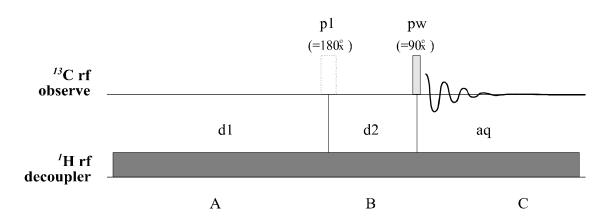
II. X Acquisition (e.g., ${}^{31}P$ or ${}^{13}C$)

(22-Jun-98)

A. Discussion

• The spectrometer acquisition time of an X nucleus experiment should be estimated from similar experiments on the same equipment if possible using eqn (1) or (2) below. ${}^{13}C$ and ${}^{31}P$ experiment times on the 500's and 360 can be estimated from similar experiments on the AC-300 (Athena) using:


$$S/N \propto cB_o^{3/2} t^{1/2} \boldsymbol{x}$$
⁽¹⁾

where c = concentration, $B_o =$ magnetic field strength, t = experimental time, and x = probe filling factor. To estimate the time under different conditions that would give identical *S/N*, then:

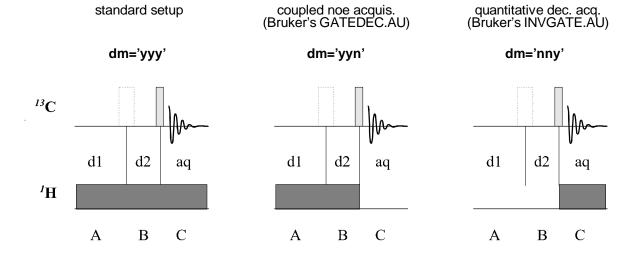
$$t_{new} = t_{old} \cdot \left[\left(\frac{c_{old}}{c_{new}} \right)^2 \left(\frac{B_{o_{old}}}{B_{o_{new}}} \right)^3 \right] .$$
⁽²⁾

A reasonable estimate (although direct comparison to experiments on similar compounds is preferred) on the UW Ch em MRF equipment can be made starting with the observation that a 0.1 M solution will typically give publication quality spectra in 20 min on the AC-300 (Athena).

- Standard decoupled (NOE-enhanced), quantitative decoupled (no-NOE; Bruker's INVGATE.AU) and NOE-enhanced coupled spectra (Bruker's GATEDEC.AU) can be obtained through use of the S2PUL sequence.
- Nuclei with negative γ values, such as ¹⁵N and ²⁹Si, are best acquired using polarization transfer sequences; DEPT in general is the preferred sequence over INEPT if more than one J_{XH} value is involved; quaternary moieties of negative γ nuclei are best obtained through long-range coupling unless the $T_I(X)$ values are known to be reasonably short.

1d¹³C Acquisition (s2pul)

B. Critical Parameters


		relaxation delay; $\mathbf{d1} > T_I({}^{I}H)$ to obtain optimum NOE usually =0 when solvent set correctly; should be within 5ppm of ${}^{I}H$ coupled to <i>X</i> nucleus of interest	
dpwr	_	decoupler power (larger number is higher power); typically never > 46	
dmf	_	decoupling strength = $[pw90(^{1}H \text{ at dpwr})]^{-1}$	
dmm	_	decoupler modulation mode; either dmm='ccp' dseq='waltz16' dres=90 or	
dm		dmm='ccw' [both are equivalent] is best for typical compounds decoupler on/off flag (see Table 6)	

C. 1d X{ ^{1}H } Acquisition

- start by setting the probe parameter appropriately
- to setup parameters (method **b** is recommended)
 - a) either read in a data file (rt) or parameter file (rtp) for standard $X{^{1}H}$ acquisition, or
- The b) click on MAIN MENU SETUP and select nucleus and solvent
 - c) alternatively, run s2pul macro (but normally will need to reset **spin='n'**, **gain=0**; check **temp** and **vttype**, and check **tpwr** (=58 typically) and **pw** (=5-8µs typically).
- use UWMACROS TUNE PROBE TUNE C13 [or tunec macro] and tune ${}^{13}C$ channel; reattach ${}^{13}C$ X cable to X Obs BNC
 - make sure $\frac{1}{4}$ wave cable is correct for $\frac{13}{C}$
 - make sure low-pass (brown) filter is in-line
 - make sure correct probe cap is inserted (*none* in bbold probe)
 - make sure no external attenuator is in-line
- use UWMACROS TUNE PROBE TUNE H1 [or use **tuneh** macro (will have to reset gain after tunec if UWmacro is not use] and tune decoupler channel; reattach ¹H decoupler cable to decoupler BNC

Parameter Settings	Comments
dm='yyy' dpwr=46 su	typical for ${}^{13}C$ acquisition; full on decoupler; keep dpwr £48
dm='nnn' su	turns decoupler off; always finish with this command $+$ su
dm='nny' su	inverse gated (Bruker's INVGATE.AU) mode; gives quantitative
	(assuming $d1 > 5T_1$!) decoupled spectra
dm='yyn' su	gated spectra (Bruker's GATEDEC.AU); gives coupled spectra but with
	NOE buildup (DEPT is necessary for ${}^{29}Si$, ${}^{15}N$ and other - γ nuclei)
dmm='p'	normal setup for ${}^{13}C$ acquisition (8/1/97; dmm='w' works fine)
dmm='ccp'	normal setup for DEPT and INEPT most 2d ${}^{13}C$ experiments, does hard
	pulses followed by pulsed decoupling during acquisition
dseq='waltz16' dres=90	normal setup for ${}^{13}C$ (and all X) acquisitions; ${}^{1}H$ waltz-16 decoupling
dseq='garp1' dres=1	normal setup for all inverse experiments; X garp-1 decoupling
dmf = [1/pw90]	sets decoupler pulsewidth for composite pulses, where pw90 is the ${}^{1}H$
	decoupler 90° pulse width at the dpwr setting used for decoupling
dpwr = [typically ~42]	decoupler power in dB; typically want 90° pulsewidth = $100-150\mu s$

Table 6. Common Decoupler Parameter Settings

1d ^{''}C Variations in VNMR

- use **dm='yyy' su** to turn on decoupler (or UWMACRO DECOUPLER ON; see Table 6 and figure below for more decoupler information)
- use **go** to start acquisition
 - **ga** will automatically apply a **wft** (weighted Fourier transform) following acquisition
 - use **wft** to manually transform
 - **dscale** will display the axis
 - **dsx** will apply wft dscale(-3)
- gain = 30 to 40 should usually work for ^{13}C acquisition
 - if always getting ADC OVERLOAD beep, then receiver gain is too high
 - it is important the receiver gain be optimized for X nucleus experiments
 - see ${}^{1}H$ section above for how to set the gain accurately
- optimize sw by setting right (right mouse button) and left (left mouse button) cursors, and use movesw
- set reference by placing cursor close to peak, then type **nl rl** command, e.g., **rl**(77**p**)

D. ¹³C (X) pw90 and {¹H} Decoupler Calibrations

- general rule of thumb for these calibrations is:
 - short runs use facility numbers
 - if probe problems are suspected, check pw90's of X and ${}^{1}H$ observe (not decouple)
 - if numbers are close to facility values, probe is likely OK
 - if pw90 is much less than facility value, you are doing something wrong (figure it out! :-)
 - if pw90 is much longer (>1 μ s) than facility value, find TA or facility staff
 - always perform calibrations for overnight or longer runs for PT-type experiments; for standard decoupled experiments, calibrations are rarely needed
- ^{13}C and other X nuclei pw90 calibrations require concentrated or labeled samples
 - for ${}^{13}C$, use 50% benzene in acetone-d₆; do not degas these samples
 - addition of $GdCl_2$ or Cr-acac can improve T_1 's dramatically

- set tpwr to desired setting; see Table 2 (on lab wall for most current!!) for calibrations for probes in UW Ch em MRF facility
- make sure you are on resonance (set cursor on multiplet, then **movetof**)
- set **d1=20s** or longer depending on sample T_1
- use 360° pulse for final checks always!!
- once the observe pw90 is obtained, assuming in exp1 then jexp2
 - move ${}^{1}H$ cable to observe port, and find resonance for benzene doublet (take one scan, move cursor to middle of doublet and use **movetof**); write this value of tof down as ${}^{1}H$ dof
- assuming ${}^{13}C$ still in exp1 and ${}^{1}H$ in exp2, do **jexp1 mp(3) jexp3**
 - put ¹*H* on resonance by setting **dof** = ¹*H* dof from above
 - setup decoupler calibration experiment with UW macro **pwxdec90**
 - set $\mathbf{pwxlvl} = 60$ and find \mathbf{pwx} where antiphase doublet nulls; this is decoupler hard 90
 - set **pplvl = pwxlvl** and **pp = pwx** for **hetcor** and **dept** experiments
 - set **pwxlvl** appropriately for decoupling (probe dependent; see Table 2 on wall) and find **pwx** where antiphase doublet nulls; set dpwr = pwxlvl and dmf = 1/(pwx*1e-6)

E. 1d X{¹H} Data Workup and Plotting

- typically will want lb = 2 or 3 for ${}^{13}C$ experiments
- see 1d ${}^{1}H$ section E for plotting description