
XII. ROESY – 2d NOE Spec.; Mixing via a Spinlock in the Rotating Frame (17-Jul-00)

A. Discussion

- ROESY spectra will produce a maximum +0.5 enhancement for ¹*H* independent of MW. The experiment is still transient (as in NOESY), however, so enhancements are always smaller than 0.5. As always with NOE/ROE experiments, absence of a crosspeak does *not* confirm lack of proximity (see Sanders & Hunter for a good introduction on this subject).
- An ROE is produced by inverted magnetization created via chemical shift during t₁ (d2) and locked to the y' axis by the pulsatile spin-lock during the mix time. pw should be set at 30°, and ratio set to ~6 for tpwr ~ 52 on bbswg probe.

2d ROESY Spectroscopy (ulroesy)

B. Critical Parameters

 p1, p1lvl = 90° pulse width at power p1lvl; recalibrate this parameter for roesy experiments
pw, tpwr = 30° pulse width at power tpwr; recalibrate this parameter for roesy experiments
ratio = number of pw with no rf between actual pw pulses; usually set ~6 (should be ≥5) The spinlock field strength used in this type of experiment (Kessler spinlock) is:

$$B_{1sl} = \frac{1}{pw_{360}(\text{ratio}+1)}$$

ni	Type slroesy to get the spinlock power for a particular ratio and pw . = number experiments, or number of points in t_1 ; should be set ok by macro, time allowing; want F1 digital resolution $sw1/(2ni) = 6$ Hz/pt
nt	= multiple of 2, multiple of 8 preferred
sspul	= 'y' gives homopoil90-homospoil preceding d1
d1	= relaxation delay; set 2-3* T_1 (do not set too short, or will get very bad t_1 noise)
np	= number of points in t_2 , usually want ≥ 2048 since costs nothing but disk space and gives better resolution in F2
mix	= mixing time; often is varied to provide build-up curves. Set close to T_1 should provide maximized crosspeaks; for high MW (>2000) NOESY is preferred.

C. ROESY Acquisition

 see NOESY section; adjust baseline similarly, and make certain to use actual ROESY sequence (do this by setting ni=2) when performing the calfa correction

D. Calibration

- calibrate pw, tpwr, p1, p1lvl for all ROESY experiments
- watch out for coupling partners that are centered in the spectrum; these will give TOCSY crosspeaks in a ROESY; in this case, change **tof** to get the coupling pair off-center

E. Data Workup and Plotting

• same as dqcosy; see DQCOSY section for phase-sensitive work-ups