Pulse Width Calibrations

- We will expect you check $90^{\circ} H$ pulsewidth if problems occur with sensitivity
- For long *X*-nucleus experiments, you should always use up-to-date calibrations
 - a month is a reasonable length calibrations will last
 - you must know how to perform your own calibrations, including **decp90**
- 90° calibrations are absolutely necessary for proper use of equipment

Pulse Width Calibrations

Sensitivity of Experiments to Calibrations

Experiment	Sensitivity	Comments
1d ¹ H spectra	little to none	provides check of correct probe operation
1d ^{1}H quantitative studies	little to none	d1 and inter-experiment delays are critical!!
1d ¹ H relaxation studies	strong	corrections can be made for minor missettings of 180°
1d dynamic studies	strong	temp changes affect probe tuning
1d kinetic studies	little	d1 and inter-experiment delays are critical!!
1d X-nucleus (NOE-based)	moderate	X calibration not important
		${}^{1}H$ decoupler must be well-tuned
1d X-nucleus (PT-based)	strong	X calibration and high-power ${}^{1}H$ calibrations are critical
		X by normal $180^{\circ}/360^{\circ}$ null checks
		^{<i>i</i>} <i>H</i> on f2-channel by decp90 (90° null) or
		dept90 (CH2 null) checks
1d X-nucleus (quantitative)	moderate	d1 delay setting is critical!!
		X calibration not important
		${}^{1}H$ decoupler must be well-tuned
2d cosy, cosy-45	little/moderate	pretty tolerant of missets
2d dq-cosy	moderate	must calibrate ${}^{1}H$ 90°; d1 setting is critical
2d tocsy	moderate	must calibrate ${}^{1}H$ 90°, spin-lock must be reasonably set
2d noesy/roesy	moderate	must calibrate ${}^{1}H$ 90°, spin-lock must be reasonably set
2d X-nucleus experiments	strong	must calibrate ${}^{1}H$ 90°, length of experiment very dependent

Pulse Width Calibrations

Parameter optimization can be done in three ways:

- a) Use <u>gs</u> and then <u>acqu</u> to start the go setup routine. An icon will appear that provides a sliding bar that can be used to adjust <u>o1</u> or <u>rg</u>, for example. You can exit or stop the <u>gs</u> by click on the **STOP** button.
- b) Manually change <u>p1</u> for <u>ns 1</u> acquisitions and look for nulls in FIDs of FTs.
- c) Use <u>paropt</u> (Bruker's semi-equivalent to vnmr's array command) as follows:
 - Take a single scan and phase and expand properly.
 - Click on the $\underline{DP1}$ button and hit return through the three query screens.
 - Now enter <u>paropt</u> and answer the queries properly: e.g., <u>p1 3 3 30</u> for a pulsewidth optimization using the sequence <u>zg</u>. Note that for <u>zg30</u> you would need to use <u>p1 9 9 30</u> to get equivalent results, since zg30 multiplies p1 by 0.33.
 - <u>paropt</u> places results into procno 999. To return to your original experiment (assume it's in expno 1), enter re $1 \ 1$

Proper Use of decp90

- need either very concentrated sample (e.g., 80% benzene in 20% acetone-d₆) or labeled sample
- check J-coupling in ${}^{1}H$ or in coupled X-experiment
- center X-multiplet in spectrum (UTILITIES \rightarrow O1 buttons); write down <u>o1</u>
- calibrate proper 90° ($180^{\circ}/360^{\circ}$ null) for *X*-nucleus (watch zg30-type pp's)
- center ¹*H* "multiplet" in spectrum (UTILITIES \rightarrow O1 buttons); write down <u>o1</u> as <u>o2</u> (for X-observe experiments
- <u>edc</u> from *X*-expno; change pp to <u>decp90</u>
- check <u>o1</u> (from *X*-experiment)
 - $\underline{o2}$ (from $\underline{o1}$ of ¹*H* experiment)
 - <u>p1</u> (from calibration of *X*-nucleas 90°)
- set $\underline{p3}$ to 1 μ s initially; should antiphase multiplet
- paropt <u>p3</u> to see null; that will be 90° length at power (attenuation) <u>p12</u>
- change <u>pl2</u> (e.g., to 16) to calibrate lower power decoupling
 - pulsewidth $\times 2$ for every 6dB additional attenuation

Stacked 1d, and 2d Experiments

- multizg ; experiments must be in a group
 - ; parameters will copy correctly 1st time only, later changes will not!

multiefp

stack1d

- PARMODE in <u>eda</u> changes $1D \leftrightarrow 2D$
- must set correctly:
 - <u>nd0</u> (# of d0 delays; but cannot trust matches actual # d0's in sequence!)
 - <u>ns</u> \geq minimum phase cycle
 - <u>td1</u> matches any loop counter criteria (e.g., some roesy and tocsy sequences)
 - <u>MC2</u> (can be corrected after acquisition in <u>edp</u>)
- see first lecture notes for some simple 2d processing commands

Suggested practice prior to final check-out:

1. Acquire a ${}^{13}C$ spectrum on a sample of your choice at 300K.

You should have prior knowledge (from similar acquisitions on the ACs or other) that the sample is concentrated enough to be observable with ≤ 10 mins acquisition time.

- 2. Now acquire a ³¹*P* spectrum on a sample you choose, or the sample we have placed in the lab. Use Bruker's P31CPD parameter file, but make sure you check that PROSOL TRUE sets up parameters correctly.
- 3. Calibrate the ${}^{31}P$ 90° pulsewidth. Write down the information you obtain in a detailed manner so we can see how you came to the final 90° calibration numbers.
- 4. Change the temperature to a setting of your choice, but within the range $-50^{\circ}C \le te \le +50^{\circ}C$ [setting <u>te</u> in xwinnmr, and changing with the command <u>teset</u> is a better choice than using the Change button in the edte window; <u>teset</u> insures the parameter <u>te</u> matches the actual setpoint temperature].
- 5. Calibrate the temperature with the methanol sample in the lab. You must run this sample unlocked (note: sweep with _no_ light; backwards from the ACs). Submit your temp calibration with the homework.
- 6. Reacquire the ${}^{31}P$ spectrum, and recalibrate the ${}^{31}P$ pulsewidth. List the new calibration numbers.
- 7. Use the thump tube to check the LN2 level, and write this down appropriately. Refill the dewar(s) as needed.
- 8. Leave the spectrometer at 300K.