
IX. TOCSY (or HOHAHA) - Total Correlation Spectroscopy

(17-Jul-00)

A. Discussion

- TOCSY provides COSY-like spectra, but with all ¹H connected appropriate with the mix time. Thus, mixtures and small molecular fragments can often be more easily identified with TOCSY.
- TOCSY spin-lock mixing provides Hartman-Hahn matching for coherence transfer. Strong coupling is required, and off-resonance effects can be troublesome. Use long-range COSY or DQCOSY to observe correlations involving small *J*-couplings.
- ROE's can be a problem with TOCSY spectra, especially as mix gets large. Clean-TOCSY, a variant not implemented in Varian's standard sequence, can offset ROE's by providing a similar NOE build-up, but this variation will only work for large MW where NOE's are negative.
- Watch the manual page [man('tocsy')] for changes in the TOCSY sequence(s). Implementation of DISPSI-2 spin-lock is underway, as well as gradient homospoils.
- Multiple mix times are often useful. These cannot be run arrayed with phase=1,2; phase=3 (TPPI) must be selected if arraying **mix** is desired. Queuing multiple experiments with different mix times and phase=1,2 is another method for this type of data collection, and is recommended.

2d TOCSY Spectroscopy (MLEV-16 Spin Lock)

B. Critical Parameters

p1, p1lvl = 90° pulse width at high power **p1lvl** (typically 52 to 60); recalibrate this

parameter for all tocsy experiments (uses pw, tpwr from 1d to set p1, p1lvl)

pw, tpwr = 90° pulse width (~20 to 40 μ s) at power **tpwr** (typically 46 to 52) used for

MLEV spin lock; calibration of this parameter is also recommended

ni = number experiments, or number of points in t_1 ; should be set ok by macro, time

allowing; must have F1 digital resolution $\equiv sw1/(2ni) \le 12 \text{ Hz/pt}$ but $\sim 6 \text{ Hz/pt}$

if time allows

mix = mixing time (length of spin lock), typically 30 to 100 ms nt = multiple of 2 minimum, multiple of 4 if time allows

d1 = relaxation delay; set $1-2*T_1$

np = number of points in t_2 , usually want ≥ 1024 since costs nothing but disk space

and gives better resolution in F2

phase = 1,2 is recommended (phase-sensitive acquisition)
trim = optimize by minimizing signal when d2=0 and phase=2

C. TOCSY Acquisition

- prior to final setup, run $\mathbf{ni}=2$ and carefully phase t_2 spectrum
 - then enter **calfa** and reacquire; observe baseline flattening
 - perform integrations on 1st increment if baseline correction is desired
- check that **nt**=multiple of 4 (2 can be used if time is critical)
- check that F1 dig resol \equiv sw1/2ni \leq 12 Hz/pt, desire ~6 Hz/pt if time allows
- check that **p1,p1lvl** are set appropriately (should equal pw, tpwr from 1d ¹H experiment—I will likely change this confusing definition during the DIPSI implementation), and **pw,tpwr** are set to give **pw90** ≥ 20μs
- set window = 2pw (clean-tocsy only), and optimize trim by mp(current exp#+1), phase=2 and d2=0, then choose trim giving minimized signal

D. Calibration

• recalibrate 90° pulses for **p1,p1lvl** and **pw,tpwr** (see ¹H section for instructions) for longer experiments; short/quick experiments can be run with *probe* file calibrations and macro setup

E. Data Workup and Plotting

• same as **dqcosy** (see DQCOSY section for phase-sensitive workup)