Step-by-Step Instructions – Varian Spectrometers

I. ¹H 1d acquisition

[updated: 27 May 2010]

- 1. *Current sample out*: Check the STATUS panel to insure that Status = IDLE, i.e., that it is not ACTIVE, in which case the previous user is still acquiring data.
- 2. If the previous user does not show up within 5 mins of the start of your time, do an $svf \downarrow$ and save the data to a temporary filename. Then enter $aa \downarrow$ to stop the acquisition.
- 3. eject or e or click on EJECT in the *acqi* window
 - you should always have ≥ 0.45 ml (0.6ml recommended) solvent; with less (w/o a Shigemi tube) you may not be able to obtain a reasonable shim.
 - for samples with ≤ 0.6 ml solvent, be careful to *center* the solvent column in the hatched box—indicating the detect region—in the depth gauge. Failure to do so may lead to poor line shape, even following significant shimming.
- 4. Your sample in: insert or i or click on INSERT in the ACQI window
- 5. Set the temperature:
 - on the UNITY, use the PC to set the temperature; set **temp** in VNMR correctly, but keep in mind this does not affect the actual temperature
 - on the INOVAs, enter temp \downarrow
 - if you are making a change $>5^\circ$, allow at least 10 mins for the temperature to equilibrate prior to shimming or tuning the probe
- 6. Read in the facility shim file:
 - rts, *probename*.shim, su, or
 - click on MAIN MENU \rightarrow UWMACROS \rightarrow LOADSHIMS and type in shim filename
- 7. Read in experimental parameters: click on MAIN MENU \rightarrow SETUP \rightarrow NUC, SOLV
- 8. Locking: 2 methods can be used:

<u>Automatic locking</u> (recommended; as of June 2009)

- enter **findlock**→ and wait for the macro to finish
- in the ACQI LOCK panel: turn the lock on
 - \rightarrow if the signal does not lock, try increasing the LOCKPOWER and LOCKGAIN
 - \rightarrow adjust the LOCKPHASE so the lock signal goes positive;
 - \rightarrow the spectrometer should now lock; re-read in shim file; find help if still no lock

<u>Manual locking</u> (the automatic *findlock* method above is recommended)

In the ACQI LOCK panel:

- turn the LOCK off
- turn LOCKGAIN and LOCKPOWER both to 60

- adjust Z0 to remove all oscillations in the lock signal (lock to on-resonance); use only the slider bar and/or the ± 64 button for Z0 adjustments
- reduce the LOCKPOWER slowly (-4 at a time) to get a good lock level (which is any lock signal > 30 and < 100)
- the lock signal should go positive; adjust LOCKPHASE if not
- click LOCK when on-resonance and a positive lock signal
- 9. Reduce the LOCKPOWER to the recommended value for the solvent, but still keeping the lock level > 20. You may have to adjust the Z1 shim prior to getting the LOCKPOWER to the recommended value.
- 10. *Shimming:* Go into the *ACQI SHIM* window, and stay there unless LOCK is lost (the last panel in the *SHIM* window has LOCKPOWER, LOCKPHASE, etc.)
 - Always "shim" LOCKPHASE prior to careful shimming on Z1 and Z2.
 - Shim Z1, then Z2, then Z1; repeat until no improvements are obtained. Re-"shim" LOCKPHASE following any large changes in shims (e.g., following a change in $Z2 \ge 128$ units).
- 11. *DISCONNECT from the ACQI* window prior to doing anything in the main VNMR window; failure to do so may lock-up the Sun workstation.
- 12. Tune the ¹H channel on the probe: this must always be done for the first sample.

For ${}^{1}H$ 1d and COSY experiments, the probe need not be retuned for following samples at the same temperature and similar solvent conditions.

For ${}^{13}C$, ${}^{31}P$, and other X experiments (where high-power ${}^{1}H$ decoupling is used), and for more advanced experiments—NOESY1D, TOCSY1D, ROESY1D, DQCOSY, HSQC, HMBC, etc— the probe should be retuned on *every* sample.

- 13. *Check cabling (UNITY only)*: check that the ${}^{1}H$ cable to the probe is plugged into the 1H OBSERVE port on the magnet leg preamp box.
- 14. Adjust receiver gain: enter nt=1 ss=0 gain=60 ga.↓
 - Look and listen carefully following the ga: two "beeps" and a message "ADC Overflow" or "Receiver Overflow" means gain is too high. Reduce the gain by 20 until you get only one "beep" and neither message above.
 - (UNITY only): If you still get two "beeps" and one of the messages above when gain=0, then you must insert an external attenuator(s) into the labeled "Attenuator" position on the magnet leg preamp box.
- 15. *Check your shims*: Expand the spectrum about the TMS (or other solvent) peak; typically one scan (**nt=1**) is sufficient to check shims, but take more scans if necessary. Type **nl dres**, to get an estimate of the linewidth. For small organic compounds, 1Hz or lower is typical. For peptides and proteins, ≤2Hz may be acceptable.
- 16. Set ss=2 and $nt=i\times8$ (i.e., a multiple of 8) and acquire the FID.
- 17. Save the data using **svf**, ; use a filename *without* spaces or other special characters (underscore _ plus + period . and hypen are ok to use in a filename).

- 18. Prior to leaving the spectrometer, put the standard CDCl3 sample into the spectrometer, and establish lock on this sample (a higher than normal LOCKPOWER of \leq 40 is OK for this sample; i.e., don't spend time shimming this sample).
- 19. Useful commands for processing and plotting the data are:

ff dsx aph dc va

pl pscale(0) pap page