Relaxation and the Nuclear Overhauser Effect

. Relaxation rates depends on matching transition frequencies to time-
varying magnetic fields.

. A proton affects surrounding protons via dipole-dipole interactions.
The dipole field can be visualized as a small bar magnet placed at

the proton nucleus.
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+ Note the distance and correlation time dependencies.



Molecular Motions and Relaxation

Relaxation rates depend on matching transition frequencies to time-
varying magnetic fields: T7 relaxation is most efficient when protons

experience molecular motions at the Larmor frequency.
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The Nuclear Overhauser Effect (2-spin system)

(see Claridge or

In NMR: excess population « 1 -exp(-AE/RT) ~ AE Sanders&Hunter)



The Nuclear Overhauser Effect

Through-space dipole-dipole interactions!

[spins can be J-coupled, but nOe does not arise from J-coupling!]
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The Nuclear Overhauser Effect

Start with selective inversion:
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NOEs in the Rotating Frame: NOEs

Selective inversion can be pictured in a simplified manner as:
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Molecular Motions and Relaxation

Relaxation rates depend on matching transition frequencies to time-
varying magnetic fields: T7 relaxation is most efficient when protons

experience molecular motions at the Larmor frequency.
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*

Negative NOEs: Large MW

Slow motions are effective for small frequencies/energy differences:
W, (ZQ) = negative NOE dominates for large MW
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Molecular Motions and Relaxation

Relaxation rates depend on matching transition frequencies to time-
varying magnetic fields: T7 relaxation is most efficient when protons

experience molecular motions at the Larmor frequency.
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Positive NOEs: Small MW

¢ Fast motions are effective for large frequencies/energy differences:
W, (DQ) = positive NOE dominates for small MW

NSy = 172



Zero NOEs: The Crossover Region

Thus, NOEs go through a crossover region at intermediate MW, in
the range 1000-5000 Da.
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The ROESY Spin-Lock: Reducing the Effective Field

. Problems with the crossover region can be avoided by spin-locking

the magnetization.

During a spin-lock, the effective magnetic field (on-resonance) is B,.
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Figure 5.62 A schematic illustration of
events during spin-lock mixing. All
chemical shift differences between spins
are eliminated yet all spin—spin
couplings between them remain. This
forces the strong-coupling condition on
all spins (see text).
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“All” molecules in
solution tumble fast

in presence
of spin-lock

compared to 6 kHz!
ROEs are always positive.
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Review - ROESY

Theoretical steady-state ROESY enhancements are shown below.

= In practice, the spin-lock causes many problems, the worst being
the possibility of TOCSY (J-coupling) transfers in the spectrum.

% Avoid having coupled multiplets centered in the spectrum.
= A number of variations of ROESY exist, with differing attributes.
= Attempt NOESY first, and use ROESY only if required.
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Heteronuclear NOEs: Positive y Nuclei




Heteronuclear NOEs: Positive y Nuclei




Heteronuclear NOEs: Negative y Nuclei
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Homonuclear NOEs: Transient Experiments

Transient NOE experiments (e.g., NOESY1D, NOESY2D)
will impose a limitation on the mix time of approx T,. At

mix ~ T, and longer, loss of magnetization via spin-lattice
relaxation will dominate over the NOE.

Larger %NOE is an indication of smaller r, but definitely not
always: spin diffusion causes problems for large MW, and
certain geometries are problematic for all MW.




Homonuclear NOEs: Transient Experiments

Transient NOE experiments (e.g., NOESY1D, NOESY2D)
will impose a limitation on the mix time of approx T,. At

mix ~ T, and longer, loss of magnetization via spin-lattice
relaxation will dominate over the NOE.

Larger %NOE is an indication of smaller r, but definitely not
always: spin diffusion causes problems for large MW, and
certain geometries are problematic for all MW. And T,!




NOE - Qualitative and Quant Cautions

Geometry can be very important to NOE interpretations.

= E.qg., three protons distributed in a near-equilateral triangle
can produce zero NOE, independent of rs.

= Itis important to be aware that not observing an NOE is weak
evidence. Measure NOEs in all directions.
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Distance Information via NOE Measurements

- The enhancement maximizes at 1 + v, /2y,

or 0 (slow limit).
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Note lack of r dependence!!
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Distance Information via NOE Measurements

- The enhancement maximizes at 1 + v, /2y,

or 0 (slow limit).

Note lack of r dependence!!
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Distance Information via NOE Measurements

* The build-up rate with mix time is r dependent:
R, = Kyfvdtrs’

Plot NOE versus mix, and compare to known pair:
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Distance Information via NOE Measurements

* The build-up rate with mix time is r dependent:
R, = Kyfvdtrs’

Plot NOE versus mix, and compare to known pair:
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Summary: NOE

NOE’s occur via population transfers, and are slow to
occur (taking times approaching ~T,).

— DAQ relaxation leads to positive NOEs, but requires
high-frequency modulations (low MW).

— ZQ relaxation leads to negative NOEs, occurs for
all molecules (0 frequency): dominates at high MW.

NOESY-1D and NOESY-2D are transient experiments.
These experiments have utility for mix < T,.

The spin-lock of a ROESY experiment reduces the
effective magnetic field to 2-6 kHz. Thus, ROEs are
always positive (i.e., motions in liquids are always fast
compared to these kHz frequencies).



Review - TOCSY and Scalar Coupling

. Spin-locking the magnetization scales the chemical shift to near-
zero (in Hz), producing strong coupling.
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Review - TOCSY and Scalar Coupling

. Spin-locking the magnetization scales the chemical shift to near-
zero (in Hz), producing strong coupling.
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Review - TOCSY and Scalar Coupling

. Spin-locking the magnetization scales the chemical shift to near-
zero (in Hz), producing strong coupling.

Strongly coupled protons exchange magnetization once every ~1/2J.
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Figure 5.62 A schematic illustration of

events during spin-lock mixing. All )

in presence

chemical shift differences between spins
are eliminated yet all spin—spin
couplings between them remain. This
forces the strong-coupling condition on
all spins (see text).
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