IV. INEPT – Insensitive Nuclei Enhanced by Polarization Transfer (22-Jun-98)

A. Discussion of INEPT

See the discussion section in the previous section on DEPT.

- INEPT should be used if one *J* value is involved and it's size is. Otherwise use of DEPT is recommended.
- The previous statement is not intended to dissuade students from experimenting with the different version of polarization transfer. (After all, the fearless facility manager has been known to give not-such-good advice on occasion. Please do let me know your observation/preferences if you try both INEPT and DEPT on same/similar compounds.)

Refocused Decoupled INEPT

(ineptrd.c [written by cgfry] from Bruker's INEPTRD.AU)

B. Critical Parameters

d1 – relaxation delay; typically = 1-2s

j = 140Hz; change if you want to observe X with $J_{XH}>180$ Hz or <110 Hz

- INEPT is sensitive to accurate J coupling being entered; use DEPT unless you are

fairly certain you know J reasonably accurately

pw, tpwr – observe $X 90^{\circ}$ pulse width pw at power level tpwr

pp, pplvl – high power ${}^{1}H$ 90° pulse width **pp** at power level **pplvl**

mult – multipler for d3 delay, where mult= 1 all positive, 2 -CH2- nulled, 3 -CH2-

inverted from -CH3 and -CH<

C. INEPT Acquisition

- the INEPTRD macro (run by the menu SETUP SEQUENCES INEPT) is **not** the standard Varian sequence, but in my opinion is superior; it incorporates all aspects of Bruker's INEPTRD and INEPTP sequences for decoupled and coupled acquisition, respectively
- for short runs, use facility calibrations for pw, tpwr, pp, pplvl, dpwr (£46) and dmf

• FILE SETUP SEQUENCES INEPT will setup Inept correctly, including for non-13C acquisitions

- **mult** is set by the number of coupled protons and \mathbf{j} ; $\mathbf{d3} = \mathbf{mult/4j}$
- the d2 interpulse delay is set according to j
- for overnights or longer runs, recalibrate (at least) observe and (best) decoupler pulse widths
- set mult as needed; see below

D. Calibration

- see ${}^{13}C$ section for nominal ${}^{13}C$ (X) and ${}^{1}H$ decoupler calibrations
- The delay **d2** and **mult*d3** are calculated by the DEPT macro as follows:

$$d2 = \frac{1}{4I}$$
 echo period involving two $d2$ delays creates IH antiphase state

$$\mathbf{d3} = \frac{\text{mult}}{4J} = \frac{1}{2\mathbf{p}J} \left[\sin^{-1} \left(\frac{1}{\sqrt{n}} \right) \text{rad} \right] = \frac{1}{360^{\circ} J} \left[\sin^{-1} \left(\frac{1}{\sqrt{n}} \right) \text{deg} \right]$$

where n = # I nuclei coupled with J_{XH}

example: suppose have trimethylsilyl, and want to detect ${}^{29}Si$, and $J_{Si-H} = 2$ Hz,

then
$$d2 = 1/(4 \times 2 \text{ Hz}) = 125 \text{ msec}$$

and
$$\mathbf{d3} = \frac{1}{360^{\circ} \times 2\text{Hz}} \sin^{-1} \left(\frac{1}{\sqrt{9}} \right) = \frac{19.47^{\circ}}{360^{\circ} \times 2\text{Hz}} = 27 \text{m sec}$$

or **mult** =
$$\frac{2}{180^{\circ}} \sin^{-1} \left(\frac{1}{\sqrt{9}} \right) = \frac{2 \times 19.47^{\circ}}{180^{\circ}} = 0.216$$
 (same as in DEPT setup)

These values are calculated internal in the /vnmr/psglib/ineptrd.c pulse sequence code.

E. Data Workup and Plotting

• workup is similar (identical) to ${}^{13}C$ 1d and DEPT