Nuclear Overhauser Enhancement (NOE)

NOEs arise from nuclear spin dipole-dipole interactions. All NMR-active nuclei (spin \neq 0) have a magnetic dipole, having a field similar to a bar magnet:

Nuclear Overhauser Enhancement (cont.)

A 13C nucleus will "feel" the presence of a 1H nucleus via the proton's dipolar field.

In the case shown below, the dipolar field is ~30 degrees from being opposite of the applied static magnetic field.

Population Description for Protons

Population Description for Protons

[following Sanders&Hunter]

Population Description for Protons

Since ∆E/RT « 1

Easiest to use simple numbers, since populations are ~ linear.

The figure is qualitatively correct, or precisely for 80,000 protons.

What's shown is the excess population.

[following Sanders&Hunter]

Population Description for ¹³C

population excess is

1/4th for ¹³C than for ¹H.

Population Description for Two-Spin Heteronuclear System

Population Description for Two-Spin Heteronuclear System

Population Description for Two-Spin Heteronuclear System

Equilibrium Zeeman populations

Population Description of Decoupling

Relaxation will always work to re-establish Zeeman populations. The theory goes beyond this discussion, but hand-waving, we get to something similar to that shown above.

ZQ does not happen in the heteronuclear case with no (ZQ) degenerate energy levels.

Summary of NOE in Heteronuclear NMR

- By far the most common use of NOE in heteronuclear NMR is for signal enhancement. Distance determinations using (1/r⁶) typically are used only in homonuclear (¹H-¹H) NMR (but see Claridge section 8.9.2).
- Decoupling is not sufficient to affect X-nucleus intensities alone (requires relaxation, typically a few seconds).
- Energy-dependent relaxation creates NOEs:
 - double quantum relaxation creates positive NOEs (positive γ)
 - \rightarrow dominant in heteronuclear systems
 - \rightarrow low MW (small τ_c) in homonuclear systems
 - zero-quantum relaxation creates negative NOEs
 - \rightarrow high MW (large τ_c) in homonuclear systems
- The enhancement maximizes at $1 + \gamma_{\rm H}/2\gamma_{\rm X}$. Note lack of r dependence!!

 $1H \rightarrow 1.5 \qquad 13C \rightarrow 3 \qquad 15N \rightarrow 4$

The X-nucleus enhancements are significantly larger for polarization transfer, but a J-coupling must then be present.

Note: enhancement can go to zero for negative $\gamma_{\mathbf{X}}$ **Use INEPTRD for 29Si!**

NOE Growth for Positive γ **Nuclei**

Heteronuclear NOEs: Positive γ Nuclei

NOE Growth for Negative γ **Nuclei**

