized” input section, these input sections are clearly illustrated in
the provided examples.

a) “solute_species” section: The format for the force field input lines is as follows:
atomtype label (must match that used in “*.conf” file), charge, Aexch, Aclec, Aind, Adhf, Adisp (z€r0),
C6,C8,C10, (C8 and C10 zeroed for “SYM” CO2/N2 models), and finally polarizability ( for drude
oscillators). (NOTE that C12 parameters are not usually input here, as we don’t use C12
coefficients for CO2, N2 “SYM” force fields. However, C12 parameters can be read in, as long as
the setting solute_cross_parameter_set="yes” is used).

b) “solute parameters for framework cross terms” section: This section must include
the key phrase “framework cross terms” for recognition. This section is used only for a
simulation of adsorbates in a porous crystalline framework, in which different force field
parameters are used to create the solute-framework cross terms. If this section is present, the
variable solute_cross_parameter_set should be set to “yes” in the simulation_parameters.pmt
file. There should be as many lines for this section, as there are solute atom types in the
previous “solute species” section, and the original order should be preserved. “solute
parameters for framework cross terms” section: The entries for each line are as follows: Aexch,
Aclec, Aind, Adnf, Adisp (zero), B, C6,C8,C10, (and C12 iff parameter C12_dispersion is set to “yes”).
Here, note the sign of the Agnf parameter, as this can sometimes be negative (see “SAPT Force
fields-general” section for further elaboration on the Agnf sign convention).

c) “solute dhf cross terms” section: The phrase “solute dhf cross terms” is needed for
recognition of this section. This section is only used for the CO; “SYM” model, in which the C-O
Agnf parameter isn’t generated by a simple combination rule. This parameter should be input
under the section heading.

d) “solute-solute exponents” section: The phrase “solute-solute exponents” is needed
for recognition of this section. This section lists the all the exponents, including cross terms, for
the solute atoms of the “SYM” force field, since these exponents can’t be generated using
simple combination rules. The format for “N” atom types, is a single line under the heading
line, containing the ( N * (N+1) )/2 possible atom type pairs, in an order analogous to the loop
structure i=1,N ; j=i,N .

e) “framework_species” section: The format for the force field input lines is as follows:
atomtype label (must match that used in “*.fconf” file), charge, Aexch, Aclec, Aind, Adnf, Adisp (z€r0),
B, C6,C8,C10, (C12 iff parameter C12_dispersion is set to “yes”), and polarizability (zero). Again,
note the sign of the Agnf parameter, as this can sometimes be negative (see “SAPT Force fields-
general” section for further elaboration on the Agnf sign convention).



SAPT Force fields-general: Beyond the “SYM” force fields, we have developed
transferable force fields for other systems. We have tried to keep the force field parameters as
simple as possible, avoiding explicit cross terms and using a consistent treatment of dispersion
(damped C6-C12 terms) for all interactions.

a) “solute_species” section: The format for the force field input lines is as follows:
atomtype label, charge, Aexch, Aclec, Aind, Adnf, Adisp (zero), C6,C8,C10, C12, alpha. Besides the
charge and Aqnt term, all parameters should be positive here. The Agnt term can either be
positive or negative, and the sign of the cross term will depend on setting of the parameter
“dhf_combination_rule” in the global_variables module (the current setting of this parameter
will be printed to the output file). The most common settings used are either “2”, meaning the
cross term Ajjis positive if and only if Ai and A; are both positive, and negative otherwise; or “3”,
meaning Aj is always negative (attractive interaction) regardless of the signs of Ajand A;. More
recently, we have adopted the convention to use a strictly attractive convention for these
terms (see ref 5), but in order to be compatible with some of the older force fields (ref 4) that
use both positive and negative Aj terms, we most often set “dhf_combination_rule=2" and
make all Agnf terms negative if we want strictly attractive terms (see neat_acetone_3body
example).

b) “framework_species” section: The format for the force field input lines is as follows:
atomtype label, charge, Acxch, Aclec, Aind, Adnf, Adisp (zero), B, C6,C8,C10, C12 and polarizability
(zero). See the above discussion in the “solute_species” section for comments on the sign of
Adni. The polarizability should always be set to zero for framework atoms, as Drude oscillators
are not implemented for fixed framework atoms.

Other Force fields: Generic Lennard-Jones and Buckingham type force fields can also be
used. The input here is relatively simple, and is described briefly below. See the examples
“zif8 _UFF_CO2_303K_1bar” or “neat_acetone_opls”. The setting of the parameter
“li_comb_rule” in the “simulation_parameters.pmt” file determines the combination rule to be
used for cross terms, and should be set either to “standard” for Lorentz-Berthelot rules, or
“opls” for opls combination rules.

a) “solute_species” section: The format for the force field input lines is as follows:
atomtype label (must match that used in “*.conf” file), charge, then 3 parameters, either
epsilon, sigma, and junk (best to set junk=0.0 so that it is obvious that a LJ potential is being
used) for a LJ force field, or A, B, C6 for a Buckingham force field; and finally the polarizability is
listed (most likely zero for these force fields).



b) “framework_species” section: The input is identical to that of the “solute_species”
section, except these atom types correspond to crystal framework atoms.

Section 6: Simulation parameters input file
(simulation_parameters.pmt )

General comments about structure of input file:

The parameters in this input file are read from two sections, the first section headed
with the “Simulation Methodology” title with parameters read in as small character strings; and
the second section headed with the “Simulation Parameters” title with parameters read in as
either integers or real numbers depending on the parameter. Itis important to use these exact
titles for the sections, as the code will search for these exact headers. Each line after these
headers will be read in, the first entry being the variable name (string), and the second entry
being the value of this parameter. Any additional entries will be treated as comments ( | put
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comments in with a “1”, but this is just for clarity). All entries on a given line are delimited with

spaces.

Note that many times it is not necessary to explicitly set all of the possible parameters
read in from this file, as many parameters are specific to certain simulation types or force fields.
The best way to construct this file is probably to use one of the example files as a template. If
an essential parameter is missing from this file, the code should stop with an error message,
and the code does perform some internal checks on consistent parameter settings.

Section: Simulation Methodology (string variables)

select_ensemble :: This variable determines the ensemble for the MC simulation. Currently
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implemented choices are “nvt”, “npt”, “uvt”, “egc”, corresponding to the canonical, isothermal-
isobaric, grand-canonical, and expanded grand canonical ensembles respectively. Note that the
isothermal-isobaric ensemble cannot be used if there is a fixed crystal framework. Also “egc”

has not been tested thoroughly and should only be trusted after validating with “uvt” results.

Molecular Dynamics (MD) simulations can be run in the nve ensemble by setting
“select_ensemble=md”.



sapt_type_ff :: This variable is set to “yes” if SAPT-based force fields>* (SYM?, ZIF-FF*) are
being used in which there is an explicit energy decomposition. Setting this variable to “yes”
determines how the force field parameter file is read, and explicitly prints an energy
decomposition to the output file. This variable should be set to “no” for any Lennard-Jones
force field, or standard Buckingham force field.

solute_cross_parameter_set : This variable is set to “yes” only if different parameters are
used to generate solute-solute and solute-framework force field cross terms (This is used, as in
Ref 4, to treat solute-solute interactions with SYM and solute framework interaction with ZIF-
FF ). This variable should be set to “no” for any non-Buckingham, non-Energy decomposed
force field. The setting of this variable determines how the force field parameter file is read in.

C8_C10_dispersion_terms :: This variable is set to “yes” if C8 and C10 terms are used for
dispersion. This can only be used with a Buckingham force field, of the energy decomposed
type. This variable should be set to “no” for any Lennard-Jones force field.

C12_dispersion :: This variable is set to “yes” if C12 terms are used for dispersion. This can
only be used with a Buckingham force field, of the energy decomposed type. If omitted in the
input file, this variable will automatically be set to “no”.

damp_solute_solute_dispersion :: This variable should be set to “yes” if C6 through C12
dispersion terms are used for solute — solute interactions, as such interactions should be
damped (for the SYM force field, this variable should be set to “no”, as only an effective C6
term is used). For any generic Lennard Jones force field, this should be set to “no”.

hybrid_md_mc :: This variable should be set to “yes” if hybrid md/mc type translation and
rotation moves are desired. Although this code can run MC simulations with ordinary single
molecule moves, it was written with the intent of carrying out hybrid md/mc moves and is not
optimized for single molecule moves. It is therefore recommended that this variable be always
set to “yes”.

electrostatic_type :: Determines the treatment of electrostatics, set to either “pme” (Particle-
Mesh Ewald), “cutoff”, or “none”. Although regular Ewald routines are contained in the source
code, these were not generally implemented as they are slow.

pme_disp :: If set to “yes”, solute-framework dispersion interactions in a GCMC simulation are
computed “exactly” using the generalized PME method for 1/R" potentials. In this
implementation, the reciprocal space potential is gridded for every atom type, and on-the-fly
interpolation (using 2" order Lagrange functions) is used to generate the potential at all spatial
points. The real space part of the Ewald sum for the solute-framework interactions uses the
parameter “ewald_cutoff” to determine the cutoff, which is consistent with PME electrostatics.



Solute-solute interactions are still treated strictly in real space with a cutoff, using the value of
“li_cutoff”. If the “pme_disp” setting isn’t present in the parameter file, it will be automatically
set to “no”.

three_body_dispersion :: If set to “yes”, an Axilrod-Teller (C9) treatment of three-body
dispersion interactions is employed. See the “neat_acetone_3body” example.

li_comb_rule :: Determines the type of combination rule to use for Lennard Jones or
Buckingham parameters. For Lennard Jones, set to “opls” or “standard” ( for Lorentz-Berthelot
combination rules ), for Buckingham, set to “standard” ( all geometric ) or “ZIFFF” (for ZIF-FF
combination rules) .

verlet_list :: If set to “yes”, uses a verlet neighbor list to calculate pairwise Lennard Jones or
Buckingham interactions. The default setting is not to use a neighbor list for these interactions.
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Feynmann_Hibbs_correction :: (Aside: The two “n’s” is not a typo! Sorry, bad spelling when
writing code, don’t want to correct this for compatibility issues). If set to “yes”, a Feynman-
Hibbs effective potential is used (see references in source code). Such a potential is meant to
incorporate nuclear quantum effects in a variationally optimized way. This can be used to
simulate hydrogen at low temperatures. The Feynman-Hibbs contribution to the energy is
either computed with a cutoff, or with a generalized PME implementation, so that it is
consistent with the “pme_disp” setting. The Feynman-Hibbs potential should only be used for
atoms, or linear molecules (see supporting info of ref 6 for discussion).

Section: Simulation Parameters ( real/integer variables)

n_step :: Determines the number of total MC/MD steps to be carried out in a simulation.
Things that count as one step are : An N molecule hybrid md/mc move, a particle insertion or
deletion, a volume move, a single molecule move for non hybrid md/mc simulations, etc. This
is usually at least Order(100,000) for a hybrid md/mc simulation.

n_output :: This is the frequency for printing trajectory information (energies, number of
molecules, configurations, etc.) to the output files. A value of “100” means print information
every 100 steps.

n_update_stepsize :: This is the frequency for updating the step size in order to try to reach
the desired move acceptance rate ( time step in hybrid mc/md, volume step in npt, etc. ). A
value of “50” means update the step size every 50 moves.



target_acceptance :: This is the target acceptance for translation/rotation moves. A setting of
“0.4” means the target acceptance is 40%.

too_close :: --IMPORTANT FOR BUCKINGHAM POTENTIALS-- This variable essentially defines a
hard wall potential distance (in Angstroms) for all atom-atom interactions. If any trial move
places two atoms from different molecules at a distance less than this value, the move will be
automatically rejected. This hard wall is important for Buckingham potentials, especially in a
GCMC simulation when molecules are being inserted randomly, because unlike Lennard-Jones
potentials, Buckingham potentials do not have a divergent repulsive term. Therefore
Buckingham potentials always have a divergent attractive well due to both the Coulomb and
dispersion interactions, and therefore a repulsive wall is needed for certain types of random
moves. This also saves time by not computing energies and forces for strongly repulsive
configurations, and also prevents Drude-oscillator catastrophes from placing atoms too close
together. Normally this can be set up to a value of 2 Angstroms without “affecting” the
simulation results, since this value is well within the van-der-Waals contact distance for any two
elements (if there are potential close-contact interactions such as hydrogen bonding, a more
conservative value should be used of maybe 1.5 Angstroms).

delta_t :: Thisis the time step (in pico-seconds (ps) ) for numerical integration in the hybrid
md/mc translation/rotation moves. Note these moves do not (and probably should not for
effective sampling) conserve energy, and hence much longer time steps can (and should) be
used compared to MD simulations. A typical setting is 0.02 ps.

max_delta_t :: As variable “delta_t” will be updated during the simulation in an attempt to
reach the desired move acceptance rate, this puts a limit on the maximum allowed size of
“delta_t”. A setting of 0.1 ps is reasonable.

temperature :: This is the simulation temperature in Kelvin.

li_bkghm :: This tells the code whether the simulation will employ a Buckingham ( set to “1” ) or
a Lennard Jones type force field ( set to “2” )

lji_cutoff :: This is the cutoff distance for all dispersion interactions in Angstroms. Despite the
name, this controls the cutoff for all C6, C8, C10, C12 terms in a SAPT-based potential, as well as
the long range term in a Lennard-Jones potential.

ewald_cutoff :: This controls the real space cutoff for interactions in Ewald (PME) electrostatics
(and if used, PME dispersion) and is given in Angstroms. A value of “10” should probably be
long enough with the PME setting of “alpha_sqrt=.4".



Electro_cutoff :: This controls the cutoff for a non-Ewald (“cutoff”) treatment of electrostatics,
and is given in Angstroms.

verlet_cutoff :: This is the Verlet skin thickness and is used if the Verlet neighbor list is
employed.

dispersion_lrc :: This variable determines whether a long-range correction should be applied
for dispersion interactions. A setting of “1” turns on the long-range correction, a setting of “0”
turns it off. For any kind of crystal framework simulation, this should be set to “0”, as the
dispersion long range correction involves setting g(r)=1 at the cutoff for all atom type pairs,
which is a good approximation only for isotropic systems, and doesn’t make sense for a crystal.
Rather, the PME implementation of dispersion should be used in crystal simulations for a more
exact treatment.

screen_type :: This controls the screening for electrostatic interactions. A setting of “1” uses a
Tang-Toennies type screening function for all electrostatic interactions with the screening
parameter equal to the Buckingham exponent for the atom pair. A setting of “0” uses no
screening. For ZIF-FF, this should be set to “1”.

drude_simulation :: This setting determines whether or not Drude-oscillators are used in the
force field and simulation. Set to “1” if Drude-oscillators are being used, “0” otherwise.

springconstant :: This is the springconstant for Drude oscillators in atomic units (au). Setto 0.1
au for SYM force field.

thole :: This is the thole parameter for intra-molecular screening of Drude oscillators. Set to
2.0 for SYM force field.

n_threads :: This determines the parallelization of the energy and force calculations. These
routines have been parallelized using OpenMP (shared memory), and therefore this can be set
as high as the number of processors on a shared memory node. For serial implementation, set
this to “1”.

Ensemble specific parameters

“uvt” (and “egc”) ensemble:

gemc_ins_rm :: This is the percentage of moves for which to perform an insertion/deletion of
molecules. A setting of 0.3 means to do this for 30% of the moves.



chemical_potential :: This is the chemical potential of the solute in units of kJ/mol . Note this
chemical potential SHOULD NOT include vibrational/rotational contributions, as this needs to
be consistent with the acceptance criteria for the molecule insertion/deletion moves.

orientation_try :: This sets the number of attempted orientations for an orientation-biased
insertion/deletion. A setting of “1” means that no orientation-biased moves are used.

“npt” ensemble:

pressure :: This is the simulation pressure in bar.

vol_step :: This is the volume step size to use in units of In(V), as moves will be made in steps of
In(V). A reasonable setting is 0.05.

max_vol_step :: As the variable “vol_step” will be adjusted to meet the target acceptance,
max_vol_step puts a limit on this step size. A reasonable settingis 0.2.

target_acceptance_v :: This is the target acceptance for volume moves, and the volume step
size will be adjusted with frequency “n_update_stepsize” in order to try to meet this criteria. A
value of 0.4 means that moves should be accepted 40% of the time.

cycles_per_vol_step :: This determines how often volume moves are done. A value of “1”
means that on average, one volume move is carried out per cycle of translation/rotation
moves. A “cycle” for translation rotation moves is either one hybrid md/mc move, or N single
molecule moves.

Force field specific parameters

Three-body dispersion (these are only necessary for a setting of three_body_dispersion="yes”):

three_body_dispersion_cutoff :: This is the cutoff used for 3-body interactions. In order for
the ABC trimer interaction to be calculated, all distances rAB, rAC, rBC must be less than this
cutoff.

three_body_cutoff_type :: This determines whether the cutoff for three body dispersion
interactions is applied on a molecule by molecule (setting =0 ) or an atom by atom (setting=1)
basis.

na_nslist (nb_nslist, nc_nslist) :: These parameters control the number of cells along each box
vector that are used for the cell link list algorithm that is used to loop over 3-body interactions.



Lattice Model Code:

This code implements the lattice simulation algorithm developed in the Schmidt group,’ that
was designed as a substitute for GCMC simulations as it is 2-3 orders of magnitude faster, while
introducing minimal error compared to the GCMC simulations. Briefly, the simulation box
(which is usually a crystal structure, such as a metal-organic framework) is partitioned into a
three-dimensional array of sub-cells, and the sub-cells are coarse grained rigorously (based on
an atomistic force field) to build a lattice model, consisting of a free energy grid of solute-
framework interactions at all the lattice sites. Creating this free energy grid is the most
intensive and time consuming part of the simulation, and once the grid is created, fast lattice
Monte Carlo simulations can be carried out to compute the adsorption loading isotherm. For
all but low-loadings, solute-solute interactions are important, and in addition to the free energy
grid, a coarse-grained solute-solute potential is needed in the lattice Monte Carlo simulation to
give accurate results.

Therefore, the steps in a Lattice simulation are:

1) Construct the lattice model — Map an atom-atom force field which describes the
interaction energy between a solute molecule and the crystal framework at all points in
space to a lattice model that gives the free energy of a solute molecule adsorbed at a
discrete lattice site in the crystal. This is the rate-limiting step of the calculation.

[Note that this free-energy grid may be useful by itself in analyzing adsorption sites in a
crystal (see ref 6), without actually calculating an adsorption isotherm].

2) Discretize a continuous coarse-grained solute-solute interaction potential to a discrete
coarse-grained solute-solute potential compatible with the lattice model.

3) Using the free energy grid lattice model and the discretized solute-solute coarse grained
potential, run the lattice Monte Carlo simulation to get an adsorption isotherm (this is
trivial compared to a standard atomistic MC simulation).

In constructing the free energy grid, this code utilizes PME for both electrostatic and long
range dispersion interactions, and implements both link neighbor list and symmetry operations
to accelerate the calculation speed.

All the force fields implemented in the Monte Carlo code are also supported here, and all the
force field inputs are identical to the previous part of the manual. Note, Vegas and Miser



sampling methods are implemented, but not activated in the code. It can be activated by
uncommenting certain part of the code, even though it is in general not helpful.

Section 1: Constructing the lattice model

The main computational effort involved in computing gas-adsorption isotherms is in
constructing the free energy lattice grid. Therefore a large portion of this manual (Section 1)
will be concerned with the logistics of this code. Other sections of the manual (Section 2, 3) will
then focus on constructing the coarse grained solute-solute lattice model, and finally running
the lattice Monte Carlo simulation.

Section 1a: Outline of Source Code

The source code for the lattice grid construction can be found in the
“source_lattice/lattice_free_energy grid/” directory. Besides the source code, this directory
also contains a directory that has the GSL routines needed for compiling (see below)

Major source code files:

boltzmann_factor_mod.f90: This module defines the function that calculates the averaged
Boltzmann factor of a particular sub-cell. Note, it is only used for Vegas sampling.

sapt_ff_routines.f90: Inherited from the Monte Carlo code.

eq_drude.f90: Inherited from the Monte Carlo code, modified to use the new gridded energy
and force subroutine.

initialization_routines.f90: Inherited from the Monte Carlo code (file mc_routines.f90), new
codes are added to initialize g-function tables, utilized in the dispersion PME calculation.

glob_v.f90: Inherited from the Monte Carlo code. All new global variables are added in this
file.

lattice_sampling.f90: This file contains the main subroutine used to sample each lattice grid
site and average the Boltzman factor for each site.

link_list.f90: This file includes a link list construction function, which is called at the beginning
of the simulation to construct the cell neighbor list.



main_lattice_grid.f90: The program declaration.
penetration_ff_routines.f90: Inherited from the MC code, barely relevant.

pme.f90: This contains major functions and subroutines used for electrostatic and van der
Waals PME calculations. While these subroutines are partially inherited from the MC code,
they contain fundamental differences. Namely, The Ewald sums are used to compute
potentials at lattice sites, rather than total energy, and therefore there is no self-interaction as
in standard Ewald sums.

read_simulation_parameters.f90: Inherited from the MC code.

general_routines.f90: Inherited from the MC code. Some extra subroutines related to the
lattice calculation are added.

symmetry.f90: This module includes all the functions and subroutines related to the
symmetry operations.

Qeq_charge_equilibration.f90: This module implements the Qeq charge equilibration
method for periodic systems, to derive charges for a crystal framework.



Section 1b: Notes for Compiling and Running

A Makefile template is provided in the source directory and users can compile the code by
running:

make
This will generate the major executable, namely, main_lattice_grid.

Several packages are prerequisite, including: MKL, GSL, FGSL. Depending on the
implementation and installation details of these packages, users have to modify the path
variables in the Makefile accordingly, before start compiling. The major path variables include:

OMPINCLUDE: open mp library path ***
MKLLIB: mkl library path

FGSLINCLUDE: fgsl head files path
FGSLLIB: fgsl library path

GSLINCLUDE: gsl head files path

GSLLIB: gsl library path

***NOTE this is not really used, as the code now has all parallel open mp sections
commented. If one wants to get rid of this path, just comment the “use omp_lib” lines in the
source code. We have left these parallel sections in for the option of future use, but it seems to
us like it is not worth parallelizing, since most likely many different MOFs will be run at once,
and one can “parallelize” instead over job submissions.

The command to run the lattice code is:

./main_lattice_grid ifile.conf ifile.fconf ifile.omt simulation_parameters.pmt ofile
symmetry.sym

This command runs the code to compute the averaged Boltzmann factor for each sub-cell.
The adsorbate geometry file (ifile.conf), the MOF geometry file (ifile.fconf), and the force field
definition file (ifile.pmt) are identical to the Monte Carlo code (refer to appropriate previous
sections for details). The output file (ofile) contains all the free energy information for the
lattice model. The other two input files (simulation_parameters.pmt and symmetry.sym) will be
introduced in detail in the next section.



Section 1c: Simulation Parameters File and Symmetry File

The simulation parameters file (simulation_parameters.pmt) is inherited from the Monte
Carlo code, and therefore has the same format. A few new variables are added in this file to
specify the lattice construction parameters. These variables are described below:

energy_decomposition: analogous to parameter “sapt_type_ff” (see section 6 of MC code
manual)

Qeq_charges: set to “yes” if Qeq charge equilibration method is to be used to derive atomic
charges for the crystal framework.

pme_grid: size of the PME grid. The PME grid should be fine enough to ensure: 1, the
convergence of the reciprocal part of the PME; 2, the accuracy of the reciprocal potential
interpolation. Typically, the value of 120 should be fine enough for a 60A*60A*60A simulation
box.

alpha_sqrt: the v/a value for the electrostatic PME.

li_asqrt: the v/a value for the dispersion PME. It can be either same or different to the va
value for the electrostatic PME (alpha_sqrt)

lji_cutoff: the real space cutoff for the dispersion energy. If lj_asqrt is set to be 0.6, typically it
needs a 7.5A real space cutoff to ensure convergence.

ewald_cutoff: the real space cutoff for the electrostatic PME. Typically, if alpha_sqrt is set to
0.6, then ewald_cutoff has to be set larger than 5.0A.

cav_grid_a, cav_grid_b, cav_grid_c: the lattice size in three dimensions, respectively.

na_nslist, nb_nslist, nc_nslist: the grid size for the cell neighbor list. For a 60A*60A*60A
simulation boyx, it is recommended to use a 40*40*40 cell list.

start_grid_a, start_grid_b, start_grid_c, finish_grid_a, finish_grid_b, finish_grid_c
(optional): These optional settings can be used to script the lattice code for trivially efficient
parallelization. If these settings are present, then the free energy grid will only be calculated
for lattice cells satisfying start_grid_a <= cell_a <= finish_grid_a, start_grid_b <=cell_b <=
finish_grid_b , start_grid_c <=cell_c <= finish_grid_c. Thus start_grid_a must be greater than
or equal to 1, and finish_grid_a must be less than or equal to cav_grid_a (and similarly for b and
c lattice vectors)



orientation_try: the maximum sampling size for each sub-cell. If the sub-cell dimension is
~0.7-1.0 A, then a value of 2000 is recommended.

REL_THRSH, ABS_THRSH, BZ_CUTOFF: the convergence threshold. If the averaged Boltzmann
factor of a particular sub-cell is below BZ_CUTOFF, then the code adopts an absolute threshold
for the Boltzmann factor sampling, and the threshold is set to be ABS_THRSH. Otherwise, a
relative convergence threshold (controlled by variable REL_THRSH) is applied. The
recommended medium precision setting for these three variables is (0.05, 3.0, 100.0). The users
are referred to reference 7 for further details.

Another important input file is the symmetry file (symmetry.sym), which defines all the
symmetry operations used in the simulation to accelerate the speed. Basically, once the code
finishes sampling one particular sub-cell, it goes through all the symmetry elements and
identifies all the symmetrically equivalent sub-cells. All these sub-cells are filled with the same
free energy and are no longer sampled in the following calculation. The first line of the
symmetry.sym file defines the number of the symmetry operations. And each following line
represents one particular operation. Each symmetry operation can be written as:

X'=Mx+5s

In this equation, X is the three-dimensional coordinates before the operation, and X’ is the
resulting coordinates after the operation. M is a 3*3 matrix and § is the shift. In the
symmetry.sym file, each line has the form (in FORTRAN format):

“(12F10.6)” M(1,1),M(1,2),M(1,3),s(1),M(2,1),M(2,2),M(2,3),s(2),M(3,1),M(3,2),M(3,3),5(3)
Generally, the space group symmetry information is given in the cif file with the format:
XY,z

X, -Y, Z

-X, -y, z+1/2

A python utility, cif2sym.py (which can be found in the directory “useful_scripts/” ), is
provided to convert the cif format to the sym format, which is used for our code (to run the
utility, type: ./cif2sym.py MOF.cif > symmetry.sym).

If no symmetry exists in the system, please write down 0 in the first line of symmetry.sym
file.



CAREFUL!! : If you are simulating a supercell, the symmetry operations in the .cif file for the
unit cell may not be appropriate! See examples for further discussion.

Section 2: Coarse grained solute-solute interactions

To incorporate solute-solute interactions into the gas adsorption isotherm, it is
important to use a coarse grained potential in combination with the free-energy lattice grid.
The coarse grained potential, which is continuous (although in practice is input as discretized),
is then discretized to fit on the lattice grid. Two example coarse grained potentials (for CO; and
N) are provided in the directory “lattice_coarse_grained_potentials/”, along with a script that
will generate such files from a given epsilon and sigma parameter.

These two example coarse grained potentials have been taken from the literature, and
have been tested against explicit atomistic GCMC simulations. To obtain a coarse grained
potential for a different solute, one has a few choices. One can search the literature for
previous benchmarked coarse-grained potentials and use these if available. If no such potential
is available in the literature, one may use a force-matching approach to fit his/her own coarse
grained potential to an accurate atomistic model. A third option, if one is interested in low-
loadings only, is to use a hard sphere potential, which may (or may not!) be sufficiently
accurate for low uptake. These three different methods have been discussed and compared in
reference 7. Any newly used coarse-grained potential should be tested against explicit
atomistic GCMC simulations.

Now, we’ll assume that we have a coarse grained potential, and use the
Liu_CO2_potential.xvg potential as an example. The (short) code used to discretize the
potential to the lattice grid is located in the directory “source_lattice/coarse_grain_solute/”. As
discussed in reference 7, there are a couple choices as to how to discretize the potential;
namely one could average the Boltzman factor over all possible solute positions within the
given two lattice cells, or one could simply use the distance between the centers of the two
given cells. Because we have found that the later, simpler choice works as well as the former
choice, as stated in said reference, this is the method that is currently implemented in the code
(one could easily change the code to perform the first procedure, by changing the value of
n_sample and choosing an appropriate temperature in glob_v.f90).

To run the code, use the command:
.Jdiscretize_solute_potential crystal.fconf potential.xvg ngrida ngridb ngridc > outputfile

Where crystal.fconf is the MOF crystal fconf file (used to get the unit cell vectors), potential.xvg
is the coarse grained potential file described above, and ngrida, ngridb, ngridc are the number



of lattice cells along each box vector. It is IMPORTANT to make sure that ngrida, ngridb, and
ngridc are the exact values used in the lattice free energy grid (cav_grid_a, cav_grid_b,
cav_grid_c respectively). The output file will contain a list of lattice points (really these are
displacement lattice vectors, between two coarse grained particles), with the corresponding
potential printed in klJ/mol. This file can then be used for the lattice MC simulation.

Section 3: Lattice Monte Carlo simulation

Once the free energy lattice grid has been generated (Section 1) and the coarse-grained
solute-solute potential has been discretized on the lattice (Section 2), we can run a lattice
Monte Carlo simulation to compute the adsorption isotherm. The source code for this lattice
MC simulation is located in the directory “source_lattice/lattice_monte_carlo/”. If one wants
to modify the default values for simulation settings, the values of the parameters n_equil
(10000000 default, number of equilibration steps), n_steps (10000000 default, number of
production run steps), n_output (1000000 default, number of steps per block average), and
gcmce_ins_rm ( .4 default, fraction of moves which are insertions/deletions rather than lattice
displacements) can be modified in global_variables.f90, and the code can be recompiled.

To run the lattice simulation, use the executable lattice_MC and run the command
.Jlattice_MC free_energy grid_file solute_cg_file chem_potential mass_solute > ofile

Where the free_energy_grid input file is the output file from Section 1, the solute_cg file is the
output file from Section 2, chem_potential is the chemical potential of the solute (the chemical
potential should be in units of kJ/mol . Note this chemical potential SHOULD NOT include
vibrational/rotational contributions, as this needs to be consistent with the acceptance criteria
for the molecule insertion/deletion moves. Either see the CO2/N; scripts in “/useful_scripts/”
or see the examples) and mass_solute is the mass of the solute. The mass of the solute is
needed for the insertion/deletion acceptance criteria, since it is in the ideal gas contribution to
the chemical potential, and we want to keep the chemical potential definition the same as in
the atomistic Monte Carlo code.

The output file will report the average density of adsorbed solute molecules (at the
given chemical potential, and temperature of the free energy grid) for the different production
run blocks. Because these lattice Monte Carlo simulations are very fast, one can generate a full
isotherm (at say 10 different pressures) within minutes.

Section 4: Using the scripts



To make it easier to carry out a lattice simulation, we have tried to script as many of
these steps as possible. So here’s a comprehensive list of all the files you need to have in your
directory, and the script(s) you need to run to compute a lattice model isotherm.

Files Needed (put all these files in the run directory)

Executable shell scripts : run_lattice.sh, construct_isotherm.sh (for isotherm)

Fortran binaries : main_lattice_grid (constructs free energy lattice grid),
discretize_solute_potential (discretizes solute coarse-grained potential onto lattice), lattice_MC
(runs the lattice Monte Carlo simulation; for isotherm)

Input files : namel.conf (Section 1), namel*.pmt (Section 1), simulation_parameters.pmt
(Section 1), name2*.fconf (Section 1), name2.sym (Section 1), name3.xvg (Section 2),
isotherm.pressures (for isotherm).

Running the command
JJrun_lattice.sh namel name2
(e.g. in the zif8 example, one would use the command ./run_lattice.sh co2 zif8 )

Will carry out the process of discretizing the solute-solute coarse grained potential (output file
name3.txt) , and will submit a job named “namel_name2_lattice_grid” that creates the free
energy lattice grid and produces an output file with the same name as the job.

While this free energy grid may be useful in its own right, i.e. to spatially visualize important
adsorption sites in a MOF, we still have to run the lattice MC simulation to get an isotherm.

To run the lattice MC simulation create a file named isotherm.pressures
Which might look like this (for CO3)
mass_solute 44

pressure(bar) chemical potential
1 -40.31693
5 -36.38414197

See Section 3 for definition of chemical potential, and the reason for including the solute’s
mass. Note the pressure here isn’t actually used by the lattice MC code, but it is just used by
the script to label the output files.



Then run the command
.Jconstruct_isotherm.sh isotherm.pressures namel_name2_lattice_grid name3.txt

Where namel_name2_lattice_grid is the lattice free energy output file, and name3.txt is the
solute-solute discretized potential.

NOTE: The user will probably want to edit the construct_isotherm.sh script to change the
way the executable is run. Currently, all isotherm points are run sequentially, on the local
machine. This is probably not the ideal way to do this, as each different point on the
isotherm can be run independently by a separate machine. Therefore the user should
probably change the job submission of this particular script to better suit his/her computer
resources.

Section 5: Examples

MOEF-5 (CO»)

The MOF-5 examples can be found in the directory “examples_lattice/mof5/”. In this
directory, there are examples for a Lennard-Jones force field (UFF + epm2), as well as our SAPT-
based force fields, and both examples use the coarse-grained Liu potential for solute-solute
interactions. We will first discuss the Lennard-Jones force field simulations.

MOEF-5: a) Lennard-Jones

The simulations using the UFF/epm2 force field are found in the directory “UFF”. In this
directory (besides the directory “atomistic”), are five other directories, containing simulations
with or without the use of symmetry, both for medium precision with a 30 lattice grid (no
suffix) and with a 60 lattice grid (“60” suffix), as well as a simulation at high precision (suffix
_HP, bigger grid, more sampling). For further discussion of the precision settings, see ref 7.
Focusing on the “sym” directory (medium precision), we make a couple points.

-The time for constructing the lattice free energy grid can be found in the file
“co2_mof5_lattice_grid.o###”, and one can see that this only took about 1 minute. The 7
points of the isotherm are in output files “uptake_at_#bar”, and one can see that it took about
6 minutes to generate all of these files. Therefore the isotherm (for this lowest sampling
calculation) was generated in a total of about 7 minutes on a single processor, and in this case
the rate limiting step was the actual lattice Monte Carlo simulations. We have not taken
further steps to optimize the speed of the lattice Monte Carlo code, because, as we will see,
constructing the free energy grid is almost always the rate limiting step. In this case,



constructing the free energy grid was very fast due the high symmetry of MOF-5, as well as the
fact that a non-polarizable Lennard-Jones force field was used.

-The number of equilibration steps and number of steps of the production run can be
found in any of the “uptake_at_#bar” output files. Examining the “30bar” output file (as this
should take the longest to equilibrate) we see that the system has definitely been equilibrated
over the 10,000,000 equilibration steps, and while the 1,000,000 step production run blocks are
somewhat statistically different, the differences between these blocks are probably less than
the errors introduced by the sampling in the generation of the free-energy grid (as discussed
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below). The user is encouraged to test the settings of “n_equil” and “n_steps” in the lattice

Monte Carlo code, to balance the trade-off between statistical accuracy and simulation time.

One can then compare the differences in output between the five directories “sym”,
“nosym”, “nosym60”, “sym60”, and “sym_HP”. The simulation times can be compared
between the simulations of different grid sizes, precision, and use of symmetry. While the
simulations with and without symmetry should give identical results in the limit of perfect
sampling, they may not necessarily give numerically identical results if the sampling isn’t
converged (since using symmetry effectively reduces sampling). To see this, one can view the
file “compare_lattice_sym_mp” with xmgrace using the command "xmgrace —nxy
compare_lattice_sym_mp" . This file contains the free energies of all identical lattice points
from the free energy grids in the directories “nosym” and “sym” (medium precision), and
compares them. One can see that the free-energy grids, are very similar, but not identical, due
to somewhat incomplete sampling, as is expected at medium precision. Viewing the isotherm
output files in these two directories, it is evident that the quantitative differences in the free
energy grid translate to differences in the isotherm. One can see that these isotherms mostly
compare to within ~10% error, which is on the order of the error expected between a lattice
simulation using a good coarse grained potential and a fully atomistic simulation. However,
comparing the isotherms from the nosym60 and sym60 directory, one sees that there are
negligible differences when a 60 grid is used, so in the limit of perfect sampling, simulations
with and without the use of symmetry should indeed converge to the same answer. Also, the
isotherms from these 60grid simulations are very comparable to the isotherm in the directory
“sym_HP”, indicating that these results from a 60 lattice grid are very nearly converged with
respect to sampling. One can then compare these “converged” results to an isotherm from an
analogous atomistic MC simulation (results in directory “atomistic” for certain pressures), and
find that all points on the isotherm compare to within 10%, with the inherent discrepancy due
to the employed coarse-grained solute-solute interactions in the lattice model isotherm.

MOF-5: b) SAPT force fields




The other directories in the “mof5” example directory contain lattice simulations using
the SAPT force fields. Again, there are simulations with and without symmetry, and with
different lattice grid sizes. One can see that these simulations do take longer, due to the fact
that we’re now using a polarizable force field, but they still are very doable considering that a
full isotherm for a system comparable in size to MOF-5 can be generated (at medium precision)
in a few hours on a single processor (without symmetry).

We use these examples to illustrate an additional point related to simulations
employing symmetry. Inspecting the crystal structures (*.fconf files) used in the directories
“sym” and “nosym”, one can see that they are different, namely the structure in the “nosym”
directory has been spatially translated from the structure in the “sym” file. In an atomistic
Monte Carlo simulation, it is appropriate to use any translated unit cell, since the periodic
boundary conditions cannot distinguish these systems. While this is also the case for a lattice
simulation without symmetry, for a lattice simulation with symmetry, the symmetry operations
must be consistent with the unit cell, i.e. a unit cell cannot be translated in a simulation
employing symmetry operations. Therefore, if one were to use the translated crystal structure
with the symmetry operations of MOF-5, the code would stop with an error message because
the symmetry operations would be inconsistent with the unit cell.

ZIF-8 (CO,

In the directory, “examples_lattice/zif8/”, one can find examples of using the lattice
model to compute CO; isotherms in ZIF-8. Here, we use our SAPT-based force fields, and
therefore these simulations are on the slower side (for the system size), again due to the use of
a polarizable force field. Again, one can compare the simulation times and statistical accuracy
with and without the use of symmetry. The main point we wish to emphasize with this
example is the system size. In a normal atomistic simulation, one would definitely need to use
a supercell of ZIF-8, as the unit cell lengths are ~17 Angstroms, and therefore for simulating a
unit cell, one would have to employ a cutoff less than ~8.5 Angstroms (half the box length),
which is way too short for accurate results. However, in a lattice simulation, this is not an issue
for two reasons; 1) Ewald sums are used for both electrostatics and vdw interactions, and
therefore real-space cutoffs of < 8.5A can easily be used; 2) there is no cutoff in the lattice
Monte Carlo simulation, all solute-solute interactions are considered. Therefore we find that
another advantage of these lattice simulations is that a unit cell as small as ZIF-8 can accurately
be used (without using a supercell).



ZIF-71 (CO,

While this last example doesn’t really present anything new, we use it to make one final
comment about the free energy grids. Compare all three free energy grids for MOF-5, ZIF-8,
and ZIF-71 (i.e. look at the files “mof5/UFF/compare_lattice_sym_mp”,
“zif8/compare_free_energy_grids”, and “zif71/compare_free_energy_grids” ). One will see
that these free energy grids are very qualitatively different! Therefore, it is clear by contrasting
these three different examples that much information concerning the adsorption sites and
topology of a particular MOF can be gleaned from the free energy grid (while such information
may be very difficult to understand purely from an adsorption isotherm!).
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