TopSpin + CMC-se and CMC-assist

last update: 18 Mar 2013 (cgf)

Bruker provides structure elucidation tools in CMC-se, and structure verification tools in CMC-assist. CMC-se requires TopSpin 3.2. CMC-assist is provided independent of TopSpin, but provides a similar (nearly identical) interface, plus the verification tools. CMC-se has some useful features in general for working on combined datasets, defined as a *Project*. Data can be in different expno's in a single folder, or in different folders.

I. CMC-se:

- 1. Acquire data following parameter definitions in Bruker's CMCse_* parameter sets. The higher resolution involved with this data is important. Phase cycles should be $NS = 2 \times i$ as a minimum, and conservative repetition delays and other parameters related to relaxation (e.g., D8 as mix time in selnogp) are important.
- 2. Process all data first, minimally with **efp**→ (1D) or **xfb**→ (2d remember to **xf2m**→ on hmbc datasets; see the pulse program listing for assistance in performing proper processing steps).

Define multiplets first? 1H and 13C...

3. ANALYSE \rightarrow STRUCTURES \rightarrow Structure Elucidation or **cmcse**

<u>S</u> tart <u>P</u> rocess	A <u>n</u> alyse P <u>u</u> blish	<u>∨</u> iew	<u>M</u> anage	2			
/h Mul <u>t</u> iplets → / ^A Lin	O Str <u>u</u> ctures ▼	<mark>5</mark> i Simulate ▼	Quantify ~	T <u>o</u> ols ▼			
			Structur <u>e</u> Elucidation (cmcse) apk		apk		
			Structure/Spectra Consistency Package (cmcq)				
Browser Last50 Groups 1 RR9126.P01 1 1 "C:\Users\cgf\Documents\AA_Docum			3D Structure Viewer (jmol)				
C:\Bruker\TopSpin3.2\examdata C:\Users\cgf\Desktop\BrukerData C:\Users\cgf\Desktop\BrukerData	Spectrum ProcPars	AcquPars Til	tle PulsePro	2D Multi-Structure View	er (vstrucs)		
C:\Users\cgf\Desktop\BrukerData				JChemPaint Structure E	ditor (jcp)		

- 4. Define the *Project* by adding all data. A PROTON and HSQC (edited) must be included. The software will also accept: COSY HMBC and C13CPD data as part of a project. The COSY is the least important of the five types.
- 5. In the table view, click to start the analysis. Look at the pdf report that is generated, especially at the consistency check toward the end.
- 6. Generate structures using \bigotimes . Scores are based on closeness to 13C δ .
 - a) Long-range correlations in COSYs and HMBCs must be eliminated (or allowed to be eliminated; usually enabling 2-4 to be eliminated).
- 7. Make corrections in the spectra and various tables, guided by the consistency check. # H and # C should equal that in the enter molecular formula.
 - a) In spectra, right-click to delete or add multiplets.
 - b) In tables, right-click #H to change to match mol formula.

CMC-se & CMC-assist

- c) In tables, fix 1H multiplicities.
- 8. Rerun the $\frac{\text{Att}}{\text{C}}(?)$ and $\frac{\text{S}}{\text{C}}$ analysis.
- 9. Now rank the structures using \bigotimes in the table view Structures tab (on righthand side). The scores are listed in the right corner of the structure window: ≤ 5 is good, > 5 means that structure is unlikely to be correct.
- 10. Use the fragment tool to require and omit various fragments that are already known.