Fall 2014 Chem 636 - Lab #4

Assignment due at beginning of lab, week 5 (Sept 30 – Oct 2).

Use Athena (AC-300) for section I, and Persephone (AVANCE-500) for Sections II and III. Always login to your own account when working. Although you may work in groups, each of you should setup and acquire your own data, as well as process and hand in that *individual* set of data.

- Reading A primary reference for this lab is the guide "Acquisition Step-by-Step" located on the facility website in the User Guides → Avance section.
 - Data sampling: filtering and folding: ZJ 11.2.7,11.3.5; Clar 3.2.3
 - ¹³C NMR: ZJ is better with general description; Clar is much better with INEPT&DEPT ZJ 4.3, decoupling 12.4, PT 12.9,12.10,13.3.4; Clar PT 4.3,4.4 decoupling 4.2.3
 - Tuning the probe: Zerbe+Jurt (ZJ) 3.4; Claridge (Clar) 3.4.2,3.4.3;

Goals – Experiment with spectral windows, filters, and folding. Learn ¹³C NMR on Avance 500 (Persephone) running Topspin.

The SampleCase robot will accept samples in tubes 7" to 9" long, and any cap style (including J-Young, Shigemi, sealed samples, etc.).

You can decorate your thinking cap as you wish, but please keep it on in the lab!

Digital and Analog Filters, and Folding

New spectrometers, such as the Bruker AVANCE III console, are equipped with digital filtering technology. The data points are acquired at high speed using a fast digitizer: on the AVANCE III, the effective digitization is fixed at one complex point acquired every 50 ns, or a rate of 20 MHz. The data are not all saved! A common ¹H spectrum will have AQ = 4 s, so a single 1D spectrum has 80 million complex points digitized. The spectrometer performs a *digital filter* on the data to exclude undesired frequencies — above and below the requested spectral window, defined by **SW** and **O1p** — and then decimates the number of points to some reasonable value as requested by that parameter **TD**. The digital filter can be made quite sharp: i.e., it reduces the size of peaks outside the spectral window by a lot very quickly. Older "analog" spectrometers could not achieve such sharp filtering, and spectral *folding* can then occur. We'll observe this effect in the next section, using the AC-300 spectrometer.

There are two major reasons for looking at spectral windows at this time:

- a) The spectral window is a key concept for acquiring NMR data. Experimentation is the best way to get comfortable with it. ¹H and ¹³C 1D spectra are usually taken with fixed spectral windows, but all other nuclei are not so simple. ³¹P and ¹⁹F usually require optimization of the spectral window, in particular reduction of **SW**, to obtain high-quality data. Metal nuclei often have very large chemical shift ranges that require considerable thought and experimentation with **SW** and **O1p** to obtain spectra.
- b) Spectral window optimization is a critical task for all 2D NMR data. Moreover, filtering cannot be performed on the indirect detection dimension. Folding is therefore an important issue in 2D NMR.

There are many ways to perform spectral window optimizations, the best involving graphical tools as implemented in TopSpin. [Unfortunately, the tools in IconNMR are not so good, so we'll return later to this topic when using Icon.] On Athena, the Bruker AC-300, the tools are quite cryptic and take a long time to get comfortable with. This HW will therefore simply provide, then, **SW** and **O1** values to enter so you can see the effect of the changes. [There is no **O1p**, center of spectrum stated in ppm, on the AC-300. The center of the spectrum, set by **O1**, must therefore be entered in Hz.]

In the spectrum of sucrose, the spectral window (as always) is set by the parameters **SW** and **O1p**. **SW** is the width of the spectrum, approx 9.8 ppm. **O1p** is the center of the spectrum, which can be eyeballed, or calculated to be more precise:

O1p = [(left edge) + (right edge)] / 2= [9.3ppm + (-0.5ppm)] / 2 = 4.4ppm

Fortunately, we can graphically set the spectral window in TopSpin by simply expanding the spectrum to the desired region. Clicking then on the \checkmark icon (or typing .setsw) will automatically set SW and O1p to acquire just that window. [Remember that when SW is changed, one should always check AQ to set it to a reasonable value.]

I. Spectral Window and Folding on Analog Spectrometer, the Bruker AC-300:

Use α -glucose pentaacetate in CDCl₃ for sections I and II. Use Athena in similar manner as done for HW 2.

a) Acquire a "standard" ¹H spectrum of α -glucose pentaacetate in <u>CDCl₃</u>. Use the standard spectral window (RJ CDCL3.1DJ) for this experiment and work up the spectrum as before.

b) Now use "optimized" parameters. We want you to see the difference using analog filters, rather the digital filters used in the next section on the 500. So for this part, we'll provide the parameters to you. The following parameters set the spectral window to the shaded area in the figure below: change the sweep width SW to 1888 and O1 to 3446 (both in Hz; 6.3 ppm and 2.2 ppm, respectively). <u>Acquire the ¹H spectrum</u>, and work up as before.

- 1 Stack the two spectra from a) and b) [just EFP, phase, and annotate], and turn in.mnova and .pdf files using a normal upload.
- Q1 Notice the set of new peaks appearing between 4.3 and 5.3 ppm in the second spectrum. How do you explain this? Can you phase them with the other peaks?
- Q2 What is the small peak at 3.42ppm?

II. Experimenting with the Spectral Window in TopSpin on the AVANCE-500P (Persephone)

- a) Acquire a spectrum of α -glucose pentaacetate in CDCl₃ with the full standard spectral window (SW=20ppm, O1p=6ppm).
- b) Acquire another spectrum with an optimized spectral window narrowing the SW to give ~10% baseline at each edge of the spectrum [a typical optimization done to setup a 2D spectrum]. Use the graphical tools to accomplish this. Note again the change in AQ when you make the change in SW. Correct AQ back to a "standard" value.

- 213 Plot this new spectrum showing the full spectral width. You don't need to do more than FT, phase and annotate the plot.
 - c) Now acquire a spectrum excluding part of the spectrum, similar to that done in section I b).
- 3 Turn-in another plot stacking the spectra from a) to c). You don't need to do more than FT, phase and annotate the plot.
- Q3 What happened to the downfield and upfield peaks in the spectrum from part c)? Expand vertically; can you see any evidence of them in the spectra?

III. ¹³C NMR (NOE-involved) Using TopSpin on Persephone (the Bruker AVANCE-500P):

A. Acquire a standard ¹³C spectrum of nicotine in CDCl₃. The parameters set / experiment is C13CPD^{*} in the Bruker *standard* library. Acquire the spectrum using $NS = j \times 8$ [the commands tr, and something like halt 32, are important]. 32 scans is likely sufficient.

413 Plot this spectrum with standard processing for ${}^{13}C{}^{1}H$ spectra[†]:

^{*} CPD is a Bruker acronym for *composite pulse decoupling*, i.e., the normal form of ¹H decoupling.

[†] The experiment where ¹³C is detected and ¹H is decoupled is often written as ¹³C{¹H}.

- b) One zerofill, then standard fast fourier transformation.
- c) Phase correction, similarly done as with ¹H spectra: 0th-order phase correct with toggle point at right or left peak (excluding solvent peaks), then 1st-order phase correct on opposite side of spectrum.
- d) Baseline correction as normal.
- e) It is common to do a peak pick on a carbon spectrum, and leave the peak picks in ppm. Unless a mass spec has been done, perform a check that the # carbons in the spectrum matches the number of carbons in the proposed compound structure.
- **Q4:** When acquiring any type of spectrum, one should always take a ¹H 1D spectrum (if you haven't already, do so now!). There are two important reasons for doing this: state both and turn in with this HW.
- **Q5:** Think about why one would proton decouple a ¹³C spectrum. Describe briefly two reasons why this is a good thing to do, and give one reason why one might not want to do this.
- Q6: State a couple reasons why the carbon count might not match that in the proposed structure, even when the structure is correct and the signal-to-noise of the ${}^{13}C$ spectrum is good.
 - B. Acquire a ¹H-coupled ¹³C spectrum by simply turning the ¹H decoupler off in the previous experiment. Use the same NS as used in part A.

There are numerous ways to acquire this spectrum, but be careful! Remember that Bruker saves the data automatically upon completion of the acquisition. There is no File \rightarrow Save As.... The data or parameters must be copied to a new experiment area, or you will overwrite the spectrum obtained in part A. The most versatile method is to use the Create Dataset button or **new** command, rename the file (or increment the EXPNO, and check the "Use current parameters" button:

(New	×				
Prepare for a new experiment by creating a new data set and initializing its NMR parameters according to the selected experiment type. For multi-receiver experiments several datasets are created. Please define the number of receivers in the Options.						
NAME	140916_C636_HW4-nicotine_13Cdecoff					
EXPNO	1					
PROCNO	1					
Use current parameters	\triangleright					
○ Experiment C13CPD	Select	:				

To turn the decoupler off, change the pulse sequence **PULPROG** = zgpg30 to zg30 (by typing in the new sequence name; see fig next page). The decoupler section will disappear upon an **ased**. zg. will now acquire a ¹³C spectrum, but without ¹H decoupling during any portion of the experiment.

1 140916_C636_HW4-nicotine_13Cstan 1 1 "C:\Users\cgf\Documents\AA_Documents\2014c-fall C636\HW - fallC636\HW4 140923 - Top									
Spectrum Pro	ocPars AcquPars Tit	le PulseProg	Peaks	Integrals	Sample Str	ucture Plot Fid Acqu			
▶ A A 😫 🖽 C 🛡 🚜			Probe: not definedied						
General Channel f1	eral General General								
Channel f2 <	PULPROG	zgpg30	>		E	Pulse program for acquisition			
	TD	65536				Time domain size			
	SWH [Hz, ppm]	29761.90		236.594		Sweep width			
	AQ [sec]	1.1010048				Acquisition time			
	RG	203				Receiver gain			
	DW [µsec]	16.800				Dwell time			
	DE [µsec]	12.00				Pre-scan-delay			
	D1 [sec]	2.00000000				Relaxation delay; 1-5 * T1			
	d11 [sec]	0.03000000				Delay for disk I/O			
	DELTA [sec]	1.89999998				DELTA=d1-100m			
	DS	4				Number of dummy scans			
	NS	1024				Scans to execute			

C. <u>Acquire another ¹H-coupled ¹³C spectrum, but now use "gated decoupling"</u>. We'll follow the same procedure here: "Create Dataset" or **new**, make a new name or increment EXPNO, check "Use current parameters". Then change **PULPROG** = zggd30, and acquire with **zg**, . Once again use the same **NS** as used in part A and B.

51 Plot the A, B and C spectra as a stack.

Q7: While on the spectrometer, view the three pulse sequences as shown in the demo lab session. Briefly describe the differences in intensities you observe for the three spectra.

Upload 5 plots as .mnova and .pdf files, and hand in answers to 7 questions.

- Hover the mouse over an icon and it will provide a description with the command. Hovering is especially important with the Flow Toolbars.
- Right-click in TopSpin to obtain useful context-dependent menus.

• Use	TopSpin's Help \rightarrow Commands for a complete (brief) listing of all commands.				
$new \equiv edc$	create a new dataset				
iexpno	increment and copy to next exp #; e.g., if in exp 4 copies params to exp 5				
re 4 1	switch to specified exp # and proc #, here experiment 4 and process 1				
wra 40	copies dataset to exp 40; 40 should not exist previously				
*2 *8 /2 /8	multiply or divide vertical scale by 2 or 8				
.all .hr	show complete spectrum rescaled (.all) or not rescaled (.hr)				
ased	show brief list of acquisition parameters				
getprosol	read in probe & solvent dependent params (e.g., pulse widths and powers)				
atma	automatically tune the probe as specified by parameter set				
topshim gui	open auto-shimming tool panel				
ns 32	sets $ns = 32$ (just use a space between ns and 32)				
tr tr 16	tr transfers data after current scan; tr 16 transfers after 16 th scan complete				
halt #	halts after specified number of scans (usually multiple of 4 or 8)				
efp	em then ft then pk ; em uses lb, pk applies previous phase correction				
apk	automatic phase correction				
abs n	automatic baseline correction without integrals				

Common parameter sets in TopSpin:

Parameter set	Comments	Pulse Sequence
PROTON	standard 1H 1d; d1=1 aq=4 lb=.3 p1=30°	zg30
C13CPD	13C 1d with proton decoupling ; d1=2 aq=1.3 lb=1 p1=30°	zgpg30
C13DEPT135	no quats, CH and CH3 positive, CH2 negative	deptsp135
	cnst2=145 sw=160p o1p=80p d1=2 aq=2 lb=1	
C13DEPT90	no quats, CH positive, CH2 and CH3 nulled; cnst2=145	dept90
C13DEPT45	no quats, CH CH2 CH3 positive; correct sequence for 29Si, etc	dept45
С13АРТ	attached proton test: cnst11=1 quat and CH2 pos, CH CH2 neg	jmod
	cnst11=2 quats only (CH CH2 CH3 nulled)	
C13IG	inverse gate \rightarrow quantitative carbon ; d1 must be $\ge 3 \times T1$	zgig30
C13GD	gated decoupling \rightarrow proton-coupled 13C 1d	zggd30
P31	31P 1d without decoupling or noe (i.e., with proton coupling)	zg30
P31CPD	31P 1d with proton decoupling ; d1=2 aq=0.5 lb=1 p1=30°	zgpg30
PROP31DEC	1H 1d with 31P decoupling ; set O2 close to 31P of interest	zgig
F19	19F 1d without decoupling or noe (i.e., with proton coupling)	zgflqn
F19CPD	19F 1d with proton decoupling ; d1=2 aq=0.5 lb=1 p1=30°	zgfhigqn.2
PROF19DEC	1H 1d with 19F decoupling ; set O2 close to 19F of interest	zghfigqn
COSYGPSW	standard gradient COSY; use setlimits button for sw, ns≥1	cosygpppqf
COSYGPDFPHSW	DQF COSY ; remove strong singlets & solvent peaks, measure J(HH)	cosygpmfphpp
HMBCETGPL3ND	HMBC J(HC) n-bond; cnst13=8 Hz; 3-pass J1(HC) removal	hmbcetgpl3nd
HMBCGP	HMBC J(HC) n-bond; cnst13=10 Hz; 1-pass J1(HC) removal	hmbcgplpndqf
HMBCGP_15N	HMBC J(HN) n-bond; cnst13=5 Hz; no J1(HN) removal	hmbcgpndqf
HSQCEDETGPSISP	multiplicity-edited HSQC 1-bond J1(HC); CH CH3 pos, CH2 neg	hsqcedetgpsisp2.3
HSQCETGP_15N	HSQC 1-bond J1(HN); cnst2=90	hsqcetgpsi2
HSQCETGPSISP	HSQC 1-bond J1(HC); cnst2=145, all peaks positive	hsqcetgpsisp2.2
MLEVPHPR	TOCSY 2d w solvent presat ; d9[mix]=80ms; no gradients, NS=n*8	mlevphpr.2
MLEVPHSW	TOCSY 2d; d9[mix]=80ms; no gradients, NS=n*8	mlevphpp
NOESYPHPR	NOESY 2d w solvent preset ; d8[mix]=0.3s; no gradients, NS=n*8	noesyphpr
NOESYPHSW	NOESY 2d; d8[mix]=0.3s; with gradients, NS=n*2	noesygpphpp
ROESYPHPR	ROESY 2d w solvent preset ; p15[mix]=0.2s; no gradients, NS=n*8	roesyphpr.2
ROESYPHSW	ROESY 2d ; p15[mix]=0.2s; flip-flop splk; no gradients, NS=n*8	roesyphpp.2

Example for C13APT:

The sequence listing is given below, along with the comments at the end of the pulse sequence. Look at the comments:

- pl1, pl12: power levels which we're should very rarely change (getprosol sets these!)
- p1, p2: pulse widths: we may update these on occasion, but getprosol again usually does the job
- d1: hopefully you know what to do here [default is 2 sec typical for an organic compound; 5 sec wouldn't be unusual if "remote" carbons are present (problematic quaternaries), and/or sample is sealed O₂-free]
- d20: <u>here's where the comments are useful</u>, but only in combination with the sequence itself; note that d20 is set within the sequence listing, and is dependent on cnst2 and cnst11 (i.e., you don't change d20 directly, only by changing cnst2 or cnst11)

cnst2: typically set = 145 [Hz]

cnst11: =1 is dept135 analog, =2 is dept90 analog

NS: end comments are often useful for minimum NS; use multiples of 4 for NS!

```
#include <Avance.incl>
#include <Delay.incl>
"p2=p1*2"
"d20=1s/(cnst2*cnst11)"
"DELTA=p1*4/3.1416"
                                 ;pl1 : f1 channel - power level for pulse (default)
                                 ;pl12: f2 channel - power level for CPD/BB decoupling
                                 ;p1 : f1 channel - 90 degree high power pulse
1 ze
                                 ;p2 : f1 channel - 180 degree high power pulse
 30m pl12:f2
                                 ;d1 : relaxation delay; 1-5 * T1
 30m cpd2:f2
                                 ;d20: 1/(J(XH)) X, XH2 positive, XH, XH3 negative
2 30m
                                       1/(2J(XH)) X only
                                ;
 d1
                                 ; cnst2: = J(XH)
 4u do:f2
                                ;cnst11: = 1 X, XH2 positive, XH, XH3 negative
 p1 ph1
                                          2 X only
                                ;
 d20
                                 ;NS: 4 * n, total number of scans: NS * TD0
 (p2 ph2):f1
                                 ;DS: 4
 d20 cpd2:f2
                                 ;cpd2: decoupling according to sequence defined by cpdprg2
 DELTA
                                 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
 go=2 ph31
 30m mc #0 to 2 F0(zd)
 d20 do:f2
exit
ph1=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
ph2=0 2 1 3 1 3 2 0 1 3 2 0 2 0 1 3
ph31=0 0 2 2 1 1 3 3
```