VIII.Primer for Estimating T₁ Values Theoretically

[by cg fry: revised 28-Oct-98: the following is a problem given in Chem. 626, followed by the solution.]

A. Estimate from theory T_1 for the singlet aromatic ¹*H* of pamoic acid.

Assume relaxation is dominated by dipole-dipole interactions and the correlation time for pamoic acid, $t_c \ge 10^{-11}$ s. From pg. 193 of T. C. Farrar, <u>Introduction to Pulse NMR Spectroscopy</u> we can derive:

$$\frac{1}{T_1} \cong \frac{\left(g_H^t\right)^4}{r^6} t_c \times 1.11 \times 10^{10} s^{-1}$$

where $\mathbf{g}_{H}^{t} = 2.67$, *r* has units of Å and τ_{c} is in sec.

- B. Quickly measure T_1 of the ¹H's of interest for Pamoic acid.
- 1. Follow directions in section II (Rapid Determination of T_1 , by Inversion Recovery Null Method, p. 44) of the T_1 chapter in the Bruker User's Guide.
- 2. Include with turned-in solutions null times and T_1 values for longest and fastest relaxing ${}^{1}H$ on pamoic acid. Give two reasons why the T_1 estimate made in part A might differ from the value you just measured [hint: think about assumptions made in part A, and how the sample has been prepared].

Using the last equation on pg. 193 of T. C. Farrar, <u>Introduction to Pulse NMR Spectroscopy</u> (Farragut, 1989):

$$R_{1} = \frac{1}{T_{1}} = S(S+1) \frac{\left(g_{l}^{t} g_{S}^{t}\right)^{2}}{r_{lS}^{6}} \left[\frac{t_{c}}{1+w_{-}^{2} t_{c}^{2}} + \frac{3t_{c}}{1+w^{2} t_{c}^{2}} + \frac{6t_{c}}{1+w_{+}^{2} t_{c}^{2}}\right] \times 1.1126 \times 10^{9} \, s^{-1}$$

where $\mathbf{w}_{-} = \mathbf{w}_{I} - \mathbf{w}_{S} = 0$ and $\mathbf{w}_{+} = \mathbf{w}_{I} + \mathbf{w}_{S} = 2\mathbf{w}_{o}$. Since $\omega_{0} = 2.5 \times 10^{8} \times 2\pi$ and $\tau_{c} = 10^{-11}$, we can see that $\mathbf{w}_{o}\mathbf{t}_{c} \approx 10^{-2} \ll 1$, so that

$$\frac{1}{T_1} \cong \frac{3}{4} \frac{\left(\mathbf{g}_H^t\right)^4}{r^6} 10 \mathbf{t}_c \times 1.1126 \times 10^9 \, \text{s}^{-1}$$

On pg. 192, Farrar gives the *correct* units for this equation, where $d_{H} = 2.67$, so all we need is *r* in Å. Use C-H = 1.1Å, and C-C(aromatic) = 1.4Å then elementary geometry gives: H⁴ to H⁶ distance = 2×1.4×cos30° = 2.4Å

(Actually, I believe the 1.1126 constant is a mistake in Farrar's text, and should be 1.48... giving $T_1 = 33$ s, which I'll use now.)

Similarly, we could have calculated the protons, as

H ⁶ to H ⁷ distance	$= 1.4 + 2 \times 1.1 \times \sin 30^\circ = 2.5 \text{\AA}$
\Rightarrow $T_1 = 18s$ (add rates for bot	h H ⁷ and H ⁴ $\Rightarrow R_1 = \frac{1}{33} + \frac{1}{42} = 0.054 s^{-1} !!)$
$-CH_2-$ to H^7 distance	= 2.4 - 1.1 + out-of-plane ~ 1.7 to 2.1Å
so for H^7 we have	$R_1(\mathrm{H}^7) = 1/42 + 1/8[\text{for } 1.9\text{\AA}] \implies T_1(H^7) = 6.8 s$
Finally, we have	H-C-H = $2 \times \sin(109.5^{\circ}/2) \times 1.1$ Å = 1.80Å, so
for -C(H toward H ⁷)H-	$R_1(toward) = 1/8 + 1/5.8[\text{for } 1.8\text{\AA}] \implies T_1(toward) = 3.3 \text{ s}$
and -C(H away H ⁷)H-	$R_1(away) = 1/5.8[\text{for } 1.8\text{\AA}] \implies T_1(away) = 5.8 s$

The primary reasons for differences in the estimated values and measured values are:

- i) lack of careful degassing to remove oxygen, or other contamination in solution;
- ii) incorrect estimate for the correlation time (in fact, measuring T_1 is one of the best methods for obtaining correlation times).