Lec 5 - 30 Sept 2014

Review HW#3

digitization – this lecture.... DW=1/(2SW) AQ = TDxDW AQ=TD/(2SW) natural linewidths $\rightarrow v_{FWHM} = 1/\pi T_2 \approx 1/\pi T_1(2SW)$ convolutions \rightarrow truncation artifact convolutes into all peaks

Lec 5 - 30 Sept 2014

Questions HW#4

calendars

probes → BBFO vs Prodigy

analog vs digital filters

13C NMR: noe and PT \rightarrow signal-to-noise

Lec 5 - 30 Sept 2014

 $s/n \propto c \cdot \gamma_{ext} \cdot \gamma_{obs}^{3/2} \cdot B_0^{3/2} \cdot \sqrt{t} / T$

(Claridge section 4.4)

s/n = signal to noise

c = concentration of nuclei (including nat. abundance)

 γ_{ext} = magnetogyric ratio of excitation nucleus

 γ_{obs} = magnetogyric ratio of observed nucleus

B₀ = magnetic field strength

t = time of experiment, usually \propto NS

```
signal \infty t
noise \infty \sqrt{t}
s/n \infty signal / noise = t/\sqrt{t} = \sqrt{t}
T = temperature (K)
```

The One-Pulse NMR Experiment

- 1. RD [D1] = relaxation delay, regrow M_Z [Clar 2.4.1]
- 2. $PW \equiv rf$ pulse of length PW μs nutate M into xy plane [Clar 2.2.2]
- 3. DE = probe deadtime delay (μ s) \rightarrow wait for rf pulse to ringdown
- 4. AQ = acquisition of TD points at DW dwell [= 1/(2SW)] [Clar 3.2.3]
 - a) rotating frame \rightarrow demodulation
 - b) Nyquist
 - c) phase behavior
 - d) resolution and apodization
- 5. repeat DS + NS times