Schematic of the COSY Experiment

But what happens for a heteronuclear experiment?

The 90° pulses will not cover both sets of nuclei, and there would be issues with observation of both nuclei simultaneously.

These issues could (perhaps) be addressed by something like:

Cartoon of a Full Heteronuclear COSY

The Diagonals of a Heteronuclear COSY

Pg. 3

The Diagonals of a Heteronuclear COSY

The Diagonals of a Heteronuclear COSY

Heteronuclear COSY – HETCOR

Direct observation of ¹³C, with indirect evolution of ¹H (in t₁/F1), was the first widely used heteronuclear **COSY** experiment. It is compatible with older hardware (e.g., the ACs), but suffers from the relatively poor sensitivity of directly-observed ¹³C.

Regions of Heteronuclear COSY

Direct observation of ¹H, with indirect evolution of ¹³C (in $t_1/F1$), offers 8× the sensitivity of the HETCOR exp.,

but this inverse exp. (HSQC is only one of many variants) must, to high precision, remove ¹H bonded to ¹²C (99%) during F2, requiring newer/ better hardware.

This inverse exp. is now commonplace in NMR labs.

Regions of Heteronuclear COSY

Schematic of the HSQC Experiment

Impracticalities of performing the full experiment as shown on the previous pages, and it's superior sensitivity, makes HSQC the heteronuclear experiment to perform.

HSQC: ¹H directly observed/evolving in t₂/F2 ¹³C indirectly observed/evolving in t₁/F1.

Don't need 1st proton pulse for 13 **C evolution in t**₁**.**

Don't need 1st proton pulse for 13 **C evolution in t**₁**.**

Don't need ¹³C detection during t₂ (¹³C observed indirectly).

Don't need ¹³C detection during t₂ (¹³C observed indirectly).

Can improve sensitivity by allowing $I_xS_z \rightarrow I_y$ before detection,

and include decoupling (removing heteronuclear coupling in t₂).

Can improve sensitivity by allowing $I_x S_z \rightarrow I_y$ before detection,

and include decoupling (removing heteronuclear coupling in t₂).

¹H detection is $(\gamma_{\rm H}/\gamma_{\rm C})^{3/2}$ more sensitive than ¹³C detection.

We can improve the experiment by another factor of $\gamma_{\rm H}/\gamma_{\rm C}$ by providing ¹H excitation (now utilizing polarization transfer in the other direction: $I_{\rm v} \rightarrow I_{\rm x}S_{\rm z} \rightarrow I_{\rm z}S_{\rm x} \rightarrow S_{\rm v}$).

¹H detection is $(\gamma_{\rm H}/\gamma_{\rm C})^{3/2}$ more sensitive than ¹³C detection.

We can improve the experiment by another factor of $\gamma_{\rm H}/\gamma_{\rm C}$ by providing ¹H excitation (now utilizing polarization transfer in the other direction: $I_{\rm v} \rightarrow I_{\rm x}S_{\rm z} \rightarrow I_{\rm z}S_{\rm x} \rightarrow S_{\rm v}$).

180° pulses remove chemical shift during the J-evolution (polarization transfer) sections of the experiment.

Other components of a usable experiment, involving novel spin gymnastics (e.g., the BIRD sequence), and/or phase cycling, and/or pulsed-field gradients, are required to remove the 99% of protons bonded to ¹²C.

Schematic of the HSQC Experiment

Theoretically (fairly close to empirical observations),

HSQC is $4^{5/2} \sim 32 \times$ better than ¹³C direct (but 3 for NOE, so $\sim 10 \times$ more sensitive, $\sim 100 \times$ better in time).

 $10^{5/2} \sim 320 \times$ better than ¹⁵N direct ($10^5 \times$ in time).