VNMR Pulse
Sequences

Programming and Hardware Aspects
Pub. No. 01-999014-00, Rev. A0398

4d)
%
VARIAN



VNMR Pulse Sequences
Programming and Hardware Aspects
Pub. No. 01-999014-00, Rev. A0398

By Rolf Kyburz

rolf@nmr.varian.ch
Varian International AG
Zug/Switzerland

Technical editor: James Welch

Copyright[11996, 1998 by Varian, Inc.

3120 Hansen Way, Palo Alto, California 94304
http://www.varianinc.com

All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in
this document are not intended to create any warranty, expressed or implied.
Specifications and performance characteristics of the software described in this manual
may be changed at any time without notice. Varian reserves the right to make changes in
any products herein to improve reliability, function, or design. Varian does not assume
any liability arising out of the application or use of any product or circuit described
herein; neither does it convey any license under its patent rights nor the rights of others.
Inclusion in this document does not imply that any particular feature is standard on the
instrument.

The rights to use the information provided in this material is retained
by Varian. All material is provided solely for your use under the VNMR
software license and may not be transferred.

UNITYINOVA UNITY plus, UNITY, GEMINI 2000, GLIDEVXR, XL, VNMR, VnmrS,
VnmrX, Vnmrl, VnmrV, VnmrSGIl, MAGICAL, AutoLock, AutoShim, AutoPhase,
limNET, Ultrasnmr, Indirectenmr, Autoenmr, Triplesnmr, MagicAnglesnmr, Protonenmr,
Bioprotonenmr, ASM, and SMS are registered trademarks or trademarks of Varian, Inc.
Sun, SunOS, Suninstall, SPARC, SPARCstation, Sun-3, Sun-4, SunCD, SunView, and
NFS are registered trademarks or trademarks of Sun Microsystems, Inc. and SPARC
International. Oxford is a registered trademark of Oxford Instruments LTD. Ethernet is
a registered trademark of Xerox Corporation. Other product names in this document are
registered trademarks or trademarks of their respective holders.



Overview of Contents

1o P ] Y U 13
0T L1V (o P 13
Yo g (oY (=T [0 g =T o £ PPt 14
Conventions iN ThiS ManUAal.........ccuuuiiiiiiiiin e e e eaaa 14
Chapter 1. OVEIVIEW .......eeeree e e e et e e e e e et e e e et e e e e e e e e e et e e eeeaanns 15
Chapter 2. Sequence Generation: SEQUEN ........ooucurrrrrrieeeraairrrree e e e eneneeeas 17
Chapter 3. Object Library Generation: PSYQEN.........uuvrreeeriiiiirrrreeeeeennninneneees 29
Chapter 4. TIME EVENTS .......uuuuiiiiiiiiiiiiiiiiiiiiitrreereesreasressseesseesseereeeeereeeerrerrerereees 37
Chapter 5. Submit to ACQUISITION: g0 ...oooeiieee i 55
Chapter 6. ACQUISItION PrOCESS.......iiiiiieiiiiii e aneeenreanees 59
Chapter 7. Digital COMPONENTS ........cciviiiiiiii e e et e e e e eaanens 65
Chapter 8. Acquisition CPU and ACOUE...........ccccuiiiiiiieiiiiiiieeeeee e 69
Chapter 9. PUISE PrOgramIMEersS ..........coouiiiiiiiiiieeeiiaiiiieee e 85
Chapter 10. Phase CalCUulations ...............uuuuueriiiiimiiiiiiiiiieiiieiieerreerrerreeee—.—. 95
Chapter 11. Phase TabIES.........oouviiiiiiie ettt 115
Chapter 12. AP BUS TraffiC.....ccooeeiiiiiiiiiii e 137
Chapter 13. Acquisition CPU CommuniCation ............ccoeevvvviireeeeerreeeennennnnnn 145
Chapter 14. Repeating EVENTS ..........ouiiiiiiiiiiiiie e 147
Chapter 15. DECISIONS ....ccivieiieiiieee e 155
Chapter 16. Waveform Generators .........ccccceeeeeeeiieeiic e 163
Chapter 17. Pulsed Field Gradients ..........ccceovieeiiiiiiiiiiiiieeeeeeeeeeeieee e eeeeeeans 199
Chapter 18. ACQUINNG Datal........cccevviiiiiiiiiiiiiiiiie 205
Chapter 19. Multidimensional EXPeriments ...........cccvveeeriieeieeeeeiiiiiin e eeeeeeens 215
Chapter 20. Solid-State NMR EXPErMENtS.........cccceviiiiiiiiiiiieeiiiiiieieeee e 227
Chapter 21. (Micro)imaging EXPeriments ..........cccvvviieieeeiiniiiiiieeeee e 239
Chapter 22. Role of Macros and Parameters.........ccoovvvvvviieiiieeeeeeeeeiiicee e, 241
Chapter 23. Putting It All TOQELNET .......vvviieiiiieiieeeeeeeeeeeeeeeeeeeeeeeee e 255
Chapter 24. Syntax GUIAENINES .......ccooeiiiiiiccicc e 259
Chapter 25. Debugging a Pulse SeqUENCE ..........cccceeeveeeeiiiieiiiiiie e, 265
0 269

01-999014-00 A0398 VNMR Pulse Sequences 3



VNMR Pulse Sequences 01-999014-00 A0398



Table of Contents

D 1Sl F= T 1= PR 13
o111V o] (o PP PP PPPRTN 13
ACKNOWIEAGMENTS oo r e s e e e e e e e e e e e e e eeeeeeeeeeeeerennrns 14
Conventions in ThiS ManUAal  ...coiiveieiiiiceeee e e e e e e e e e e e e aans 14
Chapter 1. OVEIVIEW ......ccvviiiiiiiiiiiiieeeeee ettt 15
1.1 Pulse SequencCe EXECULION  .....cocuuiiiiieiiiiiiiiee et e et e e eieaee e e 15.......
1.2 What to Expect in This Manual .........ccooveeeeiiiiiiii e 16.....
Chapter 2. Sequence Generation: SEOGEN ........cccuvvrrrrreeeriaiiiriereeeee e eanreeees 17
2.1 Modifying the File fOr dPS  .....eveiiiiiiiiiiieeee e 17....
2.2 Running the make Program ... 18......
2.3 Calling the C PreprOCESSOr ovvivieeeeeiieiee ettt e e e e e e e e e e e e e e e e e s e e nnnnnnnes 19......
2.4 Checking Syntax With lint ... 22....
2.5 Compiling and LINKING  ...oeoeeeeiii e e e 24....
Chapter 3. Object Library Generation: PSOgeN .........ccccovvriivviereeeeeeniiiiineeee. 29
3.1 How Are Object Libraries Generated? .......cccccvvviiiiiiieiiiiieeeeee e 29.....
3.2 Adding Changes to the Object Libraries ........cccccoociiiiiiiciiiieeeeee 29.....
3.3 Adding a New Precompiled Object .........ccooociiiiiiiiiiiieccee e 32....
Chapter 4. TiME EVENLS .......uuiiiiiiiiiiiiiiiiieiieteeeteeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeees 37
4.1 HOW DO Delays WOIK? ..ot e e e e 37.....
SIMPIE DEIAYS ...eeeiieiiiiiee e 37....
Delays With HOmospoil PUISE ..........euviiiiiiiiiiiiiieeeeece 38...
Other DEIAYS ...ttt e e 39....
4.2 HOW DO PUISES WOTK? ...ttt 40.....
Pulses on the Observe Channel ... 40......
Simple Pulses on Other RF Channels ... 48.....
Simultaneous Pulses on Different RF Channels ...........cccccoviieiiiinne. 49....
COMPOSItE PUISES ...ttt 50.....
Considerations for the Delays Following the Last Pulse ...................... 50...
4.3 Other State-Related Pulse Sequence Statements .........ccccceeevvveiiiiicnnnns 52........
DIFECE GALING ... eeeeiiieeei ittt e e 52....
IMPICIE GAING ..veeeieeiiiiee e a e 53...
4.4 Basic Purpose of a PUISE SEQUENCE  ......cccevvviiiiiiiiiiiieiecceeeeee e e 53.......
Chapter 5. Submit to ACQUISITION: GO ...cooiiiiiiiiiiieeeeeeeiii e 55
5.1 The TasKS fOF g0  oooiiiiiiiict e aee e e e e e e e e eeeens 55......
5.2 Tasks for the Pulse Sequence Executable ..........cccoooiiiiiiiiiiiiiniie, YA

01-999014-00 A0398 VNMR Pulse Sequences 5



Table of Contents

R U LY 0 To [e o] (= Tolo 1) ISR 58......
Chapter 6. ACQUISITION PTOCESS ......ccoeeeiiiie e 59
6.1 Starting the Acquisition Operating SYSteM  .......ccccccvvevieiiiiieeeeeeeeee e, 59.....
6.2 Queuing and Starting the ACQUISItION  ........cccociiiiiiiieee e 6aQ.....
6.3 DoWNIoading the FID .....cooiiiiiiiiee e 61.....
6.4 CoNtrolliNg ACOPIOC  ..evviiiiiiiieeeee e e e e e e e e e e e e e e e e e e e e annnnns 63.....
Chapter 7. Digital COMPONENTS .....ccooiiiiieieie e 65
AN = 11 g T =T = 1 o P UUUURN 66......
7.2 BUS SHUCLUIES ittt ettt e e e e e e e e e e e eeeeeees 61.......
Chapter 8. Acquisition CPU and ACOUE ..........coouviiiiiiiiiieeieiiiiiieee e 69
8.1 CPU AdAreSS SPACE  .iiiiiiieeeeeeeei i e ee e e ettt e e e e e e e e e e aaa e e e e e s e e e e s s annnnnnnes 69.......
8.2 LoOKING &t ACOE  ..oviiiiiiiiiiiiiieeeee e 69......
Methods of Interpreting the Contents of Acode Files ..............cccceeees 70....
8.3 Structure of Acode FileS .......coooiiiiiiiiiiieeeeeeeeee e
Acode File Header ..........ooovviiiiiiiiiiiiieeeecceeeiiiiee e
LC DAta SIIUCIUIE ......eeiiiiiiieieieeeie e e e e e e 75.....
The AUTOD Data StrUCIUIE .......cooiiiiiiieieiiiiiieeeeseiiieee e eiiieeee e d B
The INStrUCtioN SECHION .....uvviiiiiiiiiiiieeeecee e 79.....
8.4 Acode INtErpretation .........veiieeeeoi e e e e e e e 82......
FIFO FIOW <.ttt e e e e e e ens 82....
Acode Size Limitations, Acode BUFfering .........ccccccvvveeeieeiiiiiieeeennnnnd 83..
Chapter 9. PuUlSe Programmers ..........coooiiiiiiiii e 85
9.1 Layout of the Pulse Programmer ............ccoooiiiiiiiiiiiiiiiecceeeeeee e 85......
9.2 FASE BILS  .oiiieiiiitiii et 88.......
9.3 Timers and TiImer WOrdS .......ccccuuiiiiiiiiiiieeeeccee e 89......
9.4 Problems with Timer Word Errors ... 92.....
9.5 Timer Words and Fast Bits in the ACOde ..........evivieeiiiiiiiiiiniiies 93.....
Chapter 10. Phase Calculations .............cccoeeiiiiii e 95
10.1 How Do Phase Calculations WOrk? .........ooocviiiiiiiiiiiieieee e 95......
THE TOOIS vt e s 95.....
Phase Calculations in the ACOUE ..........ccceevviiiiiiiiiiiee e Q].....
10.2 Case 1: Decoding Phase Calculations .........cccccooiiiiiiiiiiciiee e Q9.......
10.3 Case 2: Creating Phase Math for Given Phase Tables .......ccccccccvveen... 101....
Simple Phase CYCIES ..........uuviiiiiiiiiiiecceeeeeee e 101...
Complex Phase CYCIES .......coviiiiiiiiiiiie e 103...
Phase Cycles for Many PUISES .........ccoocciiiiiiiiiiiiieeeeeeee e 1086...
10.4 Real-Time Logical DECISIONS  .....cciiiiiiiiiiiiiieeiiiiiiie et riieeee e 106..
10.5 Steady-State Phase CyCliNg ....ooovvvviiiiieeeee e 109....

6 VNMR Pulse Sequences 01-999014-00 A0398



Table of Contents

10.6 C Constructs and Phase Calculations ........cccccoocieiieeiniiiiiiee e 110.....
10.7 Why Phase CalculationS? ..........uviiiiiiiiiiiiiieeee e eee e 111....
10.8 Real-Time Random NUMDBErs ........ccccuiiiiiiiiiiieee 112...
Chapter 11. Phase TabIES ......coovvviiiiiiiiiiii 115
11,0 BASIC SYNTAX  .eeiieiiiiiiiiiee ettt e e ettt e e e sttt e e e e e et e e e e e e s anbbaeeeaessenneaees 115....
Shorthand NOTALION ........uvvviiiiiiiii e 116..
AdVANCEd FEAIUIES ... 117...
How Does a Table WOrK? ... l119..
11.2 Inline Phase TableS ......ovviuiiiiiii e 12Q....
11.3 Table MAth ... 121...
11.4 Phase Tables in the ACOUE  ........ooiiiiiiiiiiiii e 122....
11.5 Tables vs. Real-Time Calculations .........ccccoiiiiiiiiiiiiiiiee e 123...
Point-to-Point COMPAIISON ........oeviiiiiiiiiiiiieeiie e 123.
Comparison by EXamPples ........cooooiiiiciiiiiiiiieiiiieeeee e e e e 124..
11.6 Combining the Best of the Two Worlds .......cccccovviiiiiiei i 129..
11.7 Using Tables as Source for Random Numbers ..........cccccccvvvvviveeeneennnn. 135....
Chapter 12. AP BUS TraffiC .......cooooiiiiiii e 137
12. 13 What IS the AP BUS ..ottt 137...
12.2 What Devices are Driven by the AP BUS?  .....coooiiiiiiiiiieiiiiieeee e 139...
12.3 AP Bus Words in the ACOOE  ........ooiiiiiiiiiiiie e 140...
12.4 TimiNg CONSIAEratioNS  .......uveiiiiiiiiiiiieeeee e 141...
Chapter 13. Acquisition CPU Communication ............ccccccceeeeiiiiiinnnn... 145
13.1 Regular Pulse Sequence Communication ...........cccccceevniiieeeeeeeiiinnenns. 145....
13.2 Diagnostics and Error QULPUL  ......ccccciiviiiiiiiiieieeeer e e e e e e e e e ee s ssneeees 146...
Chapter 14. Repeating EVENLS .......oooiiiiiiiiiii e 147
I O o To ] L PSP 147....
14.2 REAI-TIME LOOPS  .evvviiiiiiiiiiiiiiiiieeee e e e e e e e s st r e e e e e e e aaaaaaeaeaeas 148...
14.3 HArdware LOOPS  ...vvveiiiiiiiiiieieieieeeeeeeee e s s s essssssaseeeesneeeeeeeeeeeeaaaeaaeeeeeensnan 150....
(O g T o) (=T o T B = Tor 11 o £ 155
15.1 Decisions and Branchings in C  ..........uuuiiiiiiiiiiiiiiieeeee e 155...
Decisions Set by the status Statement ..............cccoccccviviiiiiiieeeeeeeeen. 159...
Checking Flag Parameters ............cooooiiiiiiiiiiiiiiiiiieeeeeeee e e 160...
15.2 Real-Time DECISIONS  ..ooviiiiiiiiiii e 16Q...
Programming Real-Time DeCISIONS .......cccvveeeeeieeiiiiiiiieiiiineieeeeeee e 160..
Generating the Flag Variable .............cccccoiis 162..
Chapter 16. Waveform GENEIALOIS .........cccvvrriiieeiiiiiiiiieiee e e e e 163
16.1 How Does a Waveform Generator Fit Into the System? .......ccccceeee... 163...

01-999014-00 A0398 VNMR Pulse Sequences 7



Table of Contents

16.2 How Does a Waveform Generator WOrk? ........ccccceeeiiiiiineee e 165...
Sequence of Events in a Waveform Generator .............ccccccvvvvvvvnnnnenn. 167..
How Are Patterns Stored in a Waveform Generator? ............ccccoeueee. 168..
Waveform Generator Instruction Words ...........cccoviiiiieiiinniniiieene s 169.
Waveform Generator Data File ..........cccoooiiiiiiiiiii e 170.
Executing Waveform Generator Patterns ............ccooooeeecvvvvvviineneenen. 172..
16.3 Using Waveform Generators for Shaped Pulses .................coeeiiines 172....
Programming Shaped Pulses: An Example .........ccccccevviiiieeneeninnnnen. 173..
16.4 Using Waveform Generators for Programmed Modulation ................... 177..
Programming Pattern Decoupling and Spinlock Experiments ........... 178.
How Does Pattern Modulation Work Internally? ........cccccccceiiiinnnnnnnn. 183
16.5 What If a Waveform Generator Is Not Available ................ccooccin 189.
Programmed DeCOUPIING ........ocoiiiiiiiiiiiieae i 189..
ShAPEU PUISES ....coiiiiiiiiiieie e 190....
16.6 Using a Waveform Generator for Shaping Gradient Pulses ................. 195...
Chapter 17. Pulsed Field GradientS ..........cccueveiiieiiiiiiiiiiiieeee e 199
17.1 Pulse Sequence Statements for PFG Gradient Control ..........cccccee..... 199....
17.2 Shaping Pulsed Field GradientS ........cccccoeeiiiiiiiiiiciiiiiiieeeecceeee e 202....
17.3 PFG Experiments Using Homospoil Pulses ...........ccccocccvvivivivieeeeeneen, 204...
Chapter 18. ACQUINNG Data .........ccceeiiiiiiiiiiiiiieeeeeii e 205
18.1 IMPIICIt ACQUISITION  ..eeeeiieeiiiieeeeee e e e e e e e e 205.
18.2 EXPlICIt ACQUISITION  ..eeiiieeiiiiiieee et 208.
18.3 MUIti-FID SEQUENCES  ...ueveiiiiiiiiiiiieeeie et e e e e e e e e e e e e e e e e e e 209...
18.4 Receiver Phase Shifting ... 210....
Detection of NMR SIgNalS .......ccovviiiiiiieeieiiie e 210.
Quadrature Receiver Phase Shifts .........ccccciiiiiiiiiiiiiieeeeea, 212...
Small Angle Receiver Phase Shifting ...........cccccoeiiiiiiiiiiieeee 213.
18.5 Housekeeping DElaysS .......cccuuiiiiiiiiiiiiiiieee e 214....
Chapter 19. Multidimensional EXpPeriments ..........cccccovviiiiiiiieeeeniiiiiieeeeen. 215
19.1 Indirect Time Domain Incrementation ..........cccccovvviiiieeeiiniiiee e 215..
19.2 nD Quadrature DeteCtion .........ccoooiiiiiiiiiiiee e 217...
Absolute Value ND EXPENMENTS .......ceeiiiiiiiiiiieieieieiiiieisiiviveeeeeeee 217.
Phase-Sensitive nD Experiments: States/Haberkorn/Ruben ............. 217...
Axial Peak Displacement (FAD) ......cccccviiiiiiiieeeiieieeeee e eessssennnnns 219
Phase-Sensitive nD Experiments: TPPI .......ccccccoiiiiiiiiieiiiiiiieeeee 219..
Phase-Sensitive nD Experiments: Arrayed TPPI ..........ocooviiiiiiiiiennee. 220..
Folding in Indirect DIMENSIONS .........ccooviiiiiiiiiiiireeeer e 221
Combined Implementations .............cccccciiiiiiiiiiier e 222..
Coherence Selection through Gradients ..........cccccceeriiiiiiiiie e, 225...

8 VNMR Pulse Sequences 01-999014-00 A0398



Table of Contents

Chapter 20. Solid-State NMR EXPeriments ..........cooeeeeiieeieeiiiesceecceeeeeees 227
20.1 Cross-Polarization MAS EXPeriments ........ccccccvveeveiiiiieeeeeeeeeeieeeeseieans 227..
AP Bus Events in CP/MAS EXPEriments .......ccccceeviriiiieeeeniiiiineaeans 2217.
Using a Waveform Generator in CP/MAS Experiments ...........ccce..... 228.
20.2 Sideband Suppression in MAS EXPeriments .........cccccceeeeviiiieeeeeeninne 230...
20.3 ROtOr SYNChronization ...........ccoocciiiiiiiiiiieeee e 233...
Measuring the Rotor Period Duration ...............cccooeccciviiiviiiiiieeeeeee, 233.
Waliting fOr THQQEIS ...uveeiiiie e 234.
Rotor-Synchronized EXPeriments ..........cccoviveeiiieiiniiiieiie e 235..
20.4 Multipulse EXPEIMENLS  ...cccueiiiiiiiiiiieeiiee e ee e 235...
20.5 Other Line-Narrowing TEChNIQUES  ......cooocciiiiiiiiiieieeeeeee e e e 236...
Chapter 21. (Micro)imaging EXperiments ........ccccovvvviiiveveiiiiiinnneeeeeeeeeenninnnn, 239
Chapter 22. Role of Macros and Parameters ........ccccccvvevveevveeeeeeeeeeeeeeeeeneen, 241
22.1 Creating New Parameters in VNMR ... 242..
22.2 Using New Parameters in C .......cooooiiiiiniiiiiiiiieceeee e e e e e e e e 2486....
NUMEFC PArameters .........ooiiiiiiiiiii it 246...
StriNG Parameters .........uvvviiiiiiiiiiiieeeeeee e 246...
22.3 Adding New Parameters to the Display ......cccccoiiiiiiiiiiniiiiiiiee e 241...
22.4 D0oING It Al DY MACIO  ..oiiiiiiiiiiieee ettt 248.
Macros for 1D PulSe SEQUENCES ........cccoiiiiiiiiieiiiiiiiieee e 248...
Macros for 2D Pulse SEQUENCES ...........ccccceciiviiiiiiiiiieeeeree e e e ae e e 251...
22.5 Switching Between Similar SEQUENCES  .......vviiiiiiiiiiiiiiirieeeeeeeeeeeee e 252...
Chapter 23. Putting It All Together ..o 255
23.1 Starting @ NEW SEQUENCE  .....eeuiiiieeiiiiiiie e eiiiiee et ee e e ee e s 255....
Programming by Modifying an Existing Pulse Sequence .................. 255.
Programming by the Top-Down Approach ..............ccoeeveeeccivvivvvnnnnnen. 255.
23.2 Testing a Sequence and Related FileS .......ceeiiiiiiieiiiiicecceee e, 256.....
23.3 Submitting a Pulse Sequence to the User Library .........cccccccvvvvvvvnnnnnen. 257....
Chapter 24. SyntaxX GUIAEIINES ........coooiiiiiiiiiiiiiee e 259
24.1 GeNeral C SYNTAX ..oooiieiiiicciciiiieirie e e e e e e e e e e e e e e e e s s s e s s enneenreeeaeeeeees 259....
COMMENTS ..ottt r e e e e e e e e aaaeeeaeeeeens 259...
190 [T g1 ¢= L1 To] o KPS PO 259..
VariabIES ..o ——— 260..
24.2 Outdated PSG ULIItIES  ...oooeeieieiieeee e 260...
DeVICe AAIrESSES .......cccecitteee e 260...
Functions with Device AdAreSSES ........ccvviveeeiiiiiiiieee e 261..
Replacing power and pwrf Statements .........c.occceieiiiiiiiiiie e, 262..
C Constructs for Phase-Sensitive ND NMR ..........cccccoiiiiiiiiiiiiin, 263..
24.3 General ConsiderationS  .........eeeieiiiiiiiiiie e 263....
MUItiPUrPOSE SEQUENCES ......eviiiiiiiiiiiiiie ettt 263...

01-999014-00 A0398 VNMR Pulse Sequences 9



Table of Contents

USING APS ittt e e ettt e e e st ae e e e e e e nneneeaeean 263..
Chapter 25. Debugging a Pulse Sequence ........cccccccccvvveiieiiiiieeeeee, 265
25.1 Debugging the Parameters ......cccccccveeeeiiii e 266....
25.2 Debugging the SOftWAre ..........viiiiieieeeie e 266...
25.3 Debugging the Hardware .........c..ooiiiiiiiiiii e 267...
10 = PP PUPRTPPPPRRN 269

10 VNMR Pulse Sequences 01-999014-00 A0398



List of Figures

Figure 1.Stages of pulse SeqUENCE EXECULION........cccciiiuiiiiieeaiiiiiiie e 16
Figure 2.Compiling from thamake ULility ..........ccceevieiiiiiiiii e 19
Figure 3.Diagram of thepp program andhclude files........cccccoeviiieiiiniinne, 20
Figure 4.Thelint  ChECK .....uuuiiiiiieiiiieee e 24
Figure 5.Compiling and linking to form an executable program ............cccccoecvveeee.. 25
Figure 6.Events associated with tpeggen shell SCript .........cccvvvviiiiieiinnennn, 30
Figure 7.Timing diagram with transmitter, receiver, and transmitter phase.............. 42
Figure 8.Switching mode for receiving an NMR signal................ccccccccviviviiiennnn.n. 43
Figure 9.Maximum power directed into the probe ...........ccccceiiiiis 43
Figure 10.Timing diagram in “real life” ... 44
Figure 11 Phase shifting on UNITYUS SYStEMS........uueiiiiiiiiiiiiieee e 46
Figure 12 Phase shifting on systems prior to UNIMS..........cccoeeeeeiiiiiiiiiiiiinnns 46
Figure 13 FIEr delay..........ooiii i 51
Figure 14 Block diagram for a pulsSe programmer..........cceeeeeeiiiiieeee e 53
Figure 15 Processes surrounding e command............cccceoviiiiieeeiiiiiiiiee e 55
Figure 16 Acquisition control BYACOPIOC .....cvvvvvviiieieeiieeec e 60
Figure 17 Digital components of @& SPeCtrOMEter.........ccoviiiiiiiiiiieiiiiieee e 65
Figure 18.Structure of the pulse programmer.............cvveiiiiiiiiiee e 85
Figure 19.UNITY pluswaveform generator CirCUItry ..........ccccevieuvieeeeeiiniiiieeeeeeee 164
Figure 20 UNITY programmable pulse modulator CirCUitry..........ccccceeeeeeeeiiiieinnne 165
Figure 21 Waveform generator DOArd ..............oeeeeiiiiiiiiieeiiiiiiee e 166
Figure 22 Detection of NMR SIQNaAIS........cccoiiiiimiiiiiiiiiiiiee e 210

01-999014-00 A0398 VNMR Pulse Sequences 11



List of Tables

Table 1.Pulse programmer CharaCteriStiCS ........ccccvrvrriiiiieiiiiiieee e 87
Table 2.Fast bit assignments, output boards and acquisition control boards ........... 88
Table 3.Fast-bit assignments on pulse sequence control boards ............cccccceeens 90
Table 4.Single- and double-precision timer word characteristics ....................c..... 92
Table 5.Single- and double-precision timer word characteristics, output boards .... 92
Table 6.Real-time math OPErators ..o 96
Table 7.Predefined AP bus delay constants. ........cccccooiiiieeiiiiiiinie e 142
Table 8.PSG hardware flag and configuration variables .....................cccoeiiiininnnns 156
Table 9.Waveform generator inStruction WOrds ..............oooevvceiiiiiiiiiieiireeeeeeeeeeen 169
Table 10.Waveform generator gate control for pulse shapes ...........cccccooviiieeiiennne 174
Table 11.Comparison of waveform generator pattern words ...........cccccoeevivveeernnn. 196
Table 12 Dealing with real and imaginary signal components ..............ccccccceeeene 213
Table 13.VNMR acquisition parameters used fd@ experiments .............ccccee.... 215
Table 14 Variables used in ND pulSe SEQUENCES ........c.eevveeiiiiiiiiieeiiiiiee e 215
Table 15VNMR parameter types and Propertie ..........cccevieeeieeeeiiciieeee e 242
Table 16 Predefined, indirect parameter limits ..............coooeeiiiiiiiiiieceee e, 244
Table 17 RF channel naming CONVENLION ............euuuiiiiiiiiiiieeeeeeeeieeess e 261
Table 18 Equivalent PSG functions with and without device address .................. 261

01-999014-00 A0398 VNMR Pulse Sequences 12



Disclaimer

The information in this manual is intended to assist users in topics
beyond the normal NMR spectrometer system hardware and software
support provided by Varian. Some of this information is provided on an
as-is basis, and Varian support and service personnel may be unable to
answer questions related to information given in this manual.

Foreword

The main purpose of this manual is to complement the contents of the MaR MR

User Programmingpy providing comprehensive information on #rgire  subject

of pulse sequence programming and execution as well as spectrometer control, trying
to open up “black boxes” or “white spots” that might exist in a user’s vision of a
UNITY plus, UNITY, or VXR-S spectrometer. No attempt was made to describe all
pulse sequence functions in detail—many of them will not even be mentioned here, but
are covered by the manuaNMR User Programming

Not all of the sections are equally important for the pulse sequence programmer. Most
certainly it is possible to write correct pulse sequences without having access to the
material presented here. It is the author’s firm belief, however, that somebody who has
more background knowledge on pulse sequence and spectrometer internals (as
presented in this manual) will be more efficient and will less likely get stuck with the
guestion of “How do | implement this on my spectrometer?”.

The chapters oseqgen andpsggen (chapters 2 and 3) are mainly written for people

that want to learn about the programming internals of a pulse sequence, or for users that
want to implement changes or new features in the pulse sequence overhead; sections
that deal with Acode can be skipped by those who are not interested.

The material was originally written as documentation for the pulse sequence
programming part of the Varian courses for users of Varian VXR-S, UNITY, and
UNITY plusNMR spectrometers using VNMR software. Any input that would help
improve this manual is very welcome.

Note that the specifics of tHe™YINOVA arenot discussed—this will be covered in a
future version of the manual. However, apart from some differences in the digital
hardware, the basic concepts shown in this material are still valid also on the
UNTYINOVA (see also the note below on software compatibility).

The present version of this manual specifically refers to VNMR version 5.1 and is
partly inconsistent with earlier and later VNMR releases (in particular, the Acode
structure for theNTYINOVAis different, and thapdecode software mentioned in this
manual will not work on the VNMR 5.2 software release). Most Acode printouts have
been generated under VNMR 4.3 and are slightly different from Acode printouts
obtained withapdecode under VNMR 5.1.

Rolf Kyburz
Varian International AG, Zug/Switzerland
February 1996

01-999014-00 A0398 VNMR Pulse Sequences 13



Acknowledgments

The author would like to thank his colleagues for their thorough proofreading,
suggestions, and helpful discussions, as well as the Varian service personnel for
withstanding the author’s endless questions on the subject of this manual. In particular,
Andy Myles (service supervisor in Darmstadt) has been extremely helpful in providing
technical information.

Conventions in This Manual

The following notational conventions are used throughout all VNMR manuals:

¢ Typewriter-like characters are used to represent UNIX or VNMR commands,
parameters, directories, and file names in the text of the manual; for example:

Theshutdown command is in théetc directory.

» Typewriter-like characters are also used for text displayed on the screen, including
the text echoed on the screen as you enter commands; for example:

Self test completed successfully.

« |talicized typewriter-like characters are used for text displayed on the screen that
is not the same every time; for example,

Abort at some_address

means the value ofsome_address " depends upon when the abort command is
made—what you might see on the screen is a message like this:

Abort at 47F82

» Special characters are used for keys on the keyboard and menu buttons on the
screen; for example,

Press th&eturn key or select th®isplay button

« Text shown between angled brackets in a syntax entry is optional. For example, if
the syntax iseqggen s2pul<.c> , entering the .t ” suffix is optional, and
typing seqgen s2pul.c orseqgen s2pul s functionally the same.

« Lines of text containing command syntax, examples of statements, source code,
and similar material are often too long to fit the width of the page. To show that a
line of text had to be broken to fit into the manual, the line is cut at a convenient
point (such as at a comma near the right edge of the column), a backsl&ksis (“
inserted at the cut, and the line is continued as the next line of text. This notation
will be familiar to C programmers. Note that the backslash is not part of the line
and, except for C source code, should not be typed when entering the line.

« Because pressing tiReturn key is required at the end of almost every command
or line of text you type on the keyboard, use ofRbairn key will be mentioned
only in cases where it isotused. This convention avoids repeating the instruction
“press theReturn key” throughout most of this manual.

14 VNMR Pulse Sequences 01-999014-00 A0398



chapter 1. Overview

This manual discusses the underlying functionality of the generation and execution of
pulse sequences under VNMR. The idea is to provide the advanced pulse sequence
programmer with a comprehensive insight into all aspects of pulse sequence
generation. With better understanding, avoiding mistakes and writing more efficient
pulse sequences should be possible, while at the same time moving towards more
complex experiments.

1.1 Pulse Sequence Execution

Before going into details, let us review the various stages of pulse sequence generation
and execution (se€€igure J:

® At the center of pulse sequence execution is the comgmnahich executes a
compiled pulse sequence framglib , based on parameters from the current
experiment and system configuration parametensnf/conpar ). If external
phase tables are used, these are retrievedtblib , and pulse shapes or other
waveform generator patterns are retrieved febiapelib . go stores its output
(Acode, the data that result from executing the filgeifib ) in the directory
/vnmr/acqqueue

® Beforego can be called, the parameters in the current experiment must be
prepared. This is usually done by calling a macro (fneanlib ) with the name
of the pulse sequence. This macro creates the necessary new parameters, usually
from a library parlib ) with pulse sequence specific parameters, and it usually
displays a text file with information about the pulse sequence.

® Beforego can execute the pulse sequence filedglib , the pulse sequence file
in psglib  must be compiled using the commasetigen . This requires various
files and libraries in a directopsg . seqgen itself internally is a complicated,
multi-stage process, while for the user it looks like a simple command.

* The libraries of precompiled files required $a&ggen have to be created first.
This is done using a commapsiggen , which again involves numerous source
and header files in the directgryg . This step is normally not necessary for the
user, because a complete sepsy libraries is part of the standard distribution
tape.

® Once the pulse sequence fileseylib has been successfully executed, the
programAcqproc takes the Acode frovnmr/acqqueue , transmits it via
SCSI bus to the acquisition CPU (via the HAL, the Host-to-Acquisition Link),
monitors the acquisition, stores the experimental data in the appropriate FID file
within the experiment from which the acquisition has been started, and notifies
VNMR at specific points in the acquisition (error condition, block size, and
number of transients or entire experiment completed).

® |n the acquisition CPU, the Acode is executed (interpreted), which results in
information being fed into the pulse programmer or directly into the spectrometer
that interacts with the magnet and the probe.

01-999014-00 A0398 VNMR Pulse Sequences 15



Chapter 1. Overview

® The pulse programmer board controls almost all of the spectrometer (rf channels,
waveform generators, frequency synthesis, receiver chain), including the analog-
to-digital converter (ADC), which produces a new FID that is transferred to the
sum-to-memory board (STM), which adds the current FID to the previous data in
the HAL memory, from wher@cqgproc retrieves the final (or preliminary) FID
onto the Sun memory (and disk).

parlib/cosy.par manual/cosy psg/*.[chp] psg/libpsglib.a
parameter: manual file psg sourcef—»( psggen }»{ other precom-|
| piled modules

maclib/cosy psglib/cosy.c

macro, sequence sourge seqgen cos

expn/curpar conpar tablib/cosy shapelib/* seqlib/cosy
local global | phase table:i; | shapes / patterh sequence
parameter: parameters executable

/vnmr/acqqueue/expn.username.proclD.Code

expn/acqfil/fid
FID

SCSI driver

A

HAL / Spectromete Probe & Sample

Acquisition CPU
A

Pulse
Programmer

STM | ADC

Figure 1. Stages of pulse sequence execution

1.2 What to Expect in This Manual

In the following chapters, every single step in the above process is discussed in detalil,
starting with pulse sequence generation anghtiygen step, continuing witlyo, then
looking into the things that happen in the acquisition CPU and the spectrometer, while
continuously adding knowledge about pulse sequence statements (sometimes also
called elements or functions in VNMR documentation).

In the end, we will come back to the “origin” and discuss how the front end for the user
(the user interface of a pulse sequence) is constructed.

16 VNMR Pulse Sequences 01-999014-00 A0398



chapter 2. Sequence Generation: seqgen

The central step in the creation of a new pulse sequence is the compilation of the pulse
sequence source code, which results in an executable file (with the name of the pulse
sequence iseqglib , the library for compiled pulse sequences).

2.1 Modifying the File for dps

The VNMR commandeqgen calls a UNIX shell scriptvnmr/bin/seqgen with
the same argument (the name of the pulse sequence with or withextension).
seqgen can also be called from a UNIX environment:

seqgen sequencename<.c>

The UNIX file /vnmr/bin/seqgen is a lengthy shell script that first checks for all
the files that are necessary for a successful compilation, then it checks for the presence
of a programivnmr/bin/dps_ps_gen . If this program is found, it is executed:

dps_ps_gen seqgencename.c $SHOME/vnmrsys/psglib 2

This results in a new filsequencenamedps.c  (the name of the pulse sequence
source file withdps inserted between the extension and the body of the name:

psglib/cosy.c

sequence sourﬂe

(squen cosy >—><dps_ps"_gen )
"

Y
| intermediate sourcle

psglib/cosydps.c

The newdps -modified file contains both the original text of the pulse sequence in the
first part, plus a new, second part for tiygss command, which graphically displays the
pulse sequence (enclosedfifndef LINT . ..#endif ,suchthatint (the syntax
checker) does not “look” at this part of the file):

#include <standard.h>

pulsesequence()

{
[* equilibrium period */
status(A);
hsdelay(dl);

[* tau delay */
status(B);
pulse(pl, zero);
hsdelay(d2);

01-999014-00 A0398 VNMR Pulse Sequences 17



Chapter 2. Sequence Generation: seqgen

* observe period */

status(C);
pulse(pw,oph);
}
#ifndef LINT

extern FILE *dpsdata;

X_pulsesequence()

{
fprintf(dpsdata, "\n status A %f ",pw);
fprintf(dpsdata, " D_d1  %.9f", d1);

fprintf(dpsdata, "\n status B %f ",pw);
fprintf(dpsdata, " P_pl %.9f", p1);
fprintf(dpsdata, " D_d2 %.9f", d2);

fprintf(dpsdata, "\n status C %f ",pw);
fprintf(dpsdata, " P_pw  %.9f ", pw);
}

#endif

The second part of thdps -modified file contains all functions of the first part,
prepended withX_" (e.g.,x_pulsesequence() instead opulsesequence() ).
Comment is removed, and internal functions (pulse, delay, etc.) are replaced by
functions that print some symbolic text into a temporary text file¢xp/dpsdata
referenced here atpsdata ). The VNMRdps command then decodes this text file.
The internal structure and functionality of this text file will not be discussed any further
here—this is beyond the scope of this manual.

If there was any C errors in the pulse sequence, such errors very likely would be
propagated into the second part, leading to an increased number of error messages
(despite the fact that the second part is “hidden ftiotn " through#ifndef LINT
and#endif ). Forthisreasorseqgen recompiles the pulse sequeneighoutthedps
modifications upon detection of errors with the compilation ofiftee-modified file.

2.2 Running the make Program

All subsequent steps are performed usitadgke, a UNIX program that facilitates the
compilation of complex objects and also checks on the modification date of the files
involved.make avoids an unnecessary compilation if an up-to-date executable already
exists (se€hapter 3, “Object Library Generation: psggen,” on pagendéke then

callscpp (the C preprocessotint  (syntax checking), anct (the C compiler and

linker). If, at any of these stages, error messages are produced, the messages are stored
in a separate filerrmsg , which is displayed bgeggen at the end of the operation.

Themake program takes its instructions frdemmr/acgbin/seqgenmake ,a

special “make file.” If at the end of the entire process an executable is obtained, the
dps part of the name is removed by teggen script and the executable pulse
sequence is stored $eqlib . Figure 2is a diagram of themake process.

18 VNMR Pulse Sequences 01-999014-00 A0398



2.3 Calling the C Preprocessor

acgbin/seqgenmake

makefile psglib/cosydps.c
Y

cpp intermediate sourcF

make

psglib/cosydps.i

preprocessed sourFe

error message
psglib/cosydps.o

object file

seglib/cosydps

linked executabl

psglib/errmsg

psg/libpsglib.a

psg/libparam.a

Figure 2. Compiling from themake utility

2.3 Calling the C Preprocessor

Compiling a C program always involves first a call to the C preprocessor, which has
the task of removing comments and resolving all the preprocessor statements in the C
code. The C preprocesstpp (orcc -P ) is normally invoked implicitly as part of the

cc command, and its output is directly fed into the next stage of the compilation. For
thelint  syntax check, however, the C preprocessor is called explicitly:

cc -P -DLINT -I$SHOME/vnmrsys/psg -l/lvnmr/psg sequencename.c

This generates a figequencename.i , which is then subjected to thet check.
The optionDLINT defines the preprocessor variabldT (i.e., we are explicitly
including source sections betwesifdef LINT ~ and#endif , and explicitly
excludingparts betwee#ifndef LINT ~ and#endif) . The-l options specify the
path(s) to VNMR-specifilnclude files.

The major task for the C preprocessor is the resolutitnciide statements,

macros, and constants. In a first step,ittefude  statements have to be identified and
replaced with the contents of the file they indicate. Every C program has at least one
include statement:

#include <stdio.h>

This statement incorporates the filer/include/stdio.h . VNMR pulse
sequences usually also have a singteide  statement:

#include <standard.h>

This statement incorporates the filamr/psg/standard.h (or the file
$HOME/vnmrsys/psg/standard.h , both paths are specified in the call to
cc -P ), andstandard.h  is mostly a collection of furtheénclude statements.

The prograntpp recursively resolves all these lines, until no otimefude  lines are
found.Figure 3is a diagram of thepp program incorporating thieclude files.

The firstinclude file from /vnmr/psg/standard.h isstdio.h  (as forany C
program). All otheinclude files copc.h , acqparms.h ,rfconsth
aptable.h , power.h , macros.h , andapdelay.h ) are from thepsg directory,

01-999014-00 A0398 VNMR Pulse Sequences 19



Chapter 2. Sequence Generation: seqgen

lusr/include/stdio.h lusr/sys/sysitypes.h

psglib/cosydps.c | | |

#inclt%%zile <standard.h> psgloopc.h /
#include <sys/types.h>

psg/standard.h /
#include <stdio.h> / psg/acgparms.h
#include “oopc.h” i h
#include “acgparms.h” - psg/riconst.

|precompiled sourc{e Hinclude “reapatfls

; “ ” ~ /aptable.h
; : #include “aptable.h Psg
psglib/cosydps.i #include “power.h” ~ psg/power.h
#include “macros.n”
#include “apdelay.h” AN psg/macros.h

\ psg/apdelay.h

Figure 3. Diagram of thepp program andhclude files

either in/'vnmr or in SBHOME/vnmrsys . The fileoopc.h calls for anotheinclude
file namedusr/kvm/sys/sys/types.h

The purpose of all thiaclude files is two-fold:

* To declare external definitions for functions and variables that are defined (or
initialized) in another source module (which is precompiled and will simply be
linked from an object library).

* To resolve constants and macros. These are pure preprocessor functions and must
be resolved before the compiler can be called. These further modify the pulse
sequence text for the C compiler (which doesn’t understand constants or macros).

Most of theinclude files for pulse sequences deal with external declarations of
functions and variables, or with the definition of constants. Macros are defined in the
include file psg/macros.h  (macros are just a more sophisticated type of
constant). Because at least some of thiedade files contain information that can

be very helpful to pulse sequence programmers, they are briefly discussed here:

® stdio.h  defines the I/O functions for C. Nearly all C programs include
stdio.h

® psg/oopc.h  defines some message structures and all the constants required in
connection with general (object-oriented) routines @iké’ulse andG_Delay ,
which are described in the man¥®MR User Programming

® psg/acgparms.h  defines all (externally declared and initialized) variables
related to acquisition parametepsy p1, d1, d2, d3, d4, etc.), externally defined
code addressest(, oph, zero , one, two , three ,v1,v2,v3, etc.) and objects
(mostly structures), and the indices for the various rf channels.

® psg/rfconst.h defines constants suchEBRUEandFALSE, fast bit offsets
(hexadecimal constants) for the fast bits in VXR/UNIT- style output boards and
acquisition control boards, device addres3&DEYDODE\etc.), status field
constant®\ (=0) toZ (=25), and a few others.

20 VNMR Pulse Sequences 01-999014-00 A0398



2.3 Calling the C Preprocessor

® psg/aptable.h defines constants and structures used in connection with tables,
including the (externally defined) table addres$e$o t60 .

® psg/power.h  defines a few constants used in connection witlGtHeower
general power statement, described in the mariN8R User Programming.

® psg/macros.h  defines constants used specifically with macros as well as all the
macros used in pulse sequences. Most of the statements used in pulse sequences
are actually macros that are converted into very few general statements such as
G_Pulse andG_Delay .

® psg/apdelay.h  defines constants (macro functions in reality) that specify the
implicit delays involved with AP bus statements. Whenever possible, these delay
constants (e.gPOWER_DELASAPS_ DELAYOFFSET_DELAYshould be used
instead of direct numeric values (e#,95e-6 ) in pulse sequences.

The reason why there are many differeciude files is that specific parts of the
“overhead” defined in these files are used by various other source modules as well, and
the “packaging” is defined by the needs of these other source modules. If there was
only one source module (the pulse sequence itself), there would probably be a single
include (“header”) file.

Macros are a special kind of constant that allow for arguments. Let’s take the definition
of decpulse (from psg/macros.h ) as an example:

#define decpulse(DECch,phaseptr) \
G_Pulse(PULSE_DEVICE, DECch, \
PULSE_WIDTH, length, \
PULSE_PHASE, phaseptr, \
PULSE_PRE_ROFF, 0.0, \
PULSE_POST_ROFF, 0.0, \
0)

The two arguments to thiecpulse statement become arguments 4 and 6 of the
G_Pulse statement; the other arguments in the general statement are determined by
the macro name.

The C preprocessor dramaticallychanges the text of the original pulse sequence file,
primarily by replacingnclude lines by the text of thimclude files (and

recursively substituting text fanclude lines contained therein). The text of the

pulse sequence function itself is different after the substitution of macros and constants
(apart from the elimination of comment lines). Look at the simplsesequence

function of a S2PUL (standard two-pulse) pulse sequence:

pulsesequence()

{
[* equilibrium period */
status(A);
hsdelay(d1);

[* tau delay */
status(B);
pulse(pl, zero);
hsdelay(d2);

[* observe period */

status(C);
pulse(pw,oph);

01-999014-00 A0398 VNMR Pulse Sequences 21



Chapter 2. Sequence Generation: seqgen

After the constants, B, andChave been substituted, and the pulse macros have been
replaced by the correspondi@g Pulse calls, the function consists of the following
lines (the blank lines that result from the elimination of comments have been removed):

pulsesequence()

{

status(0);

hsdelay(dl);

status(1);

G_Pulse(1, p1, 5, zero, 0);

hsdelay(d2);

status(2);

G_Pulse(1, pw, 5, oph, 0);
}

Note that the constants within the argument§tdPulse have been replaced by their
numeric values: the result of the C preprocessor is not meant to be read by humans but
rather adjusted for the C compiler. What is left are pure C control structures, function
names, variables, and (numeric or string) constants. Remember that C knows symbolic
constants only through preprocessor definitions.

The C preprocessor includes another useful feature that was briefly mentioned earlier
in this chapter: conditional compilation. Based on the definition of a (preprocessor)
variable, certain sections of a source file can be specifically excluded or included. This
feature is used extensively in the “overhead” to pulse sequencesh@eer 3,

“Object Library Generation: psggen,” on pagé.28 pulse sequences, this feature is
only used to hide things frotimt , which would otherwise lead to an error message:
#ifndef LINT

static char SCCSid[] = "@(#)cosy.c 3.1...";
#endif

The second line would normally cause an error messagelinom, because the array
variableSCCSid is defined but not used (see below). Such preprocessor flags can
either be defined in the file itselflefine LINT ; note that this definition has a name,
but no value) or through an argumeiifagname ) with the preprocessor or the C
compiler call, for example:

cc -P -DLINT -I$HOME/vnmrsys/psg -l/vnmr/psg sequencename.c

2.4 Checking Syntax with lint

One of the drawbacks of the C programming language is the fact that its compiler has
little error detection. The compiler only finds some very coarse syntactical errors, such
as a mismatch in the parentheses or braces, and eventually also missing semicolons.
Anything more subtle—such as a variable type mismatch, the use of uninitialized (or
even undefined) variables, a mismatch in the number of arguments to a function, etc.—
remains undetected by the compiler itself. With all the syntactical traps and pitfalls
(e.g., usingkinstead o&&, or| instead of| makes perfect sense in C), this weakness
could make it a very difficult language for occasional pulse sequence programmers.
Fortunately, there iknt , the C syntax checker.

The prograniint can be called on any C source progrkm. usually makes lots

of output covering two aspects: definite errors and possible errors (the latter includes
warnings about the possibility of exceeding the limits on arrays, if using an array).
Error detection is not a problem witht —it’s rather that often the output is

22 VNMR Pulse Sequences 01-999014-00 A0398



2.4 Checking Syntax with lint

overwhelming. For that reason, in checking pulse sequelines, is called with some
of its checking features turned off (e.g., optiems-u , -v , -z ; seeman lint ).

Like cc, lint  first calls the C preprocessgpp to resolve preprocessor statements
(definitions, macros, and conditional sections). In the case of pulse sequences, this step
would have the undesirable effect that the original macro syntax would be lost (and
with it possibly errors in the arguments to macros) because macros would be resolved
to object-oriented function calls, where argument type-checking is nearly impossible
(at thelint  level). For this reason, most of the fileg/macros.h s divided into

two sections—one for the normal compilatigtif@def LINT ) and the other for the

lint passfelse ..#endif ). Thelint versionis generated in an explicit call to the

C preprocessor:

cc -P -DLINT -l/vnmr/psg -ISHOME/vnmrsys/psg sequencename.c

Thelint  part ofpsg/macros.h  does not resolve the macros into their C function
equivalents. It simply changes the macro name from lower to upper case (leaving the
arguments intact), while constants are still replaced. The simplified S2PUL pulse
sequence above would then look as follows in the correspos@ingi  file:

pulsesequence()

{
status(0);

hsdelay(dl);

status(1);

PULSE(p1, zero);

hsdelay(d2);

status(2);

PULSE(pw, oph);
}

Subsequenthiint  checks the syntax in this version of the file, and it “knows” the
argument number and types for all the uppercase “pseudo functions.”

How doedint  know about syntax rules and, in particular, the syntax and types for
externally defined functions and variables? The secret is a special library that is
involved automatically with everint  call. For simple, standard C programs, this
library is the file/ust/lib/lint/llib-Ic.In . This file is used automatically
unless a specific rules file is specified with line  call. For VNMR, a dedicated

library file psg/llib-lpsg.In has been created with a spedial  call, using the

-C option:

lint -a -n -z -DLINT -Cpsg lintfile.c

The file lintfile.c contains all the pulse sequence functions that are checked and
all the externally defined variables and addresses. Different from the real functions, the

functions in lintfile.c have a null body{§ ). On the other hand, these functions
have the same (complete) argument type declarations as their real equivalents.

As an example, let's take thist  definition of thergpulse statement:

RGPULSE(pulsewidth, phaseptr, rx1, rx2)
double pulsewidth, rx1, rx2; codeint phasptr; { }

01-999014-00 A0398 VNMR Pulse Sequences 23



Chapter 2. Sequence Generation: seqgen

For thelint  checkJlint is called with all the preprocessor options (even though it
actually operates on the preprocessedsBlpuencenamedps.i  ):
lint-a-c -h-u-z-v-n-DLINT

-ISHOME/vnmrsys/psg \

-llvnmr/psg sequencenamedps.i \
Ivnmr/psgl/llib-lpsg.In >> errmsg

The output of théint  check is fed into the error message lemsg (seeFigure 4.

psglib/cosydps.c

(seqgen cosy ) | modified source file*

psg/lintfile.c

preprocessed sour{:e |Iint source|
psglib/cosydps.i

lint library

psglib/errmsg psg/llib-Ipsg.In

error messages

Figure 4. Thelint check

Of course, VNMR is delivered withsg/llib-lpsg.In , a completdint library

file. There seldom should be a need for a user to re-create this library file—perhaps
only if somebody creates a new external function and wants to have it checked by
lint . Note that unlike other files involved in pulse sequence generatidimtthe

library file mustreside infvnmr/psg  unless thenake file seqgenmake is modified

for a local file.

Error messages and warnings from  are added to the error messagesditensg .

The compilation does not stop upon error messages from the C preprocessor or the
lint step; such messages are taken as warnings only and in the end lead to a message
from seqgen : “Pulse sequence did compile, but may not function properly . . ."

2.5 Compiling and Linking

Once the syntax of the pulse sequence is checkalle proceeds to the compilation,
which is done in two steps: first, the pulse sequence module is compiled and, second,
the resulting object module is linked with other precompiled modules to form an
executable program (s€egure 5.

The actual pulse sequence compilation is don@dike with the commandc -¢

which calls the C preprocessor implicitly. This time, of course,-INT option is

not specified, such that macros are resolved into the proper C functions. Also, sections
that were skipped for thiint  pass because they would lead to error messages, such
as the definition of th€CCSid string (see above), are now included.

24 VNMR Pulse Sequences 01-999014-00 A0398



2.5 Compiling and Linking

psglib/cosydps.c {usrllib/libm.a
(seqgen cosy ) | modified source fi|(1

Y

object library

psglib/cosydps.o psg/libpsglib.a

object library

psg/libparam.a

error messagegs

. > >
psgliblerrmsg \ ¥ Psgito

Y ]
| executable sequen+e = |

seqlib/cosydps object modules

object library

Figure 5. Compiling and linking to form an executable program

The compilation is performed with the following command string:
cc -O -ISHOME/vnmrsys/psg -l/vnmr/psg -c sequencenamedps.c

where-O is the code optimizer option. Note th#& is the same agD2, which means

level 2 optimization (seman cc for more information). The options are for the
preprocessor, which needs to be told where to find the VNMR-spéwifiede  files.

With the-c option, the compiler does not produce an executable program, but rather
an object module filsequencenamedps.o . In case of compilation errors, this file

is missingmake aborts, andeqgen reports all errors that were detected up to that
point!. The resulting object modutequencenamedps.o  is not executable, because

it is the bare compiled pulse sequence function, with all the references to external
variables and functions but without the actual code for them.

In order to arrive at an executable fileake callscc again (in reality the call may
differ slightly, depending on the software and hardware configuration; also, for various
reasons, the syntax in theake file is somewhat different):

cc -O -Bstatic -s -L/vnmr/psg -0 sequencenamedps \
sequencenamedps.o -Ipsglib -Iparam -Im

The-O option again specifies the code optimizer. All other options are netfdtself,
but forld , the so-called link editor, which is called ty:

Id -s -Bstatic -L/vnmr/psg -0 sequencenamedps \
-Ipsglib -Iparam -Im sequencenamedps.o

The-s option causekl to strip the so-called “symbol table and relocation bits” (used
by debuggers) to save disk spa@static  causes the externally referenced libraries
to be linked (attached) statically (see below);-theoption permits specifying
additional directories whetd searches for libraries; and the argument

-0 sequencenamedps  specifies the name of the executable target file.

1The commandusr/ucb/cc (a shell script) works in two steps: the actual C compiler
intermediately produces assembly language ctde ), which is then converted to an object module
using theas command (assembly language compiler). The first step can also be done explicitly using
the-S option to thecc command.

01-999014-00 A0398 VNMR Pulse Sequences 25



Chapter 2. Sequence Generation: seqgen

The last three optiors-lpsglib  , -lparam , and-Im) specify the three libraries
from where external modules are loadézhsglib.a andlibparam.a  (both
normally inf/vnmr/psg ), and/usr/lib/libm.a . The latter contains the math

libraries (extended floating point math functions), the former two contain all the
VNMR-specific compiled external modules found in the directenynr/psg . The

link editorld should normally be able to resolve all references to external functions
and variables; otherwise, error messages result.

In the early releases of VNMR, the description above was the way the link loader
worked. Meantime, pulse sequence overhead gained complexity, and each statically
linked executable pulse sequence became 250 to 400 Kbytes (Sun-3 vs. Sun-4). With
about 50 pulse sequences in the standard release, this takes about 10 to 20 Mbytes of
disk space. Moreover, all of these sequences would hawathemodules linked (i.e.,

a large portion of disk space is lost for 50 copies of almost the same software).

In this situation, it was very useful that Sun introduced the concept of dynamic binding
and shared objects (libraries) with SunOS 4. Instead of binding (linking) all external
modules at compile time, these objects are put into a sgeeigdlibrary: a library

that is accessed and used by many object modules at run-time (when they aré.called)

For pulse sequences, the run-time aspect of shared objects is not relevant, because the
cases where two pulse sequences are called at the same time on a single system does
not happen normally (the “call” in this case only means the seconds of execution time
upon typinggo). On the other hand, with run-time linking, every pulse sequence only
occupies 16 or 24 Kbytes on the diskaving considerable disk space. By default,

seqgen uses dynamic binding (run-time linking) when compiling pulse sequences.

How is dynamic run-time linking enabled and used in practice? To prepare for using
run-time linking, a new file has to be created that combines the contents of the library

files psgl/libpsglib.a andpsg/libparam.a in a suitable format. For VNMR,
such files are included under the nampsylibpsglib.so.x.y and
psg/libparam.so.x.y , Wherex andy indicate the major and minor revision

number (in VNMR 4.3A the revision number is 5.0). The idea behind the revision
numbers is that if several revisions of these files coexist in the same directory, only the
last one (the one with the highest revision number) is usedsdts®ands for “shared
objects.”

During the compilation, static linking must be prevented. This outcome is achieved by
omitting the-Bstatic  option during the link loading (dynamic linking is the default).
This way we get executables without the shared objects, and it turns out that for pulse
sequences these files are only 16 or 24 Kbytes, again in multiples of 8 Kbytes (i.e., we
save about 95% of the disk space that would be used with static binding). Invisibly for
the user, ago time, the system now picks the executable feaglib , links it with
thepsg/libpsglib.so.x.y library with the highest revision number, and

executes the resulting code. The slow-dowgdrdue to the run-time linking is
negligible.

2For certain applications—not pulse sequences, though—this not only saves disk space, but also
process/memory space because the shared objects (libraries) are only loaded into memory once and
can the be accessed by several applications simultaneously.

3The size of executables is always a multiple of 8 Kbytes, because programs are used (loaded into
memory) in 8-Kbyte pages anyway.

26 VNMR Pulse Sequences 01-999014-00 A0398



2.5 Compiling and Linking

One feature of run-time linking sometimes becomes apparent to the user: at link time
(i.e., when executing the command), the revision dates of the current shared objects is
compared with the date of the objects present at compile time (which is included in the
executable file), and if there is a revision mismaitch, this leads to error messages—it
may even cause the program to crash. Normally, this should be no problem—but there
are possible dangers when the shared objects are modified by the usenageer 3,
“Object Library Generation: psggen,” on page 29

One small point is left foseqgen : if the dps additions were included successfully,

the pulse sequence name had the charadparsadded all the way through the syntax
check, compilation, and linking. In order for VNMR to find the executable pulse
seguenceseqgen renames it in the end to the pulse sequence name wilh®ut

Finally, all intermediate files are deleted, including the pulse sequence object file
(sequencenamedps.o ). This means that for evesgqggen , theentire process is
repeated, irrespective of whether the pulse sequence executable is already up-to-date
or not.

01-999014-00 A0398 VNMR Pulse Sequences 27



Chapter 2. Sequence Generation: seqgen

28 VNMR Pulse Sequences 01-999014-00 A0398



chapter 3. Object Library Generation: psggen

For creating the pulse sequence compilation libraries, over 80 C modules (mostly
stored in'vnmr/psg ) have to be compiled, using over 30 VNMR-specificlude

files. The compilation process is very similar to the compilation of a pulse sequence,
except that no explicit C preprocessor call lmd syntax checking are involved.

3.1 How Are Object Libraries Generated?

The C preprocessor is called implicitly with the first compiler passd ). In the
second C compiler passc(-o ), no executables are created (the program, which is
nothing but a single, big C program, is not complete because itt lacks the
pulsesequence function), but instead, shared object libraries are generated.

Also different from the compilation of a pulse sequence, the intermediate object
modules .o ) are not discarded, but rather stored in object libratibpgglib.a

for C modules supplied itvnmr/psg , andlibparam.a  for C modules that are not
distributed). This has a major advantage—upon recompilatiaike only compiles C
modules that have been updated because it compares the dates of the individual C
modules and their corresponding object modules.

The process of creating the object libraries in the distributed software is so similar to
the regeneration of these libraries upon user modifications that only the regeneration
will be discussed in detail here.

3.2 Adding Changes to the Object Libraries

VNMR gives the user access to almost all of the pulse sequence-related source code
and with that the ability to implement user modifications. In the past, this has also
helped Varian to distribute bug fixes for the “pulse sequence overhead” as ASCII text
—simple source code modifications fenmr/psg

In accordance with the VNMR philosophy, such modifications are not done in
/ivnmr/psg directly, but rather in a local copy of that directory, which is generated
with thesetuserpsg  shell script.

This script creates a local directorivnmrsys/psg  containing the two object

librarieslibpsglib.a andlibparam.a , the library for run-time linking
libpsglib.so.x.y (libparam.so.x.y is not modified by the user and is
therefore still stored ilvnmr/psg ), and thdint  library file llib-Ipsg.In . The

principle is that upon re-generation of the libraries, or upon compilation or execution
of a pulse sequence, any file missing in the local library is taken/$rom/psg

If a user ever needs to use modifications in this area, it most likely involves changes to
a single source file. The user either can follow some given recipe (like to fix a bug in
the pulse sequence overhead) or can go/imtmr/psg  and locate the file that needs
modification (typically by usinggrep and an editor to locate the “critical spot”). The
source file to be modified is then copied into the lgesg directory and modified. The
shell script commangsggen is then called, for example:

01-999014-00 A0398 VNMR Pulse Sequences 29



Chapter 3. Object Library Generation: psggen

cp /vnmr/psg/aptable.c ~/vhmrsys/psg
cd ~/vnmrsys/psg

vi aptable.c

psggen

As shown inFigure § thepsggen shell script (infvnmr/bin ) invokes a rather
complex series of events.

psg/makeuserpsg

psa/libpsglib.a /usr/include/*.h
(ﬂ -S ) |object Iibrary|

find

)

-execrm {} \;

_-type | ) (m*o ) (cc-0 ) ||§

object modules

psg/*.o
shared objects

object library

psg/libpsglib.so0.1.0 psg/libpsglib.a

Figure 6. Events associated with tipeggen shell script

First,psggen callsmake with the file/vnmr/psg/makeuserpsg as thamake file
(make -fes makeuserpsg lib ), and then almost all subsequent actions are done
throughmake:

® For all header and source filex(, *.h , *.p ) from/vnmr/psg that arenot
present in the local directory, a symbolic link is created.nifles program
expects to “see” a complete directory.

* All object files ¢.0 ) are unpacked from thHibpsglib.a library.

® The creation dates of all C source files and their corresponding object files are
compared. Only those files in which the source file has a later modification date
than the creation date of its object file are compiled. If youpsglien the first
time in a newly generated logadg directory, all sources are compiled, because
the original objects ifibpsglib.a have been created at the Varian factory,
whereas the source files carry a modification date from the time when they were
stored inf'vnmr/psg  (i.e., for the first call opsggen all object files look
“outdated”). Such a full compilation takes about five minutes on a SPARCstation
2 or equivalent. On subsequent calls, only the sources that have been modified
since the last call tpsggen are compiled. On a SPARCstationgaggen takes
about one minute if only one module was updated.

30 VNMR Pulse Sequences 01-999014-00 A0398



3.2 Adding Changes to the Object Libraries

®* Themake file (psg/makeuserpsg ) contains all “object dependencies,” which
means that if a header fil&f or*.p ) is modified or updated, automatically all
sources that include this file become part of the compilation.

® Depending on the above date comparisons, C modules are comyuiled (); the
C preprocessor is called implicitly with that pass for each file.

* After the compilation, the object librarpgg/libpsglib.a ) is updated with
the current object files.

* No executables are created in the second compiler (linker) pass, but instead, the
shared object library is updated. For a Iqes directory, this shared object
library always has the nantibpsglib.s0.1.0

* All object files are deleted from the directory. This seems similaetigen —but
here, the objects are still available in archived form. The archive has the advantage
that the directory listing can be kept small.

® |n a last steppsggen removes all symbolic links (to source and header files in
/ivnmr/psg ).

Now, pulse sequences can be compiled using the new libraries. Even if the external
objects are not statically linked to the pulse sequence executable, pulse sequences
should still be recompiled, to avoid internal inconsistencies.

The resulting pulse sequence generation libraries are active only for a single account,
because they are in a loeaimrsys/psg directory. In principleynmrl can make
changes available to “the world” by copying the modified files imbonr/psg

although caution must be used with this operation, because errors can cause an inability
to compile pulse sequences in general. You may have to reload VNMR to recover.

The main problem is that object archive files should not be copied using the
command because this alters the date of the target file, which can lead to date
inconsistencies, and subsequentigke (seggen !) refuses to work. Note also that
make does not work if the system date is older than the modification date of source and
object files (e.g., by mistake the system date is set backwards by several months or
years). Another possible problem lies in the fact that the run-time linker takes the
shared library with the highest revision date if several versions coexist; hence, you
cannot copyibpsglib.so0.1.0 from the localpsg directory into/vnmr/psg . A
procedure that should be safe is as follows:

1. Make a backup gf/nmr/psg

cd /vnmr

mkdir psg.bk

cd psg

tar cf - * | (cd ../psg.bk; tar xviBp -)

2. Transfer the local files:

cd; cd vnmrsys/psg

tar cf - * | (cd /vnmr/psg; tar xvfBp -)
cd ..

rm -r psg

cd /vnmr/psg

Is *.s0.*

mv libpsglib.s0.1.0 libpsglib.s0.8.0

With the last command, the highest revision number is given to the updated copy
(which was revision 1.0 in the local directory). The local directory can be deleted,

01-999014-00 A0398 VNMR Pulse Sequences 31



Chapter 3. Object Library Generation: psggen

because all changes are now available from the systentfilgs. should also work
instead of theéar pipe.

3.3 Adding a New Precompiled Object

Few users only need or want to make changes to the pulse sequence overhead; among
those, even fewer come into a situation where they want to add a new file to the list of
precompiled objects. This chapter was not written with the primary intention to teach
how to do this, but rather to give some additional insight into the internal functionality

of thepsggen andseqgen commands, and into pulse sequence-related software in
general.

A situation where somebodyightwant to add a new file to the list of precompiled
modules is the case of a frequently used, very long, customibciiide file. Such
include files can lengthen the pulse sequence compilation time considerably;
however, with a precompiled module, the same functions could be made available
without slow-down in compilation speed.

First, we create a localsg directory and store the new module there. As an example,
take the currenhclude file lvnmr/psg/shape_pulse.c

setuserpsg

cp /vnmr/psg/shape_pulse.c ~/vnmrsys/psg
cd ~/vnmrsys/psg

vi shape_pulse.c

We now need to change the C module in order for it to become a standalone module.
Pulse sequendaclude files draw all their references to external definitions and the
macro references from the standaedude file standard.h. As a result, such

files typically have no, or only specifimclude lines. As a start we can insert all the
include lines from/vnmr/psg/standard.h

#include <stdio.h>
#include "oopc.h"
#include "acgparms.h”
#include "rfconst.h”
#include "aptable.h"
#include "power.h"
#include "macros.h"
#include "apdelay.h"

Theinclude notation uses the double quotes (¢@ppc.h" ) to mean that local
files (e.g., inpsglib ) are included. The angled bracket notation (egydio.h> )
causegpp to only search the standard include libraries (e/gnmrsys/psg
/vnmr/psg , /usr/include ). If files are specified with absolute paths, the
include notation doesn’t matter.

Later, we may want to determine whether we need all thelele lines. Most

likely at least some of them can be deleted, but for the time being, too imelngle

lines can't hurt. lfinclude lines already exist in the new file, we insert them between
the standard @clude lines (such aginclude <math.h> ) and any VNMR
include lines, avoiding duplication.

32 VNMR Pulse Sequences 01-999014-00 A0398



3.3 Adding a New Precompiled Object

Our example file unnecessarily already contains a referersteidch ; therefore,
we will not add that again. On the other hand, we may have to also include the
additional definitions and references fretandard.h
#define ALL O
extern int rcvroff_flag,

ap_ovrride;
extern double getval();
extern void setprgmode(),

prg_dec_off();

Forpsggen to recognize the new source file, we need to modifyrthiee file
makeuserpsg . If psggen has not been called beforehand, we gentla&e file from
the systenpsg directory:

cp /vnmr/psg/makeuserpsg .
vi makeuserpsg

We need to change theake file in two places: starting at around line 50 is an
alphabetical list of source files. Here we insert a line for our new module at the
appropriate place, with a backslash at the end of the line:

shape_pulse.c\

The other modification is in the section “Object dependencies,” starting at about line
250, where individual compilation instructions and source code dependencies are
listed alphabetically. Our additions are at approximately line 600:
shape_pulse.o : $(@:.0=.c) \
oopc.h \
rfconst.h \
aptable.h \
power.h \
macros.h \
apdelay.h
(umask 2; $(COMPILE.c) $(@:.0=.c) )

Most of this is analogous to other entries; therefore, we don’t really have to understand
all the details of thenake file language. A few basics, however, cannot be avoided:

® Constructs likes(COMPILE.c) refer to macros defined elsewhere inrteke
file or alternatively in the arguments to thake command.

®* The whole thing represents the rules and dependencies for the object file
shape_pulse.o ; all continuation linesnuststart withtabs, not spaces

The lines with the header file names describe the object dependencies (i.e., the header
file changes imply a recompilation of this particular module). As long as we are in the
development stage for that particular module (and maybe don’t know yet for sure what
header files will finally be used), these lines aren’t really required; only in the end we
should make sure that all used include files are also listed in the object dependency list,
to ensure proper updating in the case of header file changes. As a start, we could use
two lines only:
shape_pulse.o : $(@:.0=.c)

(umask 2; $(COMPILE.c) $(@:.0=.c) )

Our particular example includesath.h and makes calls to functions in the math
library, likelog10() . Itis not necessary to speci§yLIBS) inthe lastline (IBS is
defined asim , which would link/ust/lib/libm.a ), because this flag is specified
with the compilation of each pulse sequence.

01-999014-00 A0398 VNMR Pulse Sequences 33



Chapter 3. Object Library Generation: psggen

Before we can caffsggen , we need to make sure that a copy of the new source
module exists imvnmr/psg ; otherwisemake results in error messages and refuses
to work, then we can finally caisggen :

cp shape_pulse.c /vnmr/psg
psggen

For the first time, we receive an error message, becaalsecan't find a copy of
shape_pulse.o in libpsglib.a . This message is harmless—the file is compiled
anyway— and aftepsggen , libpsglib.a contains this object module as well.

You can check this with the entry:

ar t libpsglib.a | more

You can double-check this by recompiling the new module. To do this, first simulate a
change in that module by altering its modification date:

touch shape_pulse.c
psggen

You are now ready to debug the new source module (in the case of a new program) or
to try and reduce the numberion€lude files, in order to minimize the object
dependencies. In the end, make surerthke file (makeuserpsg ) contains object
dependencies for dliclude files that are used. For complete debugging, we have to
compile pulse sequences that use the new function. If previously the new source
module was ainclude file, we need to delete thiatlude line from the pulse
sequence, because the file is not required any longer; it is now even incompatible as
include file, because of its owimclude lines (which would lead to multiple error
messages because of duplicate definitions).

The fact that the function now no longer is compiled together with the pulse sequence
function leaves one open question: How does the pulse sequence (better: the compiler
and linker) know that there is now a new function in some other object module? The
answer is that external functions are found and incorporated properly asltrey

are of the default typent ) and do not return a valu&he vast majority of the

functions used in pulse sequences are of the default type and do not return values—
there is no need to declare them in the pulse sequence module. The same is true for the
function that we just converted into a precompiled module.

In the standarthclude file, standard.h , we find a definition for the function
getval that returns a double:

extern double getval();

This function is of the non-standard type (and returns a value), and hence it must be
declared as an external function. Any modulpsg that uses the functiagetval

must also include the above line. The §ilendard.h  also defines two more

functions that are defined as tyypmsd :

extern void setprgmode(), prg_dec_off();

There is a potential disadvantage in making a file precomgilgd: no longer “sees”

it, and therefore can no longer check the syntax in calls to functions that are now
external. To compensate for this, you can add tdithe syntax file those functions

in the new module that can be called in a pulse sequence. In our particular case, we
would add the function definition (without contents, of course) to the file

lintfile.c

34 VNMR Pulse Sequences 01-999014-00 A0398



3.3 Adding a New Precompiled Object

The lines to be added would be as follows in our case:

shape_pulse(shape,pws,phs,pwrtbl,phstbl,spwr,npulses,rx1,rx2)
char shape[MAXSTR];
codeint phs, pwrtbl, phstbl;

int npulses;

double pws, spwr, rx1, rx2;

{

This “dummy” function should be added to the section with plain functions (starting at
about line 350) of the filpsg/lintfile.c ; then thdint  syntax file needs to be

generated and copied inkenmr/psg , seeSection 2.4, “Checking Syntax with lint,”
on page 22

cp /vnmr/psg/lintfile.c .

vi lintfile.c

lint -a -n -z -DLINT -Cpsg lintfile.c

cp llib-lpsg.In /vnmr/psg

The last command allovseggen to use the nevdint library file; alternatively, we
could modify theseqgen make file (seqgenmake , usually stored in

/vnmr/acqgbin ) and/or theseqgen shell script, to work with the locdint  library.
For that, we should not change theke file in /vnmr/acgbin  , but rather create a
local copy in~/vnmrsys/psg  (i.e., only modify themake file for the account that
has a localint  library). This alternative is not described here.

01-999014-00 A0398 VNMR Pulse Sequences 35



Chapter 3. Object Library Generation: psggen

36 VNMR Pulse Sequences 01-999014-00 A0398



Chapter 4. TiIme Events

In this chapter, we deduce more complex pulse sequence statements from simple
delays, just to see what is their function. The syntax shown in this chapt¢the

one used in the pulse sequence overhead; the idea here is not to explain how pulse
sequence functions are defined exactly, but merely to understand their functionality in
order to correlate the arguments of such a statement to what is happening in the
spectrometer. Atthe same time, this is an opportunity to become familiar with the basic
C pulse sequence syntax. Later we shall get a more detailed picture of what is actually
happening in the acquisition CPU and the pulse programmeC(seeer 8,

“Acquisition CPU and Acode,” on page,&@nd subsequent chapters).

4.1 How Do Delays Work?

A delay is nothing but an exactly specified waiting time for the pulse programmer. In
other words, a delay is a time during which the pulse programmer does nothing but
hold the current status (we’'ll see later exactly what that means). Although even with a
simple delay a fair amount of “internal software” is involved, we can think of a delay

as a principal pulse sequence element. In fact, a delay or time event is one of the few
very basic actions a pulse programmer can do.

Simple Delays

Even a function as simple as a delay has some logical decisions built in; namely, the
property that if a length of zero is specified or if the specified duration is too short to
be executed by the pulse programmer (Seepter 9, “Pulse Programmers,” on page

85), the entire pulse sequence statement is skipped. The idea is to avoid unnecessary
dead times in a pulse sequence, as well as statements, that could lead to problems at
execution time. A possible coding for the statentetdy could be as follows:

delay(length)
double length;

if (length >= MINDELAY) time_event(length);
if ((length < 0.0) && (ix == 1))
printf("A negative delay has been specified.\n");

}

whereMINDELAYis a constant that defines the duration of the smallest executable
delay (0.2 microseconds); aid is the index of the current FID (starting at 1, up to
arraydim ). Most warnings are issued for the first FID only, in order to avoid flooding
the VNMR text window with error messages in arrayed and multidimensional
experiments.

Thedelay statement actually is a macro/ummr/psg that is resolved to the
G_Delay statement, and the functitime_event doesn't exist as such (instead, a
statementielayer with a slightly different definition is used internally).

01-999014-00 A0398 VNMR Pulse Sequences 37



Chapter 4. Time Events

Delays With Homospoil Pulse

If we want to write or change the homospoil delay staterhedelay , we first need

a definition of what that statement is supposed to do. It is always better to first have an
accurate definition before starting to code a program. Sometimes it is necessary to start
with a simple definition that can be expanded during the implementation:

* The statemertisdelay should have a single argument, specifying the total
duration of the homospoil delalysdelay(length)

¢ |f the specified length is zero, the entire pulse sequence statement is skipped.

* If the homospoil flagns is'n’  in the current status field, a simple delay should be
performed. Iths does not cover the current status field, the last specified field of
hs is taken instead (propagation of the last specified status field).

® Otherwise, execute a delay of lengjist with the homospoil (Z1 gradient) turned
on, followed by a normal delay, such that the total duration is the specified length.

* |f the specified length is less thhst , issue a warning message and perform a
simple delay instead.

A possible implementation of thesdelay statement could be as follows:

hsdelay(length)
double length;
{
int hspos = statusindex;
int hslen = strlen(hs);
if (hspos >= hslen) hspos = hslen - 1;
if (length >= MINDELAY)
{
if (hs[hspos] =="y’)
{

if (length >= hst)

{
HSgate(homospoil_bit, TRUE);
delay(hst);
HSgate(homospoil_bit,FALSE);
delay(length - hst);

}

else

{
if (ix ==1)
printf("delay shorter than hst - no homospoil \
performed.");
delay(length);

}

else
delay(length);

}
if ((length < 0.0) && (ix == 1))
printf("A negative delay has been specified.\n");

}

wherestatusindex is a defined variable set by tlséatus statement (to the value

of its argument)hs andhst are standard parameters and do not have to be declared
(the same as all parameters used ingbgul pulse sequenceyRUE(1) andFALSE

(0) are constants definedAimmr/psg (they arenot part of the standard C

definition).

38 VNMR Pulse Sequences 01-999014-00 A0398



4.1 How Do Delays Work?

The handling of thés flag conforms to the general internal flag handling in VNMR,
in that the last flag field is propagated throughout the rest of the string fie=gny'

is the same thing ds="nyyyyyyy...' ; flags can be up to 255 characters long).
statusindex is a variable used and definedvnmr/psg , andHSgate is an
undocumented internal statemeint/vnmr/psg . In principle, both can be used in
pulse sequences.

The relatively complicatetisdelay statement above (for the “normal” case) leads to
a fairly simple timing diagram:

Homospoil ON  --- ———q----=--==-ommmmee
Homospoil OFF ] ........ .
ihSt ilength-hst ! .

time

In words, the homospoil (Z1 gradient) is turned on, a dedayis executed, then the
homospoil is turned off, and a second dedangth-hst is executed. Although the
functionhsdelay has only one argument, it actually has two software-controlled
variables: the specifie@ngth , and thehst duration of the homospoil pulse, which
is a standard VNMR acquisition parameter. $tiength  (really a third parameter
to hsdelay ) of the homospoil pulse is adjustable in hardware only.

Thehsdelay statementis atype of “automatic” or “high-level” statement in that users
do not have to know how to turn on or off the homospoil gradient, or even what the
standard parameter for the length of the homospoil pulse is, in order to use this
statement in a pulse sequence. On the other hand, users oftanosamcbntrolin a
pulse sequence, or perhaps for a specific reason they want to use a different parameter
for the duration of the homospoil pulse. This is no problem, because the “low-level”
statements can be taken from the above statement and used in a pulse sequence:
HSgate(homospoil_bit, TRUE);

delay(hst);

HSgate(homospoil_bit,FALSE);

delay(length - hst);

Other Delays

There are a few additional statements for deliaigtay for interactive parameter
(length) adjustment during acquisitiancdelay andvdelay are delays where the
actual length is calculated by the acquisition computer from a time base and a real-time
counter. These other delays are no different than a simple delay in what they do to
spins ; they will not be discussed any further here.

1A price may be required to pay for the additional flexibility obtained in using undocumented lower-
level statements likelSgate : The definition for such statements could change with a future VNMR
release or the statement as such may cease to exist altogether, and such changes may not be
documented in the standard VNMR manuals. It is up to the user to vefifynm/psg  that this
statement still exists in its current form.

01-999014-00 A0398 VNMR Pulse Sequences 39



Chapter 4. Time Events

4.2 How Do Pulses Work?

Pulses on the Observe Channel

Several statements coexist for performing pulses on the observe channel; all of them
are actually macros and are ultimately translated into calls to a generic function
G_Pulse (see the manu&NMR User Programmirjg The most general of these
statements igenpulse (hot supported bgps at the time of this writing):

genpulse(length,phase,rx1,rx2,device);

wherelength is the duration of the pulse (see below) in secoptase is the pulse
phase and is a reference to either a real-time variable (see below) or a phasalable,
andrx2 are “receiver gating times” (again see below), and firtgjce is the rf
channel on which the pulse is to be perform@B3ch in the case of a pulse on the
observe transmitter channélNote that within a pulse sequence all time events are in
seconds, even if the parameter (of type “pulse”) is in microseconds.

The statemergenpulse isthe most versatile, yet the most complex, of the statements
for a pulse on a single channel at the level of the pulse sequence. It is not recommended
except where the rf channel for a pulse should be kept under parameter control.

The statements normally used for a pulse on the observe transmitter channel are
rgpulse , pulse , andobspulse . The functionrgpulse has the following syntax:

rgpulse(length,phase,rx1,rx2);

This statement is equivalentdenpulse(length,phase,rx1,rx2,0BSch) ,

i.e., the device name (number) is implicit. The next simpler statemeuisés :
pulse(length,phase);

Thepulse statement is equivalent tgpulse(length,phase,rofl,rof2) or
genpulse(length,phase,rofl,rof2,0BSch) ,i.e., the device name (number)

and the two receiver gating times are implicit; for the receiver gating times, parameters
rofl androf2 are used. The simplest statememttispulse

obspulse();

This is equivalent tpulse(pw,oph) , rgpulse(pw,oph,rofl,rof2) , or
genpulse(pw,oph,rofl,rof2,0BSch) , i.e., in addition to the implicit
parameters in theulse statement, the pulse lengtiv and the pulse phasgh is
implied.

All these statements are more or less “automatic” variants of calling a “pulse”
statement in a pulse sequence. What actually is happening in the rf during the execution
of such a pulse? Why do we need the “receiver gating times,” what are their implicit

2Traditionally (and exclusively in VNMR releases up to 4.3), devices and channels were treated
equivalently. They were nam@®DE\{observe transmitter channdDODE\(decoupler)DO2DEV

(second decoupler), amO3DE\(third decoupler). These addresses can basically still be used in the
current version of VNMR to specify any one of the rf channels. However, these device names
hardcode the channels so the channels do not reflect the rf channel assignments made with the
rfchannel  parameter. If the rf channel assignment is to be made dynamically (as per

rfchannel ), the new device nam&BSch (observe channelRECch (decoupler channel),

DEC2ch, andDEC3ch must be used. For compatibility, it is recommended to translate all
occurrences of ODEWype constants t®&BSchand its equivalents, even if the rf channels are to be
assigned statically. Of course, it is even better to use statements that don’t require a channel argument.

40 VNMR Pulse Sequences 01-999014-00 A0398



4.2 How Do Pulses Work?

and desirable values? To answer these questions, let us first have a look at how the
rgpulse  statement could be coded in C:

rgpulse(length,phase,rx1,rx2)
double length,rx1,rx2;
codeint phase;

{

int rcvrflag = rcvroff_flag;
if (length >= MINDELAY)
{

rcevroff();
txphase(phase);
delay(rx1);
xmtron();
delay(length);
xmtroff();
delay(rx2);
if (rcvrflag)
rcvron();

}

Like with thedelay orhsdelay statements, unnecessary dead times in the pulse
sequence should be avoided: if the specified length is zerepitirepulse is skipped.

This actually may have unintended implications, because in the past people have
misadjusted the receiver gating times for functional delays (e.qg., refocusing delays) in
a pulse sequence: the fact that upon setting the pulse length to zero (for testing or
calibration purposes), not just the pulse but also the two receiver gating delays
disappear, has sometimes led to unexpected results.

The lastf statement in the above function definition causes the recever be
turned back on if the receiver has been turned off globally (i.e., with a call to
rcvroff() prior to callingrgpulse) . Thercvroff_flag is used for UNITY-
style and older rf only; for UNITWlus systems, a more complex construct is used
within /vnmr/psg . (The value ofcvroff_flag needs to be stored in an
intermediate variable, because theroff() function alters that flag.)

What s the reason for using three time events in the above construction? Why can’t we
simply turn the amplifier on and off again? In order to discuss this, we need to take a
detailed look at the timing diagram, which now (different fimsdelay ) involves
severaldevices: the transmitter, the receiver, and the transmitter phase setting.

As shown inFigure 7 it turns out that implicitly also the amplifier is involved in a
particular way.

For the transmitter and the receiver (and the amplifier), simple gating (on/off) lines are
involved. The 90-degree phase setting is slightly more complex, as it involves four
possible values instead of a simple on/off information.

It turns out that we can deduce the four phase values fwamon/off bits: an on/off bit
(each bit represents the values 0 or 1, i.e., off or on) for the 180-degree phase shift and
an on/off bit for the 90-degree phase shift.

In all, a pulse involves$ive on/off bits (fast bits, as we call them later): the transmitter,
the receiver, the amplifier, the 180-degree phase shift, and the 90-degree phase shift.

01-999014-00 A0398 VNMR Pulse Sequences 41



Chapter 4. Time Events

In the table below, assume that we switch the transmitter phase from 90 to 180 degrees
and that all other devices were in their default setting for a delay:

180 90 Phase shift

off off 0 degrees

o

off on 90 degree

on off 180 degree

U7

on on 270 degree

[72)

Obviously, a pulse is much more complex than a simple delay! Why all this? One of
the points is that the receiver must be shut down while we are pulsing on the observe
channel because both the pulse and the NMR signal are running partially through the
same wire. Also, we want to prevent the NMR signal from going back into the
amplifier, because this would cause a significant signal loss.

The diagram irFigure 8shows the switching mode for receiving a signal (“receiver
switched on”). In this mode, the T-switch (transmit switch) between the amplifier and
the probe is open and the R-switch (read switch) is also open. This way, the NMR
signal can only proceed into the preamplifier.

With the receiver switched off, both parts of the T/R-switch are closed, and the
amplifier is now connected to the probe. The R-switch puts a specific point between
the probe and the preamplifier to 0 volts (ground). At that point, the rf pulse is

Receiver ON ____

Receiver OFF.__

Amplifier ON  ____

...........................................

Amplifier OFF |

Obs. Transmitter 90 deg. ON__

Obs. Transmitter 90 deg. OFE.

Obs. Transmitter 180 deg. ON.__; : : e

Obs. Transmitter 180 deg. OEE_1 ________. S A o

Obs. Transmitter ON ......... ' e J _________

Obs. Transmitter OFF_;_ _______________ _, _________

\

length

Figure 7. Timing diagram with transmitter, receiver, and transmitter phase

42 VNMR Pulse Sequences 01-999014-00 A0398



4.2 How Do Pulses Work?

Probe

n T-Switch

-

A4 Cable

Preamp / Receiver

r

Transmitter / Amplifier

R-SwitchJ;

-
I

4,,

Figure 8. Switching mode for receiving an NMR signal

reflected, building up a standing wave back in the direction of the amplifier (if there
was no probe connected we would in fact reflect the entire power back into the

amplifier!).

If now the cable between the zero voltage point and the probe connector has the right
length (1/4 or 3/4 of the wavelength), the standing wave has maximum amplitude at
the probe connector and all the power is directed into the probe, as shéuguire 9

Probe

f

I (T-Switch)

;l
'

oV

Preamp / Receiver

| -
'

—
Transmitter / Amplifier

-
(R-Switch).L

=

Figure 9. Maximum power directed into the probe

This works very efficiently and avoids a switichthe line between the probe and the
preamplifier (which would cause a significant signal loss). The only disadvantage is
that the length of the cable needs to be adjusted with the frequency. If the length of the
guarter-wavelength cable is not adjusted, a part of the amplitude is reflected back into
the amplifier, and we would have less power available in the probe; this would affect
the length of the 90-degree pulse.

In earlier rf schemes, both the T-switch and the R-switch were not active switches but
rather a pair of passive, crossed diodes:

N
Pt

1&
N

Such an arrangement would act as a closed switch for voltages above 1 volt (such as
an rf pulse), but for voltages below around 0.5 volts, the diodes act as an open switch,
so that low voltages (like an NMR signal) cannot pass. In reality, there is still some
leakage across the diodes, but as far as the NMR signal is concerned, this is negligible.

With the advent of shaped pulses, this kind of rf switch became impossible because the
low-level (voltage) part of a pulse shape would be heavily distorted. To avoid that, the
passive diodes have been replaced by actively switched PIN diodes, a special type of

01-999014-00 A0398 VNMR Pulse Sequences 43



Chapter 4. Time Events

diode that are switched by applying a high dc voltage across them. The switching of
the T/R-switch occurs anti-parallel to the receiver switching.

Even when these diode switches are opened (i.e., when the receiver is on), there is still
some signal leakage across them. The amount is sufficient for the amplifier noise to
enter the receiver chain and ruin the signal-to-noise ratio. Linear amplifiers (which are
prerequisite for performing shaped pulses) produce relatively high levels of rf noise
that can only be suppressed by turning off the last stage of the amplifier (“blanking the
amplifier”). For that reason, the observe channel amplifier is automatically switched
off (“blanked”) whenever the receiver is on (anti-parallel switching).

All this explains the basic switching diagram showrigure 8§ but does not explain

why there should bdelaysbefore and after the actual pulse. In particular, we can’t yet
deduce any recommendations as to what length of delay is required before and after the
pulse. Also, we would like to know whether there are any hidden additional delays not
shown on this diagram.

The second question depends on the construction of the pulse programmer and cannot
be answered at this point in time (in reality—as we shall see—there are no additional
hidden delays involved in thgpulse  function).

To explain the first point we should check how the diagraRidanre 7looks like in
“real life”; This is shown irFigure 10

Receiver ON ___ : : :

Receiver OFF____L :

Amplifier ON ____:

Amplifier OFF ! _______________ :

Obs. Transmitter 90 deg. ON_L ............... R
Obs. Transmitter 90 deg. OFE.. : : e

Obs. Transmitter 180 deg. ON.-.E

Obs. Transmitter 180 deg. OEL{_ ________

Obs. Transmitter OF R D

Obs. Transmitter ONL ......... ' O J
i

\

length rx2

Figure 10. Timing diagram in “real life”

The real reason for introducing additional delays around an rf pulse lies in the fact that
we are dealing with real hardware. No matter how quickly a pulse programmer
switches lines, it always takes a finite time for the various states to establish
themselves. Such delays are already introduced by the pulse programmer (which has a
finite switching time), but since this delays all states by the same amount, we don’t
have to consider this (as well as propagation delays through electrical cables) any
further.

44 VNMR Pulse Sequences 01-999014-00 A0398



4.2 How Do Pulses Work?

In order to judge the time constants or the time to completely change status on the
devices involved in argpulse  statement, we have to consider the individual
hardware involved. First, consider gate switching around the beginning of the pulse.

® Thereceiver gate (without the linked amplifier blanking) operates a number of
TTL (transistor-transistor logic) gates and PIN-diodes (such as the T/R switch)
with very rapid switching times (typically in the order of nanoseconds). For this
reason, the receiver can be considered switching instantaneously relative to the
time scale involved in pulse sequences—no particular delay is required to allow
the receive and related hardware to switch on or off.

® The opposite is true for thamplifier blanking : when the blanking is removed, it
takes a relatively long time for linear amplifiers to reach full output amplitude and
phase stability. The problem is not so much the turn-on time, but rather the time it
takes for the amplitude to stabilize. The time for blanking the output after a pulse
is not so critical. UNITY and UNITYlussystems use linear (class A/B) amplifiers
that are trimmed for short unblanking time: they reach full amplitude stability after
2 to 4 microseconds. Class A linear amplifiers in early high-field VXR
spectrometers take up to 40 microseconds to stabilize after unblanking.

Class C amplifiers used in earlier equipment don’t need to be blanked: they
produce very little noise and are left on all the time. They are also much more
efficient than linear amplifiers, but unfortunately they are unusable for pulse
shaping. They are also not broadband by nature—an entire array of amplifiers is
required to cover the full frequency range.

The amplifier appears to be the prime reason for having a delay prior to starting a
pulse. If the amplifier was blanked (switched off) beforehand, pulses on the
observe channel should be preceded by a delay of 10 microseconds, to make sure
the pulse only starts when full output stability is reached. The unblanking time can
be determined by performing a single pulse experime2p{ sequence with a
sample of doped #D) using a very short pulse width (typically 0.2 to 0.5
microseconds) and arrayingf1 in the range of O to 10 microseconds.

On the other hand, if the amplifier was already unblanked beforehand (perhaps
because another pulse is preceding the curgentse ), the amplifier is still

turned on (unblanked) and does not require a special delay. From an amplifier
point-of-view, back-to-back pulses are no problem at all.

* To find out about the 90-degree (“quadratungfiase shifting times , we need to
know how these phase shifts are generated. There are fundamental differences
between a UNITYlusand prior generations of instruments in the way 90-degree
and small-angle phase shifts are generated. In the UNIOSyboth kinds of phase
shifts are generated on the same (transmitter) board, but by dedicated hardware, as
shown inFigure 11(the mechanism of programming small-angle phase shifts is
addressed ihapter 12, “AP Bus Traffic,” on page )3The 90-degree phase
shifts are generated in a special circuitry (a “twisted ring shift register”) that
generates four 10.5 MHz frequencies (0, 90, 180, and 270 degrees) from 42 MHz,
out of which one is selected by means of two digital input lines (90 and 180
degrees phase shift flasThe switching between the four phases is virtually
immediate (TTL gates, switching times in the order of nanoseconds).

3 For wideline and multipulse spectroscopy, the 90-, 180-, and 270-degree phase angles can be fine
adjusted in the order of millidegrees.

01-999014-00 A0398 VNMR Pulse Sequences 45



Chapter 4. Time Events

90 degrees phase shifting
2 bits input 10.5 MHz small-angle phase shifting
180 |90 > splitter 9 bits input
(360 steps, 0.25
twisted rin 90°((10.5 MHz) @
2 shift registgr IF |||||||||
<—| 0° DAC |
| | | combiner = ><
<—| 90° DAC |
90/180/278 _
fine adjustments 10.5 MHZIF out sine look-up table

Figure 11. Phase shifting on UNIT}¥lus systems

For the small-angle phase shifting, the 10.5-MHz frequency is split into 0- and 90-
degree components. Small-angle phase shifting takes 9 bits of input: values run
from 0to 512, with 360 steps for phase angles of 0to 89.75 degrees, in 0.25-degree
resolution. These are translated into digital amplitude values for the 0-degree and
90-degree components: a DAC converts the numeric values into dc voltages, which
are then used in Gilbert multipliers to set the amplitude of the two orthogonal 10.5-
MHz components. These two components are combined again, generating again a
single 10.5-MHz frequency that has the (digital) small-angle phase shifting added
in. Thisis the 10.5-MHz IF (intermediate frequency) that propagates the 90-degree
and small-angle phase shifts into the transmitter frequency. The small-angle phase
shifting circuitry has no effect on the timing of a pulse on the observe channel.

Figure 12shows phase shifting on systems prior to the UNIIU¥ On these

systems, both 90-degree and small-angle phase shifts were generated using a 720-
step sine look-up table. This generated a frequency of 2.5 MHz, which in turn was
used to generate the 10.5 MHz IF.

small-angle phase shifting
8 bits input
(180 steps, 09 8 MHz

10 MHz trigger ||||||||

UL VA e FAVAY;
» fiter ———>
“2.5 MHz" 2.5 MHz
9| |18C°
90° phase shiftin -
2pbitsinput 9 " sine look-up table 10.5 MHz IF
720 steps/360

46

Figure 12. Phase shifting on systems prior to UNII¥s

With this type of rf generation, a 2.5-MHz frequency is generated by reading the
sine value from a 360-degree look-up table (720 steps, 0.5 degrees resolution) at a
rate of 10 MHz. The resulting output (with a very rough digitization in the time
axis) is then filtered in order to obtain a pure 2.5-MHz frequency that can then be
mixed with 8 MHz to generate the 10.5 MHz IF. Small-angle phase shifts are
nothing but an offset (up to 180 steps of 0.5 degrees) in the same look-up table.

VNMR Pulse Sequences 01-999014-00 A0398



4.2 How Do Pulses Work?

The 90-degree phase shifts are selected by means of two digital input lines that
cause look-up offsets in increments of 180 addresses.

What is now the timing of a 90-degree phase shift? The look-up offset is
implemented immediately (TTL gates), butit only has an effect at the next 10 MHz
trigger point, which can be up to 0.1 microseconds later. Also, the filter in the 2.5-
MHz line further delays the response, such that with this type of rf a 90-degree
phase shift is completed typically after 0.4 microseconds. Thus, delays of 0.5to0 1
microseconds are recommended to allow for the phase to settle.

® The actuapulse switching has several components: the rf gates and associated
hardware on the transmitter board, the properties of the amplifier, and the
inductance of the coil. Similar to the receiver gating, the rf gates on the transmitter
board (TTL switches) can be thought of as switching instantaneously
(nanoseconds range); therefore, the pulse turn-on time determined only by the
amplitude rise time of the amplifier, which is usually determined using an
oscilloscope. It turns out that even pulses of only 0.2 microseconds duration is
fairly rectangular. Typically, within a few tens of nanoseconds, the output reaches
full amplitude.

The pulse turn-on time is of no concern for the delay prior to the pulse, but it
should at least be ensured that the rf is stable when the pulse is turned on. Also, we
can do very little in terms of timing in a pulse sequence about turn-on effects from
the inductance of the coil (see below for a discussion on probe ringdown).

The high-power amplifiers used with high-power solid-state NMR experiments

(1 kW H/1% or broadband) are at least as fast as the linear amplifiers used for
liquids NMR (which feed the high-power amplifiers); thus, the amplifier
considerations for solid-state systems are no different than for liquids experiments.

Taking all this into consideration, we can conclude that there are two cases for the delay
preceding an rf pulse on the observe channel:

* If the amplifier was blanked beforehand, pulses on the observe channel should be
preceded by a 10-microsecond delay, to allow for the amplifier to stabilize. At the
same time, this delay is more than sufficient for the new phase to settle with all
types of rf generation.

¢ |f the amplifier washotblanked beforehand (either another pulse is preceding the
current one or the receiver was switched off during the preceding [time] event), the
delay prior to the pulse is mainly a phase-settling delay and can be reduced
accordingly. On UNITY-type and earlier rf schemes, a delay of 1.0 microseconds
should be more than sufficient for the phase to settle. With UplliStype rf
(with instantaneous phase switching), 0.2 microseconds is long enough—even
back-to-back pulses do not cause problems.

What needs to be considered for determining the setting of the fidlaying a pulse
on the observe channel? It turns out that this is simpler, because much less gating is
involved and no phase change occurs.

® At the end of the pulse, the gates on the transmitter board close immediately; the
pulse turn-off time  should be in the order of nanoseconds. The amplifier turn-off
time may be slightly longer, but this should not be a concern within most of the
pulse sequence, except for the last pulse, where we should make sure that no “pulse
break-through” occurs, which could affect preamplifier performance.

® Thereceiver gates operate at about the same speed as the transmitter gates.

01-999014-00 A0398 VNMR Pulse Sequences 47



Chapter 4. Time Events

® There are phenomena outside the actual rf that also need to be considered here,
namelyprobe ring-down and related effects. The inductance (or better called the
quality factor,Q) of the rf coil causes a finite delay in turning off the pulse (rf ring-
down). With liquids probes, the rf ring-down time constant is typically 200
nanoseconds (high-fieldiH) to several microseconds (low-gamma nuclei).
Wideline and high-power CRAMPS probes have a Iowand therefore much
shorter ring-down time constants of 20 to 50 nanoseconds at proton fréuency

Also (and often even more important), the coil experiences considerable
mechanical forces during an rf pulse that shakes the coil mechanicallgt{c

ringing ), even if the coil is fixed firmly. These mechanical movements induce
currents in the coil, and these currents in turn may affect the preamplifier and the
receiver, distorting the beginning of the FID.

In conclusion, we have the following different situations for the delay after a pulse:

¢ |f data are acquired immediately following the pulse (i.e., after an excitation pulse
rather than after a refocusing pulse) or if pulses are performed in-between
acquisition points, a delay is recommended after the last pulse in order to avoid
probe ring-down saturating the preamplifier. For normal liquids experim&its (
13¢,31p,19F), 10 to 20 microseconds should be sufficient; for low-gamma nuclei,
longer values are often appropriate (if ygpermits); and for typical solid-state
NMR experiments, shorter values can be used because these probes have a much
shorter ring-down time.

® For all other pulses in a pulse sequence, preamplifier saturation should not be a
problem because it generally has sufficient time to recover. Hence, in a typical
liquids experiments, the post-pulse delay can be setto zero for all pulses except the
last pulse.

® |f the receiver is switched off “globally” within a pulse sequence (e.g., switched
off before the first pulse), all post-pulse delaysept for the lagtan be set to zero.

Simple Pulses on Other RF Channels

Pulses on any rf channel can be performed usingghpulse statement the same

way as used for the observe channel, except that the deB®ehis replaced by

DECch DEC2ch, or DEC3ch for the first, second, or third decoupler channel,
respectively ¢ee the footnote on page)4Bs mentioned beforgenpulse is not

generally used (nor recommended) except for cases where the rf channel (the device)
should be held under parameter control.

Typically, such pulses are performed using one of the following statements:

decrgpulse(length,phase,rx1,rx2);
decpulse(length,phase);
dec2rgpulse(length,phase,rx1,rx2);
dec3rgpulse(length,phase,rx1,rx2);

4The rf ring-down time constantits proportional to the quality factd@, and inversely proportional

to the rf frequency: tr= Q/(3 f) . Liquids probes have a high of around 300 to 400, th® of high-
power wideline and CRAMPS probes is typically 10 times lower. After that time, the voltage across
the coil has decayed to 1/e of its initial value. The total ring-down tigpefor a pulse at powel (in
watts), down to a residual level of 1 microvolt at an impedance of 50 ohms can be calculated as

In FDDXQ/(:”)

48 VNMR Pulse Sequences 01-999014-00 A0398



4.2 How Do Pulses Work?

These statements are equivalentgpulse andpulse (for the second and third
decoupler channel, mulse equivalents have been defined). Unlikése , the pre-

and post-pulse delaysitecpulse are setto zero. All these statements are macros and
are resolved to calls to the genaBicPulse statement by the C preprocessor.

The gating scheme around decoupler pulses is basically the same as for pulses on the
observe channel. A difference exists insofar as the decoupler amplifier(s) are usually
set into continuous wave (CW) mode (i.e., they are constanfly émplifier (noise)
blanking is usually not required on these channels because their output is almost
always be directed onto a different rf coil and can hardly reach the réc&ethis

reason a pre-pulse delay is only used for the phase to settle (particularly on UNITY and
earlier systems; 0.5 to 1 microseconds are recommended), and a post-pulse delay is
almost never necessary. On UNIpNissystems both delays can be left at zero length.

Simultaneous Pulses on Different RF Channels

The VNMR definition of simultaneous pulses is such that they should occur centered
on top of each other. Based on this, a gating scheme can be deduced, for example, for
simpulse (a simultaneous pulse on the observe channel and the first decoupler):

1. Gate receiver off, set phase on all channels involved.

Perform pre-pulse delay.

Switch on transmitter gate on the channel with the longer pulse.

Perform a delay; length: half the difference between the two pulse lengths.
Switch on transmitter gate on the channel with the shorter pulse.

Perform a delay; length: the shorter of the two pulse lengths.

Switch off transmitter gate on the channel with the shorter pulse.

Perform a delay; length: half the difference between the two pulse lengths.
. Switch off transmitter gate on the channel with the longer pulse.

10. Perform post-pulse delay.

11. Gate receiver on, unless it has been switched off globally.

© NN

The C construct for such a statement uses the same basic callsyasitee

statement described abovileglse  statements are used to decide which device to
turn on first and which to turn off last. Similarly, statements for simultaneous pulses
on three and four channels can be constructed. All these statements exist; they have the
syntax:

simpulse(lenl,len2,ph1,ph2,rx1,rx2);

sim3pulse(lenl,len2,len3,phl,ph2,ph3,rx1,rx2);
sim4pulse(lenl,len2,len3,len4,phl,ph2,ph3,ph4,rx1,rx2);

The indices in the arguments refer to the observe channel (1) and the first three
decoupler channels (2, 3, 4). In all these statements, the observe channel is involved;
therefore, (because in general we cannot, and do not want to, make assumptions about

5 Except in situations where the decoupler nucleus is identical to the observe nucleus or falls into the
same amplifier frequency bangH, *H, 1°F vs. the nuclei at*P frequency and below). In this case,
decoupling occurs through the same amplifier as the observe pulses, which are in pulse mode and are
therefore blanked.

6 provided there is little or no crosstalk between the different coils in a probe. Exceptions would also
be heteronuclear experiments on a single, double-tuned coil. In such cases the amplifier would have
to be either put into pulsed mode or blanked explicitly,&s#ion 4.3, “Other State-Related Pulse
Sequence Statements,” on page 52.

01-999014-00 A0398 VNMR Pulse Sequences 49



Chapter 4. Time Events

the length of the individual pulses) for the pre-pulse delay the same considerations
apply as for the pre-pulse delayrgpulse , assuming that the amplifier for the

longest pulse needs to be unblanked first, unless the receiver was already switched off
during the previous time event.

The above statements are macros in whicipulse andsim3pulse are resolved
into calls to the following C functions:

gensim2pulse(lenl,len2,phl,ph2,rx1,rx2,devl,dev2);
gensim3pulse(lenl,len2,len3,phl,ph2,ph3,rx1,rx2,devl,dev2,dev3);

These functions take the corresponding number of device arguments (rf channel
addressesee the footnote on page)these devices can be specified in any order as
long as the pulse lengths and the phases are specified in the same order. The macro
sim4pulse s translated into a call to the functiGn Simpulse that will not be

discussed any further here. Similagenrgpulse  andgenpulse , these functions

are not supported by tlips command at this point in time, and their use is not
recommended unless there is a need to keep the rf channel selection under parameter
control (with the presence of tiehannel  parameter, those functions are not longer
required).

Composite Pulses

From a pulse sequence or gating point of view, composite pulses are nothing but a
sequence of ordinary pulses without explicit delays in-between. As outlined in the
sections above, all pulses but the first can be preceded by a very short pre-pulse delay
only, to allow for the phase shift to complete. On UNIpMssystems, even that delay

can be set to zero (on other systems this may lead to a slight performance loss). For the
pre-pulse delay of the first pulse, the same considerations apply as for a normal pulse
(see above).

All post-pulse delays should be set to zero to avoid unnecessary gaps between the
pulses. The maximum permissible gap between components of a composite pulse is
determined by the question whether noticeable precession can occur during such
delays. In liquids experiments, gaps of 1 microsecond should be harmless.

Considerations for the Delays Following the Last Pulse

Additional considerations apply to the post-pulse delay after the last rf pulse on the
observe channel (better said as the pulse that generates the final, detected coherence),
because that delay affects both the reliability of the autopheamphg és well as the
first-order phase parameter (and with that the baseline flatness). Why is that?

In the last receiver stages before the ADC, the NMR signal (witthHB) is mixed

with the intermediate frequency in order to obtain audio frequencies (sigralg/at

to +sw/2 Hz). At that level, any noise (and extra signals) outside the spectral range
need to be filtered away in order to avoid folding noise and undesired signals into the
spectrum (the extra noise would dramatically affect the signal-to-noise ratio). Such a
filter delays the audio signal by a time that is inversely proportional to the filter
bandwidth. This is taken care of by the software—the filter delay (showigimre 13

is calculated automatically and made part of the implicit acquisition, where prior to
acquiring the first data point a delayaifa+1/(beta*fb) is performed.

50 VNMR Pulse Sequences 01-999014-00 A0398



4.2 How Do Pulses Work?

sampling points

rof2 | alfa +1.0/ peta *fb)‘ﬁ;%

|
I I I I
< >
-

“Hoult delay” dwell time

Figure 13. Filter delay

alfa is a standard parameter (in microseconds, defined as a fflulsg}he filter
bandwidth, andbeta is a constant that depends on the type of audio filter in use. For
4-pole Butterworth filters (used in VXR and earlier spectrometéety is 2.0; for 8-

pole quasi-elliptical filters (the standard filter in UNITY and UNI3IMs systems),

beta is 1.29; and for 6-pole Bessel filters (used for spectral windows above 100 kHz),

it is 2.33. With this setup, the user can adjust the (last) post-pulse delay, while having
an independent parameter for regulating the total delay between the last pulse and the
first sampling point.

In 1983, D. Hoult et af noted that by making thtetal delay between the last pulse and

the first sampling point equal to the theoretical filter delay (for Butterworth filters,
1/(2*fb )), the best baseline flatness was obtained. This seems to disagree with the
standard setup in Varian pulse sequences fofth andalfa being 10 and 20
microseconds). What are the consequences of these additional delays? It turns out that
with these delays, the first-order phase correction paratpeteas a negative value

that depends on the spectral window In fact, thdp parameter is decremented by

360 degrees with every dwell time by which we right-shift the first sampling point. If

the condition described by Hoult is fulfilleth is close to zero—an approximation for

thelp parameter can be calculated easily frof2 andalfa °

_rof2 alfa
105 x (1/sw)

The real problem is that due to the filter response, the first data point is never accurate.
An offset in the first data point leads to a dc offset in the transformed spedpuaén ).

The first-order phase correction converts this dc offset into a sinoidal baseline
distortion: at a correction af360 degrees, a full sine wave is generated, and with every
additional 360-degree deviation lpf from zero, an additional sine wave is obtained.
Also, adlp increases, this baseline roll increases in amplitude (with very high values
for Ip , it is not unusual that the baseline roll becomes larger than the NMR signals!).

Ip = x 360 = —(rof2 alfa ) xswx360x 10°

Using the above formula, we can estimate that for proton spectra (spectral windows of
2000 to 10000 Hz) first-order phase corrections of —20 up to —100 degrees are obtained
with the standard settings fmf2 andalfa . For typical carbon spectra (spectral
windows of 10 to 50 kHz), the corrections are more severe with 100 to 500 degrees. In
many cases—especially proton spectra on normal organic compounds—this baseline
roll is noticeable but can easily be corrected by means of data processing softevare (
command). In many other cases, such a baseline roll is undesirable—it can even ruin

7In theH/*3C version of Gemini spectrometers, 3-pole Butterworth filters with a filter constant
beta of 3.0 are used.

8D.I. Hoult, C.-N. Chen, H. Eden and M. EddnMagn. Resor1, 110 (1983).

9The division by 18is needed because within VNM@f2 andalfa are defined as pulses and are
entered in microseconds.

01-999014-00 A0398 VNMR Pulse Sequences 51



Chapter 4. Time Events

the quality of multidimensional spectra. To help cure this, the VNMR software
contains théoult command, which calculatesf2 to be one-third of the theoretical
filter delay @L/(beta*fb) ), as described in Hoult’s paper, and then séfts to the
negativevalue ofrof2 . This only works because the implicit delay that is executed is
thesumofalfa and the filter delay.

Thehoult command bringp down to a value close to zero—but for many
applications, especially biological NMR, this is still not good enough. Why? The
reason for that is twofold: first, even the best filters are never 100.0% accurate (all
electronic components have a limited accuracy) and hence the real filter delay is always
slightly differ from the theoretical value. Second, it cannot be assumed that the
excitation point (the point where all excited spins are in phase) is at the end of the rf
pulse, because the precessioming the pulse cannot be neglected.

Overall, it is impossible to calculate the exact filter delay. Consequentimguirical
timing correction can be used: a (1D) spectrum is first acquired, transformed, and
phase-corrected, and then the above equation is modified to recaldfdatéromIp .
This is done by calling the maccalfa

6
alfa corr - alfa Hp x107)/(360x% sw)
With this new value foelfa , the spectrum is then reacquired. It can be assumed, that
this correction stays the same as long as the spectral window is not changed (although
this probably is only true as long as the pulse width is also not altered).

Another implication from the delays between the last pulse and the first sampling point
is the fact that the autophasing commapti first estimates a value fap , assuming

that bothrof2 andalfa were used after the last pulse. It must therefore be ensured
that the last pulse is in fact performed with a post-pulse delf®y (or an equivalent
delay must be inserted after the last pulse); otherwise, the reliability of the autophasing
can be severely affected.

4.3 Other State-Related Pulse Sequence Statements

Direct Gating

As shown in the sample coding from the previous sections, rf gates can also be operated
directly. A number of simple, documented commands exist for the transmitter gates
(xmtron/xmtroff , decon/decoff , dec2on/dec2off , dec3on/dec3off ),

receiver gaterEvron/revroff ), spare gatesplon/sploff , sp2on/sp2off ),

and decoupler amplifier blanking contrdeg¢blank/decunblank ,
dec2blank/dec2unblank , dec3blank/dec3unblank ). Pulse statements

operate these gates implicitly and automatically. If a user decides to operate gates
explicitly, it is the user’s responsibility to switch them back into “normal” mode at an
appropriate time in the pulse sequence.

The statements for explicit 90-degree phase shiftikpihése , decphase ,

dec2phase , dec3phase ) can be regarded as special (phase) gating statements (with
the difference that they do not control rf gates or blank an amplifier). All these gating
statements have no immediate effect on what is happening in the rf: they only influence
the gate settings of subsequent time events.

52 VNMR Pulse Sequences 01-999014-00 A0398



4.4 Basic Purpose of a Pulse Sequence

Implicit Gating

Thestatus statement can partly be regarded as implicit gating statement. Primarily,
status changes the value of the varialstatusindx  to the specified flag field. At

a secondary level, it also switches the decoupler gates depending on the corresponding
status fields in thdm dm2, anddm3 parameters. These only become active in
subsequent time event. The definition is such that if a flag has less fields than addressed
in the pulse sequence, the last flag field is taken insteattig takes an integer as
argument; the constamsto Z [0 to 25] are defined ipsg/rfconst.h ).

In earlier rf schemes, the decoupler modulation mdde)was also on direct status
lines (two lines for up to four modulation modes) and was satélyis the same way
as the other gate lines; in UNITY and UNIPlussystems, the decoupler modulation
modes dmmdmm2dmm3 are set through a different mechanism, Seepter 12, “AP
Bus Traffic,” on page 137

4.4 Basic Purpose of a Pulse Sequence

The main purpose of a pulse sequence is to define a sequéeimsesgtielays) and a
series of associatedfates(on/off information). Pulses—even if composite or
simultaneous on various rf channels—can be deduced from a sequence of simple
delays with variable gating information. From that point-of-view, the heart of the pulse
programmer can be diagrammed as showfidgnre 14

pulse sequence decoder

states times

states buffer times buffer
next states next time

current states current time
e re—

timer

RF

Figure 14. Block diagram for a pulse programmer

This is not only a block diagram for what the pulse programmer is doing, but, as we
see later, this diagram contains the “essence” of the pulse programmer hardware in all
Varian NMR spectrometers from the XL, VXR, and UNITY, to the Gemini,

UNITY plus, GEMINI 2000and"N™INOVA Of course, there are additional features
(we shall learn about rf devices that can not be addressed simply with a limited set of
on/off states), but the central idea is already in the diagram—the pulse programmer is
a state—times buffer with associated timing electronics that makes the code

interpretation (the acquisition CPU) independent (asynchronous) of the pulse sequence
timing.

01-999014-00 A0398 VNMR Pulse Sequences 53



Chapter 4. Time Events

54 VNMR Pulse Sequences 01-999014-00 A0398



chapter 5. Submit to Acquisition: go

Thego command (and related commands suchuaandga) has the central task of
running the compiled (executable) sequence frons¢hqéb directory and
submitting the experiment to the acquisition prodesgproc (go does not perform
the acquisition itself)go then hands the control back to VNMR. It is upAogproc

to manage the acquisition and notify VNMR about completed blocks, FIDs, and
experiments.

Figure 15outlines the processes and actions arounddhmmmand.

5.1 The Tasks for go

The commando directly executes and initiates the following steps:

* From the parametaedfil ,thego command finds out what pulse sequence is to
be executed. If such a pulse sequence executable is not found in the user or the
systenmseqlib  directory,go aborts with an error message.

® |f an executable pulse sequence is fougml strips all non-acquisition parameters
off the current parameter tree and adds acquisition parameters from the global tree
along with all the system configuration parameters. This parameter collection is
then transferred to the pulse sequehce.

vnmrsys/global shimmethods/* shapelib/*
vnmrsys/expn/curpar /vnmr/conpar tablib/*
! (display) global system global shim phase | |shapes
] (processing) parameterg parameters method$ tables pattern

(acquisition)

seqfil22800211110

™~

1cosy’—— || acquisition

1
0 ~\ parameters
i %

(notification

seqlib/cosy

WEFG load control file|

| Acgproc parametersi
vnmr/acqqueue/expn.username.PID

Acqproc
ap WFG datafile
Acode

Ivnmr/acqqueue/expn.username.PID.RF
Ivnmr/acqqueue/expn.username.PID.Code

/lvnmr/acqqueue \
/ldcontrol

Figure 15. Processes surrounding the@ command

1Because only acquisition-, sample- and configuration-related parameters reach the pulse sequence,
agetval statement on a display, processing, or spin simulation paradoetenot worka zero
value is returned instead for numeric parameters)!

01-999014-00 A0398 VNMR Pulse Sequences 55



Chapter 5. Submit to Acquisition: go

® The shim method from the directosytimmethods (as specified by the parameter

method ) is packed into an internal parametem$string  and added to the set
of transferred acquisition parameters.

go then executes the sequence fismglib . A compiled pulse sequence in the
user's sequence libraryfynmrsys/seqlib ) takes precedence over a sequence
(with the same name) from the system sequence libkami/seqlib ).

The execution of the pulse sequence first involves the run-time linker, which binds
the other objects frompsg/libpsglib.so.x.y (seeSection 2.5, “Compiling

and Linking,” on page 240 the pulse sequence. As part of the run-time linking,

a revision check is made on the run-time link libragg/libpsglib.so.x.y

If the revision of that file k.y extension of the file name) is not correct, it results

in a “run-time” error message or even in a crash. For such a case, check whether
an old compiled pulse sequence (from a previous software release) was executed
instead of an updated one/immr/seglib ). If that happened, recompile the

pulse sequence. It could also be that you psgden (seeChapter 3, “Object

Library Generation: psggen,” on page) dth an earlier software release, and the
local psg directory ¢/vnmrsys/psg ) was not deleted when a new release was
installed. In this situation, you must delete (or re-create and update) thesacal
directory, and recompile the pulse sequence if it was a local file.

If the pulse sequence does not return an error code upon exegdiontifies the
acquisition procesacqgproc of the new experiment in the acquisition queue.
After that, the VNMR part of thgo command is finished, and VNMR is ready for
executing the next command.

go usually appends a new experiment to the end of the acquisition queue, except
if go (orau) was called with the argumetmiext’ , in which case the experiment

is queued immediately after the running experiment (insertion at the front of the
gueue) or immediately before the next acquisition is started, when called as part of
conditionalwerr orwexp processing of an experiment that was started with the
commandau('wait')

If VNMR cannot contacfcgproc after several attempts, an error message
“maximum number of retries exceede d . . PSGaborted ”or

“The acquisition daemon 'Acgproc’ is not active! "isissued, and no
experimentis started. In this case, eithegproc has died and needs to be started
again, or for some reason VNMR is unable to coraagproc (it may be

hanging), in which cas&cgproc needs to be killed and restarted again. At this
point, any running experiment needs to be restarted, and queued experiments need
to be requeued (sé&ection 6.4, “Controlling Acgproc,” on page)6After this,

call go again.

* The absence &cqproc makesgo non-functional on stand-alone data stations

(except forgo(‘acqi') , see als&ection 5.3, “Using go('acqi’),” on page)58

1These problems are avoidedrifikeuser is called for every account and the local files are updated
through this commandanakeuser deletes old compiled pulse sequences (not the source file from
psglib ) and disables any locpbg directory.

56

VNMR Pulse Sequences 01-999014-00 A0398



5.2 Tasks for the Pulse Sequence Executable

5.2 Tasks for the Pulse Sequence Executable

The primary task of the pulse sequence executable is to generate instructions and data
thatAcgproc later uploads into the acquisition computer plus data to be used by
Acgproc to control that experiment. The resulting information is stored in several

files in the acquisition queue directdmwmr/acqqueue . The names for most of

these files reflect the experiment naragpll to exp9 ), the name of the user

(username ), and the process-ID number of the pulse sequence execirHb)e (
Obviously there would be a problem if a user did not have write permission into
Ivnmr/acqqueue

* Parameters are read from the set of acquisition parameters that is handed over by
go; they are stored in local variables.

* Specified waveform generator (WFG) shapes and patterns are read from
shapelib  and transformed into a binary féd&pn.username.PID.RF  in
Ivnmr/acqqueue . This file is later uploaded via HAL into the waveform
generator(s). Together wigxpn.username.PID.RF |, a second file named
/vnmr/acqqueue/ldcontrol is generated or updated. This second file
contains information about the size and structure of all waveforms and decoupling
pattern to be used. If a system is not equipped with waveform generators, this file
is not generated or updated; if waveform generators are installed, the file
Ivnmr/acqqueue/ldcontrol is updated even if no waveform generator is
actively used in the experiment.

* The main task for the pulse sequence executable is the generation of instructions
to be interpreted by the acquisition CPU calledAltede The Acode is a sequence
of 16- and 32-bit words, including instructions and a complete set of local
variables used by the acquisition CPU, that are stored in a file in the directory
/ivnmr/acqqueue . The file name isxpn.username.PID.Code . Typically,
the Acode size is 1 to 3 Kbytper FID. For multidimensional experiments, the
Acode can easily fill many megabytes of disk space and can eventually create
“disk full " problems.

* External phase tables are read from the specified fikbiib  ; they are built into
the file with the instruction list for the acquisition CPU (Séepter 9, “Pulse
Programmers,” on page B85

* A file lvnmr/acqqueue/expn.username.PID is generated that contains
acquisition control parameters the parametersAkgproc needs to control the
acquisition, store the FID in the proper place, and initiate the right actions when
certain key conditions (error condition, block size completed, FID or experiment
completed) are reached. This file is a standard ASCII parameter file, containing a
set of parameters that are requiredAagproc to do its job (see alsGhapter 6,
“Acquisition Process,” on page b9

01-999014-00 A0398 VNMR Pulse Sequences 57



Chapter 5. Submit to Acquisition: go

5.3 Using go(‘'acqi’)

Enteringgo(‘acqi’) , or the equivalent macif , serves to generate the Acodes
necessary to ruacgi ininteractive (FID or spectrum) mode. The same as entgiong
with no arguments, the pulse sequence executable is called, but in the case of
go(‘acqi’) , hothing is submitted tAcqproc , and the resulting files are read solely
by theacqi program. For this reason, different naming conventions are used:

® acqgi.Code replacesvnmr/acqqueue/expn.username.PID.Code

® acqi.RF replacegvnmr/acqqueue/expn.username.PID.RF (only used
when shaped pulses or rf patterns involving a waveform generator are involved).

® acgi.par replacesvnmr/acqgqueue/expn.username.PID ; this file (also
an ASCII parameter file) is meant facqgi directly; it tellsacqi how to display
the FID or the spectrum interactivelp( wp, etc.).

® |dcontrol is the same as with the normgd command (only used if waveform
generators are present).

Enteringgo('acqi') orgf isoften also used to test a pulse sequence up to the point
of Acode generation (without doing a real acquisition yet) or to permit inspection of
the Acode and associated files. Note that the Acode generatg('byqi') differs
in several points from the code generated through a ngamal

® Only Acode for the first FID is generated,

® Parametealock is setton' (no automatic locking),

®* Parametelbad is settdn' (shim values are not loaded),

® Parametewshim is set ton' (no automatic shimming occurs),

® Parametess is set td) (no steady-state pulses),

®* Parametedp is set tdy' (32-bit acquisition),

The macrayf modifies even more parameters:

® Parametecp is set tdn' (the observe phasgph is not cycled automatically),
®* Parametegain is settdy' (use fixed gain),
® The lock to be set into the “fast loop” mode.

By definition, the parameters used for shimming on the FID or on the spectrum (as well
as the parameters for interactive parameter adjustment) are those for the firstincrement
of an arrayed experiment. Alsgf, sets the parameters such that excessive startup
delays are avoidedhlock ,wshim, ss, andgain parameters). For the FID mode in
particular,cp='n' avoids jumping baselines and/or intensities by stopping the phase
cycling (assuming thep flag oroph are used in the pulse sequence).

Note also that the Acode segment for the first FID—as obtainegby&cqi’) —
cannotbe taken as a model for subsequent code segments (both in size and contents),
because it contains a number of rf initialization instructions that are not repeated for
every other FID. The first Acode segment is always bigger than all following segments
of an arrayed or multidimensional experiment.

58 VNMR Pulse Sequences 01-999014-00 A0398



chapter 6. Acquisition Process

The acquisition procegscqproc operates in three phases: uploading and starting the
acquisition operating system, uploading data for the current acquisition, and
downloading acquired FIDs and associated informafiegproc is the main

software link from the host computer to the acquisition cabinet (the actual
spectrometef)

Acqgproc is a background process that must be constantly running on a spectrometer.
It is started at boot-up time throu@gmmr/rc.vnmr (which is called by

/etc/rc.local ) if the file (flag) /etc/acqpresent is found./vnmr/rc.vnmr

the UNIX kernel (vmunix ) with the Varian device driver, and tlaeqpresent  flag

are installed together with the VNMR software by ¢heacq installation script.

From a hardware point-of-view, the host computer is linked to the acquisition CPU
through the HAL (Host-to-Acquisition Link) board, a board with a SCSI interface.
Thus, the two computers are connected by a SCSI bus. Unless there is a second SCSI
bus used exclusively for acquisition, the same SCSI bus is usually used for
communication with hard disks, tape drives, and a CD-ROM drive (if présext)ing

as a special device on the SCSI bus, the HAL board requires a special device driver in
the UNIX kernel (i.e., a special, proprietary communication protocol is used between
the the host computer and the acquisition CPU).

6.1 Starting the Acquisition Operating System

Upon startupAcqproc checks if the acquisition CPU has resident software. If not

(e.g., after initialization)Acgproc uploads the acquisition operating system (i.e., the
software that permanently resides in the acquisition CPU). The files that form the

acquisition operating system are stored in the diredtorgr/acq

® rhmon.out is the part of acquisition CPU operating system that controls the
communication with the host computer through the HAL board.

® autshm.out is the autoshimming part of the operating system.

® xrop.out is the central part of operating system (Acode decoder) for systems
with output board (63-step FIFO).

® xrxrp.out  is the central part of operating system (Acode decoder) for systems
with acquisition control board (1024-step FIFO, mostly UNITY systems).

® xrxrh.out  is the central part of operating system (Acode decoder) for systems
with pulse sequence control board (2048-step FIFO, UNIT%systems).

1The interactive acquisition programeqi talks directly to the acquisition CPU, be it for locking,

for shimming, or for interactive acquisition.

2Because the electrical specification of the SCSI bus would impose a severe restriction with respect
to the maximum cable length between the two computers (or any two SCSI devices), Varian uses a
special “differential box” that adds an electrically driven branch to the SCSI bus. This box permits
using a maximum cable length of over 10 meters between the host computer (actually the differential
box) and the acquisition cabinet.

01-999014-00 A0398 VNMR Pulse Sequences 59



Chapter 6. Acquisition Process

® xr.conf s the part of operating system that returns information about the rf
configuration toAcgproc and theconfig  program fvnmr/bin/vconfig ).

In earlier VNMR releases, a symbolic link namegut was created to one of the
two filesxrop.out andxrxrp.out  when calling thesetacq script, in which the
user had to reply whether the system was equipped with 63-step or 1024-step loop
FIFO. The task of selecting the right versiorxafp.out , xrxrp.out , or

xrxrh.out is taken over byAcqproc , which gets the necessary hardware
information from thexr.conf  part of the acquisition CPU operating system.

Itis possible (although unlikely) that after the installation of a new version of VNMR,
the acquisition CPU still has an old version of the acquisition operating system loaded.
In such a situationicqproc may not “realize” the revision discrepancy, because the
acquisition CPU is still running on uploaded software, which in turn leads to error
messages or even a system hangup—at the very least when trying to communicate with
the acquisition CPU. After loading VNMR (before starting the Aegproc ), the
acquisition CPUnustbe reinitialized.

6.2 Queuing and Starting the Acquisition

Acgproc monitors the acquisition CPU. If no experiment is running or when the
acquisition CPU is ready to accept the next Acode segment (instruction set and data for
one FID),Acgproc uploads that Acode (and waveform generator data files if
required) to the acquisition CPU (actually to the Host-to-Acquisition Link) and
initiates the acquisitiorizigure 16shows the communications scheme controlled by
Acgproc .

Acqgproc controls not only the data acquisition, but also the queuing of acquisitions
from different experiments and different users. The experiments in the queue are
executed in the order of their submissidicquisitions” here also include queue

Ivnmr/acqqueue/expn.username.PID.Code Ivnmr/acqqueue/ldcontrol
Ivnmr/acqqueue/expn.username.PID.RF WEFG load control filq

WFG datafile

/vnmr/acqqueue \
/expn.username.PID

- 4 Acgproc paramete
FID file N m\ gproc_parameter
Szl e
~Ivnmrsys/expn/acqfil/fid < 8 T (/vnmr/acqbin/sendZVnmr )
N
| acquisition log file HAL / acquisition CPLI

/vnmr/acqqueue/Masterlog

Figure 16. Acquisition control byAcgproc

3The only means of manipulating the queue is to abort the current acquisiifmofh the current
experiment), to stop it temporarily and go to the next queued experisaefrof the active
experiment), to remove an acquisition from the qusaefifom the queued experiment before it
becomes active), or to add a new experiment to the end of the queue.

60 VNMR Pulse Sequences 01-999014-00 A0398



6.3 Downloading the FID

items that do not generate NMR data as submittechbyge , spin , lock , shim,
sample , andsu ; these will not be discussed in detail here because their actions can
also be made part of a “normal” experiment (as started withahga, orau).

The process of starting up an experiment (after its submissiga)bgvolves the
following steps:

¢ |f either the acquisition CPU is idle or has just terminated the previous experiment,
the next item in the acquisition queue is launched.

¢ |f waveform generator-shaped pulses, decoupling pattern, or shaped gradients are
involved, the necessary waveform generator data are uploaded into the acquisition
CPU memory fromivnmr/acqqueue/expn.username.PID.RF . The file
/vnmr/acqqueue/ldcontrol contains the control information that permits
Acgproc to instruct the acquisition CPU about the structures within the waveform
generator data file, and where to load these structures (pattern, waveform).

* The Acode for the first FID is uploaded into the acquisition CPU as well, and its
interpretation is initiated.

* |n arrayed or multidimensional experiments, the Acode segment for the next FID
is loaded ahead of time, such that the acquisition can switch from one FID to the
next without having to upload Acode in between FIDs. This is called buffered
acquisition; it dramatically reduces the dead-times between FIDs (no extra delays
for data transfers or disk access).

® Acgproc also acts as a message handler and transmits interrupt messages (such
as generated by tlea or sa commands) to the acquisition CPU.

6.3 Downloading the FID

Acgproc polls the acquisition CPU at regular (dynamic) intervals. If data are ready
(after a block size or a completed FID or experimeatgproc downloads it onto the

host computer memory and stores the data in the experiment directory from which the
acquisition was started. This involves the following actions and mechanisms:

* The data transfer from the acquisition CPU (the HAL) to the host computer occurs
through polling byAcqgproc . Acgproc polls at regular intervals, but tries
adjusting the polling rate to the rate at which data are ready in the acquisition CPU.
This avoids unnecessary dead times.

¢ |f data are ready (block size or FID completed,interrupt completed}cgproc
downloads the FID from the HAL memory to the host computer.

® Acgproc then checks whether a lock filvnmrsys/lock_n.primary 4

exists for the current experiment. If a lock file is found, its contents are inspected

4The lock file~/vnmrsys/lock_n.primary has the experiment number coded in the file name
(lock_n ). The extensionprimary  indicates that it is @rimary lock file A secondary lock filés
generated temporarily before generating the primary one, in order to avoid that two processes lock
the same experiment at the same time (i.e., between detecting that “no lock file exists” and the
creation of a lock file, another process could in theory create the same lock file; the secondary lock
file avoids this). The lock file contains a code for the kind of lo8kx(foreground), the host name of

the system on which the locking process runs, and the process-ID (PID) of the locking process. The
PID permits detecting whether the locking process is still active.

01-999014-00 A0398 VNMR Pulse Sequences 61



Chapter 6. Acquisition Process

in order to find out whether a foreground VNMR s active in the current
experiment.

* The FID is stored in the appropriate experiment by over-writing or updating the
applicable section of the FID file/ynmrsys/expn/acqfil/fid ). The
ownership of the FID file is transferredHown) to the experiment owner. During
this process, the active experiment is locked\byproc (acquisition lock).

¢ |f a foreground VNMR is running in the current experiment, it is notified through
send2Vnmr , and its (buffered) processed parameter tree is updateghl
celem parameters). If conditional processing was specifie( , wbs, wnt , or
wexp parameters), this processing is initiated througtséne2Vnmr call. The
send2Vnmr call uses the following syntax:

ps -ax | lvnmr/acgbin/send2Vnmr “YNMR command string”

* |f no foreground VNMR is found, or if no foreground VNMR process is running
in the current experiment but conditional processing was specified, that processing
is performed through a background VNMR call:

Vnmr -mback -nExp# “VNMR command string”
During this process, the active experiment is locked by VNMR (background lock).

* A log file iIvnmr/acqqueue/Masterlog is maintained that contains
information about submitted experiments, interrupts and completion points, as
well as information about acquisition-related processing.

* When the experiment completes, the queue éies.username.PID.Code
expn.username.PID.RF  (if present), anéxpn.username.PID  in
/vnmr/acqqueue  are deleted, and the next experiment is submitted to the
acquisition CPU.

All the information thatAcgproc needs for handling downloaded FIDs are contained
in the parameter fillvnmr/acqqueue/expn.username.PID . This file includes
the following parameters:

® Parameterdp, np, nf , andarraydim that contain data format information.

®* ParameterBs, nt ,ct ,celem ,andinterleave  (the latter corresponding i )
that allowAcgproc to determine whether a block or an FID are completed and
which code segmentto load nextitiferleave="y' , cycle block-wise through
all FIDs; otherwise, switch to the next FID when the previous one is completed).

* Parametersverr , wbs, wnt, andwexp that specify what action needs to be
initiated in VNMR in the case of an error condition, a completed block, a
completed FID, or completed experiment.

* Parametewait that specifies whether the following experiment can be started
immediately following the current onevgit="n' , the standard case) or whether
the conditionalexp orwerr ) processing should be completed first
(wait="y" ). Settingwait to'y' allows for another experiment to be started on
the same sample usiag('next’) , before switching to the next sample (i.e., at
the front of the acquisition queue).

®* Parametergain andspin are used in connection with the Acquisition Status
window. Unused are paramet@riority , the queuing priority, ansuflag

62 VNMR Pulse Sequences 01-999014-00 A0398



6.4 Controlling Acgproc

Path and other file information:
® Directoryfidpath  stores the FID file.
® curexp is usually the parent diipath
® userdir is usually the parent elrexp .
® The variablesystemdir is usually/vnmr .

® id is the name of the parameter file itself; it is also the root part of the names for
the Acode and waveform generator data files.

® date is atime stamp for the submission of the experiment

6.4 Controlling Acgproc

Becausé\cqproc needs to be able to store FIDs and modify parameter files in every
user's experiment directories, it must be a process ownezbby. Also, onlyroot

can usehown to transfer the ownership to the respective usefsedproc were

owned by a standard VNMR user, only that user could acquir€ ¢fadte that only one
copy of Acgproc per system can run at a time).

Theroot ownership for the procegscqproc can create problems: in case of errors

(in particular, experiencing communication failures on the SCSI bus) every user should
be able to kill and restaftcgproc . And in the case of software troubles in the
acquisition system, the acquisition CPU sometimes needs to be restarted, which should
only be done whilécqgproc is shut down (otherwise very likeAcgproc will not

be able to communicate with the HAL board). UNIX processes can only be killed by
their respective owners, or byot ; this implies that onlyoot can kill Acqproc ,

androot must restart it, unless the SUID protection bit (4000) is set. A consequence
could be that many people need to knowtbet password, which of course is totally
unacceptable from a security point of view.

The solution for this situation is a special accaamjproc that is equipped with

root privileges (UID and GID are the same as foot ) and which may or may not

be equipped with a password. In networked environments, a password (different from
theroot password, of course) is certainly recommended; however, this precludes
resettingAcgproc from the.rootmenu to generate such an account. A shell script
/vnmr/bin/makesuacqproc is provided, which must be executedast .

When logging into the accouatqgproc , no shell is obtained (as with usual UNIX
accounts), but a shell scrifpghmr/bin/execkillacgproc (only executable by
root ) is executed instead, after which the user is automatically logged out again
immediately /vnmr/bin/execkillacqproc kills Acgproc if it is found in the
process table; otherwise, it stadtsgproc (asroot ). This means that for restarting
(killing and starting)Acqproc , the user must cadu acqproc  twice. Broadcast
messages indicate whethfgrgproc has been aborted or started (this message is
displayed in every active UNIX window and the VNMR master window).

5The other users could open up the permissions in their directories and files, but this would not solve
all problems; also, itis undesirable to loosen the file system security by making so many files writable
by everybody (or at least the groamr).

01-999014-00 A0398 VNMR Pulse Sequences 63



Chapter 6. Acquisition Process

For SunView, by adding the line
“Fix Acquisition” Su acgproc

to a user’'s-/.rootmenu file, this function becomes available in the

SunView rootmenu . This can only work if the accouatgproc has no password,
because there is no keyboard input to commands that are executed from
the.rootmenu

For OpenWindows, the menu file #$.openwin-menu , and the line to be added is
as follows:

“Fix Acquisition” exec su acqgproc

64 VNMR Pulse Sequences 01-999014-00 A0398



chapter 7. Digital Components

For the remaining sections of this manual, having at least a rough idea about the
structure of the digital part of the spectrometer is essehtialre 17gives on

overview of the relevant components that are involved—more details are provided in
the following chapters.

MC68000 = » Diagnostics terminal
@
] 1 @
<
=
a RAM <
=|__scsl > Host Computer
HAL
Sample changer
MC68000) » Diagnostics terminal
— » (VT controller)
<
E RAM PROM Sample changer 1/0
Eject / insert
o Spinning
Acquisition CPU VT controller
(unused)

Automation control

Pulse Programmer

E

;‘i) Q Times 2 Times AP bus Shim / DAC board
@ & 0s I 5
'-'>J 5 States 8 sStates| Control bits =
AP bus 8
Hardware loop %)
LL
Control bits 04

ADC Y

- \/ \/ U YYVY

ADC S/H

A

©
Q

ADC S/H

A

ST™ : B

DMA
Overflow?
Adder

Figure 17. Digital components of a spectrometer

01-999014-00 A0398 VNMR Pulse Sequences 65



Chapter 7. Digital Components

It turns out that there are two CPU boards in the acquisition computer: the Host-to-
Acquisition Link (HAL) and the acquisition CPU. Both use a Motorola MC68000 CPU

chip and have a serial port for a diagnostics terminal. The two computers fulfil different
tasks (the HAL is dedicated to communications with the host computer and it holds the
actual NMR data), but they operate on the same bus, share the same address space, and
work on the same data. Therefore, in subsequent chapters we treat them both as one
single computer (the fact that there are two CPUs is irrelevant to the user).

7.1 Main Boards

The tasks for the main components in the digital part of the spectrometer can be
summarized as follows:

® The main purpose of theAL board is to act as a link between the host computer
and the acquisition CPU. Through its SCSI interface, the host computer
(Acgproc ) can upload not only Acode (s€&aapter 8, “Acquisition CPU and
Acode,” on page §9but also the acquisition operating system through DMA
(direct-to-memory access) into the acquisition CPU. After an experiment, the
NMR data are downloaded through the same interface(segter 6,
“Acquisition Process,” on page b9

The other purpose of the HAL board is to hold the current NMR data in its RAM.
For arrayed and multidimensional experiments, there is sufficient RAM to hold
both the current and the next FID. After completion of the scans for an FID, this
permits continuing with the next data set without delay (“buffered acquisition”).

®* The main task of thacquisition CPU is the interpretation of the Acode,
generating the information that is fed into the pulse programmer. With the aid of
the programmer, it also perform the tasks of autolocking and autoshimming (the
spinner speed regulation is done by dedicated peripheral circuitry).

The acquisition CPU is equipped with boot PROMs, containing a primitive
operating system that is running after switching on or resetting the CPU, up until
the real acquisition operating system is loaded $&stion 6.1, “Starting the
Acquisition Operating System,” on page) 58he acquisition operating system

fills most of its RAM, which during acquisition also holds the Acode, the data, and
instructions needed for performing an experiment (Fesgpter 8, “Acquisition

CPU and Acode,” on page 69

The acquisition CPU sends information to the pulse programmer and exchanges
information with the automation board through an on-board parallel /0 channel
(seeChapter 13, “Acquisition CPU Communication,” on page)145

The acquisition CPU has two serial ports, one of which can be used for a
diagnostics monitor (either to display diagnostic information during NMR
experiments or to run PROM-based on-board diagnostics software). In UNITY
and earlier spectrometers, the other serial port was used to exchange information
with the VT controller (the Oxford VTC-4); in UNIT¥lusspectrometers, this is

done via automation board.

® |In a UNITYplusspectrometer, thautomation board drives five serial ports,
through which information is exchanged with the sample changer (ASM-100 or
SMS), the magnet leg pneumatics control circuitry (eject/insert, slow drop, and
bearing air flows), the spinner control circuitry, and the VT controller (one serial
port is currently unused). In UNITY and earlier spectrometers, the second serial

66 VNMR Pulse Sequences 01-999014-00 A0398



7.2 Bus Structures

port of the acquisition CPU was used for the VT controller. Instead, on these
systems the automation board also drove the lock power, phase and gain controls,
and the receiver gain; all these functions are now addressed via the AP bus (see
Chapter 12, “AP Bus Traffic,” on page 137

In a UNITYplus,the automation board also contains the bootup mode selector and
some battery-buffered RAM (“zero-power RAM”) to store the rf configuration.

* The main task of thpulse programmer is to accurately control the timing during
an NMR experiment. It also acts as a buffer for timing and control information; it
directly controls most of the rf gates and has a dedicated output channel (the AP
bus, se€hapter 12, “AP Bus Traffic,” on page J)3frough which it can send
information to most parts of the spectrometer. It controls the shim gradients and all
devices that set frequency offsets, attenuations and pulse amplitudes, phase shifts
and pulsed field gradient amplitudes (see &lkapter 9, “Pulse Programmers,” on

page 83.

* TheADC (Analog-to-Digital Converter) board  receives two audio signals (0 and
90 degrees) from the receiver board (via an audio filter). Each of the channels is
fed into sample-and-hold and ADC circuitry. The data sampling is triggered by the
pulse programmer. If necessary, the data are also scaled down on the ADC board.
At its output, there is a FIFO (first-in-first-out) buffer, from which the data are fed
directly into the sum-to-memory board.

® TheSTM (Sum-to-Memory) board reads in the current FID from the HAL board
through DMA and adds in the new FID from the FIFO buffer on the ADC board,
checks for mathematical overflow (at which point the FID will be scaled by
another bit), and stores the result back in the HAL memory. The STM board does
complex additions according to the current receiver phase(sgger 18,
“Acquiring Data,” on page 205

7.2 Bus Structures

The main components in the digital part of the spectrometer are linked with different
bus structures that carry the data traffic:

® SCSI (Small Computer System Interface) bus  is an 8-bit parallel bus that links
the HAL board, the host computer, and most host computer peripherals (disks,
tapes, CD-ROM, etc.).

® Acquisition CPU bus is a 16-bit parallel bus structure that is integrated in the
cardcage backplan®ERSAbus ). It carries the data traffic between the
acquisition CPU, the HAL board, and the STM board. It also provides dc power to
the other boards in the same card cage (e.g., the automation board).

® 1/O bus is an 8-bit parallel bus that is driven by the acquisition CPU. This bus
connects the acquisition CPU, automation board, and pulse programmer.

® AP (analog port) bus is the most important link between the pulse programmer
and most of the rf devices. Apart from the gating lines, the AP bus carries
information on frequency offsets, attenuation and power modulation levels, pulsed
field gradient amplitudes, small-angle phase shifts—all the numeric information
for the rf partin general. The AP bus is also used to transfer shapes and patterns to
the waveform generators. On the UNIgIs,lock power, lock phase, lock gain,
and the receiver gain are set over the AP bus (on UNITY and earlier spectrometers,

01-999014-00 A0398 VNMR Pulse Sequences 67



Chapter 7. Digital Components

this was done with the automation board). The AP bus is 16-bit parallel (see also
Chapter 12, “AP Bus Traffic,” on page 937

® On UNITYplussystems, the gating information (“fast lines”) is routed in its own
bus, thedS (high-speed) bus (seeChapter 9, “Pulse Programmers,” on pagé 85

The components shown ifigure 17do not cover the entire digital part of the
spectrometer, but mainly the computing part. Especially on more recent instruments,
such as the UNITY¥lus, digital components reach much further into the spectrometer:

* The waveform generators (s€éapter 16, “Waveform Generators,” on page)163
are completely digital.

® Each transmitter board consists of two parts: the rf board and a digital control
board (se&ection 16.1, “How Does a Waveform Generator Fit Into the System?,”
on page 16&ndSection 4.2, “How Do Pulses Work?,” on pagé.40

Because virtually everything in the spectrometer is digitally controlled, digital
components are found on every subunit of the spectrometer (s&zatam 12.2,
“What Devices are Driven by the AP Bus?,” on page)139

68 VNMR Pulse Sequences 01-999014-00 A0398



chapter 8. Acquisition CPU and Acode

After the acquisition CPU is “running” (i.e., once the acquisition operating system has
been uploaded and started) and “active” (performing an experiment), it in essence
holds the following data blocks:

® Acquisition operating system (s€ection 6.1, “Starting the Acquisition Operating
System,” on page )9including the Acode interpreter.

® Current FID.
® FID-specific data and instructions (Acode).

8.1 CPU Address Space

The operating system and the Acode are located in the RAM of the acquisition CPU;
the FID is stored in the RAM of the HAL board. For the rest of this chapter, we will
discuss the Acode alone. With respect to the acquisition CPU and the HAL board, you
don’t have to be concerned with anything but the data in the address space of the
acquisition CPU and the way these data are interpreted and used.

The CPU address space also includes status registers on the STM (sum-to-memory)
board. This enables communicating with a board driven by firmware (“hard-coded
software”) and permits transferring acquisition information (number of points, observe
phase) to the STM board (see al¥wpter 18, “Acquiring Data,” on page 205

8.2 Looking at Acode

Acode @cqi.Code fromgo(‘acqi’) or expn.username.PID.Code for

normal acquisitions, both inmr/acqqueue , see also the previous chapters) is
primarily a binary file, mostly consisting of 16-bit integers, interspersed with bit
patterns (organized in 16-bit binary words) and some 32-bit long integers. As 16-bit
units dominate (and everything is organized in 2- or 4-byte unitspdthe

command (opbd -s under Solaris 2.3) is an almost adequate way to look at this file:

UNITY400:vnmrl - 1> od -i lvnmr/acqqueue/acqi.Code

0000000 0 1 0 6 0 421 0 -28096
0000020 0 16 0 0 0 0 0 0
0000040 0 0 0 0 0 0 0 0
0000060 0 0 0 1 0 0 268 94
0000100 1 293 3 106 106 85 4 0
0000120 0 0 0 0 64 0 16 16
0000140 0 0 0 0 512 1024 1536 0
0000160 4096 8192 12288 0 0 1 0 0
0000200 0 0 0 0 0 0 0 0
0000220 0 0 0 0 63 0 0 0
0000240 0 1 2 3 0 0 0 0
0000260 0 0 0 0 0 0 0 0
0000300 0 0 0 0 0 0 0 1542
0000320 0 0 0 0 20 31 59 1
0000340 15 1 0 0 0 8 0 16
0000360 0 24 0 24 11 148 15 2
0000400 0 0 0 256 0 512 0 768
0000420 0 768 11 164 53 0 1 19
0000440 5 157 1 4 6 6 -21696 -17651
0000460 -25856 -21676 -17428 -25809 -25713 6 8 -22752

01-999014-00 A0398 VNMR Pulse Sequences 69



Chapter 8. Acquisition CPU and Acode

0000500
0000520
0000540
0000560
0000600
0000620
0000640
0000660
0000700
0000720
0000740
0000760
0001000
0001020
0001040
0001060
0001100
0001120
0001140
0001160
0001200
0001220
0001240
0001260
0001300
0001320
0001340
0001360
0001400
0001420
0001440
0001460
0001500
0001512

-18688
159

-18437
68
1025

150
39
8487
4123

-26690
1
-18498
1
79
4095

-18449 -18514
8 -22752
-26879 -18688

360 65

16 55

6 3
-21614 -17504
-21615 -17536
-32255 -32236
16 258

30 59

3 -21592
-17472 6
-17536 6
-17663 6
-17664 6
-17663 6
-17658 6
-17528 151

250 0

151 12787

15363 0

0 256

0 0

0 6

150 0

0 16

0 1

4369 150

0 150

1 74

90 99

97 20

-18437 -18498 -26879 -18688
-18688 -26690 -18449 -18514
0 16 257 0
769 0 59 2867
59 2966 514 4095
-21608 -17454 -25856 -25856
6 1 -21605 -17664
6 1 -21616 -17647
-32224 -32207 -32191 -32171
0 59 2866 1025
2982 514 4095 0
-17622 -25856 -25856 6
1 -21589 -17664 6
1 -21600 -17646 6
1 -21708 -17579 6
1 -21683 -17631 6
1 -21687 -17664 6
1 -21605 -17528 6
4129 71 63 2
151 12297 7 9
7 9 75 1
0 5229 27904 0
8390 4123 19 5
6 1 -21605 -17528
1 -21589 -17528 150
0 150 0 0
1 74 150 0
151 4489 150 0
0 1 151 4489
0 0 39 74
16 2 74 152
1 0 -28096 8390
232

This Acode is for a simple experimenrnpul ,pl1=0,d1=0,d2=0) and obtained with
thegf macro (“real” Acode for arrayed or multidimensional experiments cavelng

long, seeSection 5.2, “Tasks for the Pulse Sequence Executable,” on page 57
Looking at the above code, we can already (roughly) distinguish two parts: the top part
that consists mainly of “simple numbers” and the bottom part that has a lot of “funny
numbers” (indicating that there are things other than 16- or 32-bit integers).

The-i

option causesd to interpret the file given in the argument as 16-bit signed

integers; bit patterns that have the most significant bit set, large unsigned 16-bit
integers, negative or very large 32-bit integers result in large negative numbers being
would interpret most 32-bit integers correctly (those which start at an
odd address), but would misinterpret most of the file by taking two 16-bit numbers for

a single 32-bit number; bit pattern would again mostly be shown as very large numbers.
Other options food (for octal or hexadecimal output) make the result even less
interpretable. Clearly, a tool is needed that properly takes all the bits and pieces of the

shown.od -

Acode apart.

Methods of Interpreting the Contents of Acode Files

The information on the contents of the Acode is found (someholwiim/psg
although not in a single place or file, but rather convoluted and spread over many
source and header files. In general int necessary to know about the contents of the
Acode, although for people who do low-level pulse sequence programming (or modify
files in/vnmr/psg ), an Acode decoder can sometimes provide extremely valuable
debugging information—especially becausedpe command does not interpret
certain low-level commands and does not show phase tables, real-time phase math, and
even some of the “normal” statements, sucbffset

70

VNMR Pulse Sequences

01-999014-00 A0398



8.2 Looking at Acode

® In the remaining parts of this manual, Acode contents are shown as output by a
program that has been submitted to the user libnasgr(ib/bin/apdecode ).
This program shows Acode structures in detail (all contents); the instruction part
is decoded in that only the instruction codes themselves are shown, whereas
arguments to code functions are (partly) decoded.

apdecode is certainly not a perfect solution because it doesn't try decoding
everything; it will also not work with all possible rf configurations. Also, because
the Acode undergoes extensive changes with every VNMR relepdecode is
undergoing constant adaptations, and it, in general, only works with the VNMR
release for which it has been written. The main purpose for shapdegode

output in this manual is to illustrate specific contents of the Acode and to show the
effect that specific functions (phase calculations, phase tables) have on Acode.

An alternative option for looking at Acode (and related things) igltimig'

option to thego command, which will display extensive (debugging) information
in the window from which VNMR was called (the parent window). For anyone
who is not an expergo('debug’) cannot be recommended because its output
is much too detailed to be of real value. The outpapdecode is much more
compact (but may be incomplete at times).

* The output of the Acode decodapdecode on the same Acode as shown above
looks as follows:

Number of traces: 1
Code Start: 6
Code Ends: 421

aaddr faddr laddr value comment

A LC (Low Core) Structure ###H#HiHHHE

6 0 0 37440 LC->np (long)

8 2 2 16 LC->nt (long)
10 4 4 0 LC->ct (long)
12 6 6 0 LC->isum (long)
14 8 8 0 LC->rsum (long)
16 10 10 0 LC->dpts (long)
18 12 12 0 LC->autop (long)
20 14 14 0 LC->stmar (long)
22 16 16 0 LC->stmcr (long)
24 18 18 0 LC->rtvptr (long)
26 20 20 1 LC->elemid (long)
28 22 22 0 LC->squi (long)
30 24 24 268 LC->idver
31 25 25 94 LC->02auto (Offset to AUTOD)
32 26 26 1 LC->ctctr

33 27 27 293 LC->dsize (blocks)

34 28 28 LC->asize (blocks)

35 29 29 106 LC->codeb (Offset to Code)
36 30 30 106 LC->codep

w

37 31 31 85 LC->status

38 32 32 4 LC->dpf (0=int, 4=long)

39 33 33 0 LC->maxscale

40 34 34 0 LC->icmode

41 35 35 0 LC->stmchk

42 36 36 0 LC->nflag

43 37 37 0 LC->scale

44 38 38 64 LC->check

45 39 39 0 LC->oph

46 40 40 16 LC->bsval

a7 41 41 16 LC->bsctr

48 42 42 0 LC->ssval

49 43 43 0 LC->ssctr

50 44 44 0 LC->ctcom

51 45 45 LC->dptab 0 0x200 0x400 0x600
55 49 49 LC->obsptb 0 0x1000 0x2000 0x3000

01-999014-00 A0398 VNMR Pulse Sequences 71



Chapter 8. Acquisition CPU and Acode

LC->rfphpt

LC->curdec (unused)

LC->cpf (cycle phase flag)
LC->maxconst

LC->tablert

LC->output card status reg
LC->analog port status reg
LC->analog port data reg
LC->analog port address/control reg
LC->input card status reg
LC->input card data reg

LC->input card ocsr reg

LC->stm card status reg

LC->tpwrr (xmtr power)

LC->dpwrr (dec power)

LC->tphsr (xmtr phase shift)
LC->dphsr (dec phase shift)
LC->dlvIr (dec level)

LC->srate (High Speed Rotor Freq)
LC->rttmp (temp real time->interlock)
LC->sparel (unused)

~
©
~
»
~
)
OO0 O0OO0O0OO0O0OO0O0O0O0O0O0OO0OWNROOOOWOOOOOOOOO0OO0OOOOOKR OO

80 74 74 LC->zero
81 75 75 LC->one
82 76 76 LC->two
83 77 77 LC->three
84 78 78 LC->v1
85 79 79 LC->v2
86 80 80 LC->v3
87 81 81 LC->v4
88 82 82 LC->v5
89 83 83 LC->v6
90 84 84 LC->v7
91 85 85 LC->v8
92 86 86 LC->v9
93 87 87 LC->v10
94 88 88 LC->v11
95 89 89 LC->v12
96 90 90 LC->v13
97 91 91 LC->v14
98 92 92 LC->(v15)
99 93 93 LC->(v16)

HitHHHHEH AUTOD: Automation Data ##HHEHHEHHH

100 94 0 0 AUTOD->checkmask (long)

102 96 2 0 AUTOD->when_mask: load="n" wshim="n’
103 97 3 1542 AUTOD->control_mask

104 98 4 0 AUTOD->best

105 99 5 0 AUTOD->loops

106 100 6 0 AUTOD->sample_mask (tray location)
107 101 7 0 AUTOD->sample_error

108 102 8 20 AUTOD->recgain

109 103 9 31 AUTOD->lockpower

110 104 10 59 AUTOD->lockgain

111 105 11 1 AUTOD->lockphase

HHHHHHHEHEHEHE INStruction Section #HHHHEHEHIHIHIH

112 106 0 15 SETPHATTRibutes CH1 0 0x8  0x10  0x18
allBits =  0x18, addr = 0xb0094
126 120 14 15 SETPHATTRIibutes CH2 0 0x100 0x200 0x300

allBits = 0x300, addr = Oxb00a4
140 134 28 53 ACQBITMASK 0
142 136 30 1 CBEGIN
143 137 31 19 INITialize acq
144 138 32 5 CLEAR
145 139 33 157 LocKFILTER fast = 1, slow = 4
148 142 36 6 APBOUT 7 items Oxab40 Oxbb0d 0x9b00 Oxab54 Oxbbec

0x9b2f 0x9b8f
157 151 45 6 APBOUT 9 items 0xa720 0xb700 0x97be Oxb7ef Oxb7ae
0xb7fb Oxb7be 0x9701 0xb700
168 162 56 159 TUNE_FREQ CH1 9 words
0xa720 0xb700 0x97be Oxb7ef Oxb7ae Oxb7fb Oxb7be

0x9701 0xb700

72 VNMR Pulse Sequences 01-999014-00 A0398



180
181
184
187
190

196

202
208
212
216
220
224

234
237

243

249
255
259
263
267
271
275
279
283
287
291
295
299
303
307
309
310
315
316
318
319
320
322
324
325
326

341
342
343
344
345
348
352
355
359
362
365
368
371
374
377
380
382
385
387
390
392
395
398
401
404

01-999014-00

174
175
178
181
184

190

196
202
206
210
214
218

228
231

237

243
249
253
257
261
265
269
273
277
281
285
289
293
297
301
303
304
309
310
312
313
314
316
318
319
320

335
336
337
338
339
342
346
349
353
356
359
362
365
368
371
374
376
379
381
384
386
389
392
395
398

A0398

90

100
104
108
112

122
125

131

137
143
147
151
155
159
163
167
171
175
179
183
187
191
195
197
198
203
204
206
207
208
210
212
213
214

229
230
231
232
233
236
240
243
247
250
253
256
259
262
265
268
270
273
275
278
280
283
286
289
292

8.2 Looking at Acode

NO_OP

SETPHAS90 CH1c 0

PHASESTEP CH1 360 units (90.00 degrees)
SETPHASE CH1f 0

APChipOUT APaddr 11, reg 51, +logic, 1 byte
max 79, offset 16, value 55
APChipOUT APaddr 11, reg 150, -logic, 2 bytes
max 4095, offset O, value 4095
4 items 0xab98 0xbbd2 0x9b00 0x9b00
2 items Oxab92 Oxbba0
2 items Oxab9b 0xbb00
2 items Oxab91 Oxbbh80
2 items 0xab90 Oxbb11
8 items 0x8201 0x8214 0x8220 0x8231 0x8241
0x8255 0x8264 0x8271
SETPHAS90 CH2c 0
APChipOUT APaddr 11, reg 50, +logic, 1 byte
max 79, offset 16, value 30
APChipOUT APaddr 11, reg 166, -logic, 2 bytes
max 4095, offset O, value 4095
4 items Oxaba8 Oxbb2a 0x9b00 0x9b00
2 items Oxaba2 OxbbcO
2 items Oxabab 0xbb00
2 items Oxabal Oxbb80
2 items OxabaO Oxbb12
2 items Oxab48 0xbb01
2 items Oxab34 0xbb55
2 items Oxab35 0xbb00
2 items Oxab4d Oxbb21
2 items Oxab43 O0xbb01
2 items Oxab49 0xbb00
2 items Oxab36 0xbb06
APBOUT 2 items Oxab9b 0xbb88
APBOUT 2 items Oxabab 0xbb88
EVENT1_TWRD 1.000 usec
GAINAutomation
SETVT Oxford PID 440, temp 3000.0, vtc 25.0
NO_OP
EVENT1_TWRD
STartFIFO
StopFIFO
PADelay 4 words
EVENT1_TWRD
STartFIFO
StopFIFO
SHIMAutomation mode =1, 7 words
0x700 0x3c03 0 0 0x146d 0x6d00
NOISE loop 256 pts, dwell 199 usec + 1.000 usec
INITialize acq
CLEAR
NextSCan
HighSpeedLINES (void)
APBOUT 2 items Oxab9b 0xbb88
HighSpeedLINES (void)
APBOUT 2 items Oxabab 0xbb88

APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT

APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT
APBOUT

10 msec

500 msec

HighSpeedLINES
HighSpeedLINES
HighSpeedLINES
HighSpeedLINES
SETPHAS90
HighSpeedLINES
HighSpeedLINES
EVENT1_TWRD
HighSpeedLINES
EVENT1_TWRD
HighSpeedLINES
EVENT1_TWRD
HighSpeedLINES
HighSpeedLINES
ASSIGNFUNC
SETPHAS90
SETPHAS90

(void)
(void)
(void)
(void)
CH1
RXOFF
RXOFF
10.000 usec
RXOFF TXON
7.000 usec
RXOFF
10.000 usec
(void)
(void)
zero oph
CH1 zero
CH2 zero

zZero

VNMR Pulse Sequences

73



Chapter 8. Acquisition CPU and Acode

407 401 295 152 EVENT2_TWRD 296 usec + 850 nsec
410 404 298 90 SETInputCardMode
414 408 302 99 ACQXX loop np=37440, dwell 199 usec + 1.000 usec

417 411 305 7 STartFIFO
418 412 306 97 HouseKEEPing
419 413 307 20 BRANCH Offset 232

Total code size = 421 words / 842 Bytes / 0.8 KB

8.3 Structure of Acode Files

The Acode consists of four parts:
* File header
® Data structuré.C (low-core)
® Second data structurdJTOD(automation data)
® |nstruction section

In the case of arrayed and multidimensional experiments, the Acode contains one file
header plus three other parts: tgdata structureAUTODdata structure, and an
instruction sectiomper FID. TheLC andAUTODdata structures are always the same
(within one software release at least): rigid assemblies of 16- and 32-bit numbers
according to a predefined scheme. The instruction section is variable in length and
contents, and varies considerably with the hardware configuration. The last part of the
instruction sections depends on the current pulse sequence. As mentioned before, the
first instruction segment is always much longer than all others, because of all the
initialization instructions.

Let us now have a more detailed look at the different parts of the Acode. No attempt
will be made to explain all parts of the Acode—in particular, only those parts of the
data structures are explained that are relevant to the following chapters or which are
needed to explain the Acode by itself.

Acode File Header

The Acode has a variable-size file header, consisting of 32-bit (long) integers. The first
number describes thmumber of code segmeritorresponds to the value of the
arraydim , except forgo(‘acqi’) orgf , which always produces one code segment
only). In the above example (obtained wgth), there is one code segment only.

The next (32-bitinteger) number is th#fset to the first code segmexst 16-bit (2-byte)
address. In this case (one code segment), the header is three 32-bit words long,
resulting in an offset of 6 for the first segment (the first number of the header is located
at address 0).

The following 32-bit numbers are the number of 16-bit words up to (and including) the
last code word for every code segment, orathidresses of the next code segmeits
any more segments follow. For a standard acquisition (not in Acode generated with
go(‘acqi') orgf ), there ararraydim code segments; therefore, the header is
2*(arraydim + 2) words (16 bits or 2 bytes each) long,4arraydim + 2)

bytes.

74 VNMR Pulse Sequences 01-999014-00 A0398



8.3 Structure of Acode Files

The header information is used Aygproc to extract individual code segments,
because in arrayed or multidimensional experiments the code is transferred to the
acquisition CPU segment by segment during the acquisition.

LC Data Structure

For the rest of the Acode, the prograptlecode lists three different offsets (in 16-

bit words): an absolute word count throughout the entire Acodefitid( ), a word

count per code segmeffaddr ), and a local word count or addreksidr )—this

kind of code offset is used by the Acode interpreter itself: addresses are either offsets
within theLC or AUTODstructures, or within the instruction segment (see below).

As explained previously, the term LC stands for “low core.” This terminology is
historic and has little meaning with respect the memory organization in the acquisition
CPU. Both structuresAUTODandLC) are stored in the acquisition memory the way
they are stored ifvnmr/acqqueue , and the same is done with the instruction
section, but the three sections aatstored in consecutive memory locations (in
particular, the instruction section®tstored after the two data structures). After they
are loaded into their proper memory locations, the two data structures form the
“workspace” for the instruction section. Such a workspace could also be “built” by the
acquisition software, but there is of course a good reason for creating an image of that
workspace together with the instruction section as part of the Acode: the two data
structures also serve as container for numeric information that is transferred between
the two computers. This becomes obvious when we look at some of the conte@ts of
(only selected parts are explained here).

LC contains many items that sound very familiar to the pulse sequence programmer: it
turns out that all real-time variablest(, v1, one, etc., see below) are actually (16-bit)
addressefo some specific word (16-bit integer) within th€ structure. Because they

are addresses and not normal integers, a speciatbgent was created, describing

C variables that contain addresses (code offsets) withinQls¢ructure. As we see

later, by using thoseodeint variables, the pulse sequence program is able to
generate Acode that contains these addresses. Based on that, during the acquisition the
Acode interpreter can do real-time calculations and operations using the addressed
memory locations.

LC starts with a series of long (32-bit and two 16-bit word) integers, containing:

® | C->np , the number of points to acquire, corresponding tomghparameter in
VNMR; LC->np isthe C syntax for that element of a structure name@—we
use this syntax to differentiate the structure element fronrmpheariable in C and
thenp parameter in VNMR.

® LC->nt , the number of transients to acquire, corresponding tettlparameter.

* The number of acquired transients, corresponding tetthgarameter in VNMR,;
as we will see below, all so-called real-time variables in a pulse sequence are 16-
bit integers, and all real-time math operations are 16-bit operationsotieint
variablect in a pulse sequence therefore is defined as the “low-order” half of the
LC->ct structure elementt is first set to the offset taC->ct and then
incremented by one (this is found dmmr/psg/psg.c ); all code offsets are in
(16-bit) words,not in bytesLC->ct is incrementedfter every scan (i.e., during
the first scart andLC->ct is 0, and the acquisition for one FID is finished when
the two long integersC->ct andLC->nt are the same).

01-999014-00 A0398 VNMR Pulse Sequences 75



Chapter 8. Acquisition CPU and Acode

The index of the current FID and Acode segment (in C pulse sequence code
corresponding to the variahkbe in the C code of a pulse sequence; the index for
the first FID is 1, not OLC->ix is an unsigned, 32-bit integer; therefore, the
theoretical maximum number of elements is 4,294,967,296. This may sound
excessive, but earlier releases of VNMR h&d>ix defined as a 16-bit integer,
which limited the number of elements to 32767, a value that is easily exceeded in
3D or 4D experiments.

“squi”, the current set of “quiescent” states: in this location the acquisition
software stores (at real time) the set of gating information (the “fast bits”) to be
used with the next pulse programmer event, and to (or from) which new gate
setting is added and subtracted.

The remainder of C consists of 16-bit words and integers, among others including:

76

LC->02auto , the offset to th&UTODstructure (within the code segment, in 16-
bit words), in other words: the size of the structure in 16-bit words.

LC->codeb , the offset to the instruction section within the code segnfadti(
in theapdecode output) or the size of the sum of the andAUTODstructures.

LC->codep , a pointer to the current code word.

LC->dpf , the “double-precision flag"—an integer that contains either O (for 16-
bit acquisitions) or 4 (for 32-bit acquisitiordp="y" ).

LC->dsize ,the data size in 512-byte blocks (fdp="y"’ :4*np/512 ,rounded
up to the next full block).

LC->asize ,the Acode size in 512-byte blocks (minimum: 3 blocks).

LC->scale , the number of binary scaling operations during an acquisition:
whenever the maximum or minimum number in an FID would exceed the numeric
range at the selected precision, the ADC output and the current FID are scaled
down by a factor of 2 (this corresponds to a right-shift in the binary numbers). For
16-bit acquisitionsdp='n' ), the range is from -32768 to +32767; for 32-hit
acquisitionsdp='y" ), itis from -2,147,483,648 to +2,147,483,647.

LC->maxscale , the maximum number of permissible scaling operations (right-
shifts): before starting any acquisition, the system measures the amount of noise
by acquiring 256 data points at the conditions of the experiment. From that noise
the maximum number of scaling operations is determined, such that after the
scaling the noise is still properly digitized. If at that point more scaling would be
required, the acquisition is stopped with the message “maximum number of
transients accumulated”.

LC->cpf , the “cycle phase flag™: O stands fgp='n' , 1forcp="y' inVNMR,;
if cp='n" , the observe phasph remains constant; otherwise, it is incremented
with thect counter.

LC->ssval , the number of steady-state pulses, corresponding &3 the
parameter in VNMR. Aodeint (real-time) variablasval contains the
addresqthe offset) toLC->ssval , such thatin a pulse sequence we can instruct
the acquisition CPU to perform (mathematical) operations based on the value
stored inLC->ssval

LC->ssctr , the counter location, in which the acquisition CPU counts the
steady-state pulses; this location is initially set to the valugfssval andthe

VNMR Pulse Sequences 01-999014-00 A0398



8.3 Structure of Acode Files

decremented after each transient. During “real” transie@ts;ssctr  remains
set to zero. Also here (equivalentskyal ), acodeint variablessctr exists
that allows performing real-time calculations based on the valu€-ofsctr

® LC->bsval , the block size, corresponding to tige parameter in VNMR. A
codeint (real-time) constariisval contains the offset toC->bsval , such
that in a pulse sequence we can instruct the acquisition CPU to perform
(mathematical) operations based on the value store@-bsval

® LC->bsctr , the counter location, in which the acquisition CPU counts through
the block size; at the beginning of the acquisition this location is set to the value of
LC->ssval and is decremented after each transient; whenever the location
LC->bsctr contains zero, the FID is stored, an@d->bsctr  is reset to the value
of LC->bsval . Again, acodeint variable bsctr ) exists that allows
performing real-time calculations based on the valugGefbsctr , or even
recalculating the value &fC->bsctr  (e.g., for implementing dynamic block
sizes).

® LC->oph , the observe phase real time varialolgh in a pulse sequence is nothing
but theaddress (the local offsetladdr in theapdecode output) to that
structure element. Bp='n" (LC->cpf is 0),LC->oph contains 0, otherwise
(cp=y'" ,and LC->cpf is1) LC->oph isthe same ast (the low-order half of
LC->ct ). As the observe phase can only assume four values (0, 1, 2, 3), it doesn’t
matter ifoph contains the values from that are incremented upnol : the
software simply looks at the last two (the two least-significant) bits of that 16-bit
number, which is identical tomodulo 4function, resulting in a sequence 0, 1, 2,
3,0,1, 2, 3, etc. Of courseph can also be calculated (or set from a phase table,
see the following chapters); in any case, itasnecessary to perform a modulo
function to ensure values in the proper range of 0 to 3—for the modulo (mod 4)
function is implicit!

®|C->vl,LC->v2 ,...LC->v14 , 14 storage locations for results of phase
calculations, flags, etc.: in a pulse sequence these locations can be addressed via
thecodeint (“real-time”) variables/1, v2, . ..v14. Since real-time math
happens detached from the C compiler and the execution of the C pulse sequence,
the only way to instruct the acquisition CPU to perform math with specified
variables is to the addresses on which mathematical and logical operations are to
be performed. There are two kinds of such addresses: addresses to the variables
vl,v2 ,...v1l4,o0ph,ssctr ,andbsctr (the latter two are rarely used as
variables), and addresses to constants (see below) and “system variables” like
(as well assval ,ssctr ,bsval ,bsctr ,tablert ). The integerdéC->v1 up
toLC->v14 are initialized with zero value, unless the user specifies a different
value using thénitval statement. This also is the only way to set the contents
of these locations directly from within C; once the experiment is running, the
values can and will only be changed by real-time math.

® | C->zero ,LC->one , LC->two , LC->three , four locations with the numeric
values 0, 1, 2, and 3: these numbers are accessible via the realetimiat( )
variableszero , one, two, andthree . As numeric C constants (or variables)
cannot exist in the Acode translation, these four frequently used numeric values are
stored in real-time locations and made accessible by the address vaeables
one, two , three . They all could theoretically constructed from a single value
(zero orone), but it is more convenient to have at least these three numbers
available for real-time math.

01-999014-00 A0398 VNMR Pulse Sequences 77



Chapter 8. Acquisition CPU and Acode

® | C->tablert , this is the location in which phase values from a table are stored
in table calls (e.g., theulse(pw,t1) statement), unless the table value is
extracted into a real-time variabll( v2, . .. v14, using thegetelem
statement, or intoph with thesetreceiver statement, see al§thapter 11,
“Phase Tables,” on page 115

The other elements (addresses) inltiestructure are used internally within the
acquisition CPU and are rarely of interest to the user, not even for debugging.

TheLC structure (together witAUTOD is defined invnmr/psg/ic.h tis
initialized in/vnmr/psg/psg.c , Which also defines and sets the corresponding
codeint  (real-time) variables. ThieC andAUTODstructures are to be regarded as
non-user modifiable, because there are matching counterparts within the VNMR
module and in the acquisition operating system.

The AUTOD Data Structure

In the current software, tldJTODstructure serves two purposes: it provides
parameters and intermediate storage locations for the autoshimming routine, and it
contains the current values for the operations that are performed via the automation
control board (se€hapter 7, “Digital Components,” on page)66ompared to theC
structure AUTODs small, containing one long (32-bit) integer and ten 16-bit integers:

®* AUTOD->when_maskis a 16-bit integer that contains the information from the
VNMR load andwshim parameters.

® AUTOD->checkmask, AUTOD->control_mask , AUTOD->best ,
AUTOD->loops are used for the autoshimming.

® AUTOD->samplemask is the sample changer location (0O = not used).
® AUTOD->sample_error  contains sample changer error codes.

®* AUTOD->recgain is the receiver gain (value as set by the parameter, or as set by
the autogain (ifain="n" ).

®* AUTOD->lockpower , AUTOD->lockgain , AUTOD->lockphase are the
lock parameters—again, either as set by the parameters or (in case the autolock is
selected) as set by the autolock function.

In earlier VNMR release®yUTODwas larger and contained many more functions:

® 32 shim gradient coil values. With the increasing number of gradients and the
many different possible gradient sets, this became obsolete and was moved into the
instruction section. No fixed space is allocated for the gradient settings.

® The shim method as ASCII text (up to 128 characters). This was moved into the
instruction section, where the method text appears in parsed (semi-interpreted)
form. No fixed amount of space is allocated for the shim method any longer.

® Knobs information—memory space that was allocated for processes internal to the
acquisition CPU. This was removed fré&xd TODas well.

78 VNMR Pulse Sequences 01-999014-00 A0398



8.3 Structure of Acode Files

The Instruction Section

The instruction section of each Acode segment is structured by itself and consists of
two subsections:

* The first part does all the initializations and is executed only once per FID.

® The second part contains the code that is generated by the pulse sequence function
itself and is looped ovaett .

We will now take a more detailed look at the two parts of the instruction section,
without discussing individual functions (these will be discussed in later chapters).

The Initialization Part

The initialization part of the instruction section contains definitions and initializations.
To a very large extent, this part of the code depends on the rf configuration. The more
channel and the more devices that exist, the longer this section becomes. Of course, it
also depends on the parameter settings (gradient settings, frequencies, power levels,
etc.), but these mainly change the numeric (and binary) values used in this section and
not so much its length.

In arrayed and multidimensional experiments, this section also depends on the FID
index. Certain segments and instructions (as indicated below) only show up in the
instruction segment for the first FID and, in general, the instruction segments for
subsequent FIDs are slightly shorter. The difference is about 50 to 150 Acode words
(about 100 to 300 bytes), depending on the spectrometer configuration.

At the beginning of the initialization part, the binary values for the fast bits that
determine the 90-degree phase shifts are defined for each channel, together with an
internal address used in connection with phase shifting. This part only shows up in the
Acode for the first FID.

112 106 0 15 SETPHATTRIibutes CH1 0 0x8 0x10 0x18
allBits = 0x18, addr = 0xb0094
126 120 14 15 SETPHATTRIibutes CH2 0 O0x100 0x200 0x300

allBits = 0x300, addr = 0xb00a4

The next, large section includes initialization output to virtually every digital and rf
device in the spectrometer (including magnet leg control and shims), ensuring that they
are in their proper state, as defined by configuration and non-pulse sequence dependent
acquisition parameters. Most of this section consists of AP outpu@(sepgter 12, “AP

Bus Traffic,” on page 137 The lock filter response times are set, all shim gradient
settings, frequencies, and power levels are set, amplifiers, rf switches, and relays are
set into a proper state. In this section, ThNE_FREQnstructions (setting the PTS
frequency synthesizers), the instructions that initialize the waveform generators, and a
few other functions are only present as part of the first Acode segment.

140 134 28 53 ACQBITMASK 0

142 136 30 1 CBEGIN

143 137 31 19 INITialize acq

144 138 32 5 CLEAR

145 139 33 157 LocKFILTER fast = 1, slow = 4

148 142 36 6 APBOUT 7 items Oxab40 0xbb0d 0x9b00 Oxab54 Oxbbec
0x9b2f 0x9b8f

157 151 45 6 APBOUT 9 items 0xa720 0xb700 0x97be Oxb7ef Oxb7ae
0xb7fb Oxb7be 0x9701 0xb700

168 162 56 159 TUNE_FREQ CH1 9words

0xa720 0xb700 0x97be Oxb7ef Oxb7ae Oxb7fb Oxb7be
0x9701 0xb700
180 174 68 0 NO_OP

01-999014-00 A0398 VNMR Pulse Sequences 79



Chapter 8. Acquisition CPU and Acode

181 175 69 16  SETPHAS90 CH1c 0
184 178 72 68 PHASESTEP CH1 360 units (90.00 degrees)
187 181 75 65  SETPHASE CH1f 0

190 184 78 59 APChipOUT APaddr 11, reg 51, +logic, 1 byte
max 79, offset 16, value 55

196 190 84 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes
max 4095, offset 0, value 4095

202 196 90 6 APBOUT 4 items 0xab98 Oxbbd2 0x9b00 0x9b00

208 202 96 6 APBOUT 2 items Oxab92 Oxbba0

212 206 100 6 APBOUT 2 items Oxab9b 0xbb00

216 210 104 6 APBOUT 2 items Oxab91 0xbb80

220 214 108 6 APBOUT 2 items 0xab90 Oxbb11

224 218 112 6 APBOUT 8 items 0x8201 0x8214 0x8220 0x8231 0x8241

0x8255 0x8264 0x8271

234 228 122 16 SETPHAS90 CH2c 0

237 231 125 59 APChipOUT APaddr 11, reg 50, +logic, 1 byte
max 79, offset 16, value 30

243 237 131 59 APChipOUT APaddr 11, reg 166, -logic, 2 bytes
max 4095, offset 0, value 4095

249 243 137 6 APBOUT 4 items Oxaba8 Oxbb2a 0x9b00 0x9b00
255 249 143 6 APBOUT 2 items Oxaba2 OxbbcO
259 253 147 6 APBOUT 2 items Oxabab 0xbb00
263 257 151 6 APBOUT 2 items Oxabal 0xbb80
267 261 155 6 APBOUT 2 items Oxaba0O Oxbb12
271 265 159 6 APBOUT 2 items Oxab48 Oxbb01
275 269 163 6 APBOUT 2 items Oxab34 Oxbb55
279 273 167 6 APBOUT 2 items Oxab35 0xbb00
283 277 171 6 APBOUT 2 items Oxab4d Oxbb21
287 281 175 6 APBOUT 2 items Oxab43 Oxbb01
291 285 179 6 APBOUT 2 items Oxab49 0xbb00
295 289 183 6 APBOUT 2 items Oxab36 0xbb06
299 293 187 6 APBOUT 2 items Oxab9b 0xbb88
303 297 191 6 APBOUT 2 items Oxabab 0xbb88
307 301 195 151 EVENT1_TWRD 1.000 usec

The receiver gain is set to the value specified in the corresponding VNMR parameter,
and the VT controller is initialized (a temperature setting of 3000 degrees switches off
the active VT regulation, the PID regulation parameters are set with every acquisition,
and the VT cut-over value is set at the same time). Unless a temperature array is
specified, theSETVTinstruction is only used in the first FID.

309 303 197 71 GAINAutomation

310 304 198 63 SETVT Oxford PID 440, temp 3000.0, vtc 25.0
315 309 203 0 NO_OP

316 310 204 151 EVENT1_TWRD 10 msec
318 312 206 7 STartFIFO
319 313 207 9 StopFIFO

Next, the preacquisition delapdd) is executed; in Acode segments other than for the
first FID, this is omitted.

320 314 208 95 PADelay 4 words

322 316 210 151 EVENT1_TWRD 500 msec
324 318 212 7 STartFIFO
325 319 213 9 StopFIFO

Depending on thevshim parameter, autoshimming is now performed on the first FID
only, or for each increment. The shim method has become part of the Acode
instructions (it doesot show up in ASCII text, but rather in parsed form).

326 320 214 75 SHIMAutomation mode =1, 7 words
0x700 0x3c03 0 0 0x146d 0x6d00 0

The last element of the initialization part is the noise measurement: for the first FID,
256 noise points are acquired using the spectral window (as well as the gain and filter
settings, of course) of the “real” FID. This noise measurement is used to calculate the
maximum number of down-scalings (right-shifts) that can be performed under the

80 VNMR Pulse Sequences 01-999014-00 A0398



8.3 Structure of Acode Files

current conditions (in case the maximum or minimum integer is reached in the FID),
such that the noise is still sufficiently digitized.
341 335 229 43

342 336 230 19
343 337 231 5

NOISE loop 256 pts, dwell 199 usec + 1.000 usec
INITialize acq
CLEAR

With these instructions, the pulse sequence independent part of the instruction section
terminates. The keyword for the pulse-sequence-related secierti&Can , or the
Acode instructiorg2.

Pulse-Sequence-Related Part

The pulse-sequence-related part of the instruction section can be as short as 80 Acode
words, as in the exampleZpul ) below. In other cases it can be up to several thousand
Acode words. The maximum Acode size for a single FID (including the initialization
section) currently is 10,000 words.

The starting point for the pulse sequence section is always the inst@&tion
(NextSCan). Typically, the pulse sequence function itself is a sequence of math
functions (not in this example), AP outp®PBOUT statements, instructions that set
fast bits HighSpeedLINES , SETPHAS9(, and time events. Any pulse sequence
statement call that can possibly change the fast bits (state information) generates a
HighSpeedLINES call. In this particular example, we recognize only three time
eventspw was set to 7 microseconds, anfl androf2 both set to 10

microseconds. The other pulgd | was set to zero (thus the time events associated
with p1 do not show up), and the two delays are set to zero and are therefore skipped.

344 338 232 98
345 339 233 150

NextSCan
HighSpeedLINES (void)

348 342 236 6 APBOUT 2 items Oxab9b 0xbb88
352 346 240 150 HighSpeedLINES (void)

355 349 243 6 APBOUT 2 items Oxabab 0xbb88
359 353 247 150 HighSpeedLINES (void)

362 356 250 150 HighSpeedLINES (void)

365 359 253 150 HighSpeedLINES (void)

368 362 256 150 HighSpeedLINES (void)

371 365 259 16 SETPHAS90 CH1  zero
374 368 262 150 HighSpeedLINES RXOFF

377 371 265 150 HighSpeedLINES RXOFF

380 374 268 151 EVENT1_TWRD 10.000 usec
382 376 270 150 HighSpeedLINES RXOFF TXON
385 379 273 151 EVENT1_TWRD 7.000 usec
387 381 275 150 HighSpeedLINES RXOFF

390 384 278 151 EVENT1_TWRD 10.000 usec
392 386 280 150 HighSpeedLINES (void)

395 389 283 150 HighSpeedLINES (void)

The remainder of the code is related to the implicit acquisition. The observe phase
(oph) is set to zero, because this code was generated usigdl timacro that disables

the observe phase cycling (to avoid jumping dc levels in the real-time FID display). All
rf channels are then reset to zero phase to avoid a center glitch due to rf leakage. Of
course, this is only relevant in real acquisitions vag¥'y'  (i.e.,with observe phase
cycling). After that, the filter delaylfa+1/(beta*fb) , is executed.

The instructiord0 (SETInputCardMode ) transmits the observe phase to the sum-to-
memory board (se€hapter 18, “Acquiring Data,” on page 30%his is done
automatically before acquiring the first data point (after which the receiver phase can’t
be changed any longer); here, the entire FID is acquired in a single instruction.

398 392 286 39
401 395 289 16

ASSIGNFUNC
SETPHAS90

zero oph
CH1 zero

01-999014-00 A0398 VNMR Pulse Sequences 81



Chapter 8. Acquisition CPU and Acode

404 398 292 16 SETPHAS90 CH2 zero

407 401 295 152 EVENT2_TWRD 296 usec + 850 nsec

410 404 298 90 SETInputCardMode

414 408 302 99 ACQXX loop np=37440, dwell 199 usec + 1.000 usec
417 411 305 7 STartFIFO

The last instruction before “branching” (jumping) back to the instruciertSCan

is for housekeeping. Housekeeping is necessary for the sum-to-memory card to return
to its proper state, finishing storing the FID in the RAM. It also increments the
counter [C->ct ), decrements block size or steady-state cournt€rs-bsctr  or
LC->ssctr ), checks for the end of the an acquisition block size or for the termination
of the steady-state scans, and starts the necessary actions (§#episo 18,

“Acquiring Data,” on page 205

418 412 306 97 HouseKEEPing
419 413 307 20 BRANCH Offset 232

8.4 Acode Interpretation

The acquisition operating system interprets the Acode instruction section. This process
involves a number of different tasks:

® Setting internal status registers.

® Setting or reading status registers on other boards, such as the sum-to-memory
board or the HAL.

® Math operations on internal registers (see @lsapter 10, “Phase Calculations,”
on page 9b

® Table manipulations (in essence, extraction of single values from tables, see also
Chapter 11, “Phase Tables,” on page)ldrid the main task.

® Constructing FIFO words that are then suitably “packed” and sent to the pulse
programmer through the host I/O bus (8&mpter 7, “Digital Components,” on

page 65.

FIFO Flow

The last acquisition operating system task, constructing FIFO words, needs to be
coordinated with the pulse programmer; otherwise, the pulse programmer might obtain
a few short time events or AP bus words, and execute them, and then run out of FIFO
words before the acquisition CPU is able to deliver the continuation of the pulse
sequence. With a 0.2 microsecond minimum time event, or 1.15 microseconds (2.15
microseconds for older systems) per AP bus word, the execution of these events can
easily be faster than the delivery of information from the acquisition CPU. If the FIFO
(seeChapter 9, “Pulse Programmers,” on pagg s empty, this generates an error
message “FIFO underflow”. On the other hand, if the FIFO is full, the pulse
programmer sets a status register that indicates to the acquisition CPU that the FIFO is
full, and no more FIFO words are generated.

Initially, the FIFO is empty, but it is stopped (ho information is released at the “other”
end); this way the acquisition CPU can feed the FIFO words from the initialization part
without danger that the FIFO runs empty. Actually, it is exactly the initialization part
that consists of only fast (AP bus) events. Only after most of the initialization data has
been fed into the pulse programmer and the VT controller has been initialized, the
FIFO output is started with Acode instructior{STartFIFO , at local offseR06 in

82 VNMR Pulse Sequences 01-999014-00 A0398



8.4 Acode Interpretation

the above example). The following block (preacquisition delay) is surrounded by
Acode instructior® (StopFIFO ) and anothegTartFIFO , and also the pulse
sequence code itself is surrounded by these function.

In theory, it is possible to have only very few, fast events in the pulse sequence
statement (e.qg., no delay, a very short pulse, and a very short acquisition at a very large
spectral window). In such a case, it must be ensured that the sequence of events during
the execution of the pulse sequence is not disrupted by a FIFO underflow.

It can be assumed that during the execution of a pulse sequence, the pulse programmer
normally does not run empty or spend extra waiting times in a “stopped” state, because
this would also disrupt steady states.

Acode Size Limitations, Acode Buffering

The acquisition CPU has somewhat less than 22 Kbyte of memory space reserved for
storing Acodes (including theC andAUTODstructures and the instruction segment).
That defines the absolute maximum for the Acode size on these systems: about 10900
words in the instruction segment. There hasn’t been an experiment yet that exceeded
this limit (but we certainly could construct one, for the sake of the argument), so this
should not be a point to be concerned about for pulse sequence programmers.

The topic of Acode size is more complex than that, however. If we were to fill the
Acode space in the acquisition CPU to more than 50%, then only one Acode segment
can be held in the acquisition CPU at any given time during an experiment. This means,
that after finishing one increment of a multi-FID experiment the system would first
have to upload the next Acode segment from the host (and this again can only happen
when the acquisition CPU lled by the host) before it can continue with the
acquisition of the next trace. This leads to inter-increment delays of over one second
(the actual length of that delay is unpredictable) and totally disrupts the steady state in
arrayed anahD experiments (apart from lengthening the overall experiment time,
making any calculation/prediction of the experiment duration very unreliable).

If, however, the Acode segment size is less than 50% of the available memory, more
than one Acode segment will be stored in the acquisition CPU, and when one
increment is finished, the interpretation of the next Acode segment can start
immediately (the system will store as many Acode segments in the acquisition CPU as
it can, given the current memory limitations). So, to maintain any steady-state across
multiple increments, we should not exceed the limit of approximately 5400 words
(10800 bytes) per Acode segmerito estimate the size of an Acode segment, enter
go(‘acqi’) in VNMR and check the size of filenmr/acqqueue/acqi.Code

A limit of 5400 words still is fairly large for an Acode segment, but it is definitely not
impossible to exceed that limit, in particular in some complex sequences with a long,
explicitly coded spin locking sequence, or when using either extremely long phase
tables and/or trying to usspshaped_pulse  with complex pulse shapes (over 1000

to 2000 slices).

1we haven't confirmed whether 5400 words is the real and accurate limit beyond which the multiple
buffering is lost. The pulse sequence generation software has a built-in limit of 11000 words per
Acode segment (or about 10900 words in the instruction section).

2This size is approximate becaug®'acqj’) calculates the Acode only for the first increment
(which always has some extra instruction overhead), and also bgodasg)i') temporarily

alters some of the parameters (see &leation 5.3, “Using go('acqi’),” on page)58

01-999014-00 A0398 VNMR Pulse Sequences 83



Chapter 8. Acquisition CPU and Acode

For most cases there is a solution that avoids the problem:
® |n tables use the division return factor (see @leapter 11, “Phase Tables,” on
page 11k
® The number of shape slices is definitely limited vagishaped_pulse  (see also
Section 16.5, “What If a Waveform Generator Is Not Available,” on pagg 189

* As for DANTE-type pulses, explicitly coded programmed spin locking sequences,
etc., it is very inefficient to code such elements usinggbalse statement.
rgpulse generates several extdighSpeedLINES Acode instructions that can

be avoided by using constructs like

txphase(phase);
delay(delta);
xmtron(); delay(length); xmtroff();

which is much more economic in terms of Acode space and execution (see also
Section 20.2, “Sideband Suppression in MAS Experiments,” on page 230

* |f you have a waveform generator, use that for modulated spin locking instead of
programming it explicitly.

84 VNMR Pulse Sequences 01-999014-00 A0398



chapter 9. Pulse Programmers

In earlier chapters, we have shown out how a pulse programmer could be constructed
in the context of a Varian spectrometer. Of course, this was a rough sketch, showing
only the general working aspect, rather than a detailed picture of its internal
functionality. In this chapter, we look at theal functionality of this board, which is

the most central piece of hardware for the execution of a pulse sequence.

9.1 Layout of the Pulse Programmer

Figure 18shows a functional diagram of the pulse programmer. The pulse programmer
gets its input via the CPU I/O bus from the acquisition CPU (se&alspter 7,

“Digital Components,” on page B5This information is fed into a FIFO buffer, a
memory buffer into which information is fed sequentially and which releases the

acquisition CPU
CPU 1/O bus
bus decoder
| fast bits (states) [ [ times /AP bus words |
T
depth (length)
preloop FIFO
< width————
A
[ [] [
multiplexer - loop control
[ [] [
loop FIFO msec
timers
1 [ A
| times /AP bus words |
fast bits -
(states) BNES
| AP bus |
spectrometer / rf external trigger

Figure 18. Structure of the pulse programmer

01-999014-00 A0398 VNMR Pulse Sequences 85



Chapter 9. Pulse Programmers

information in the same sequence through the second. gt a special kind of dual-
port memory containing words of a certain width. The number of words in a FIFO
buffer is often called thdepthor thelengthof the FIFO.

Since the width of the CPU 1/O bus (16-bits parallel) is not the same as the width of the
FIFO (28, 36, or 54 bits), the input logic (bus decoder) composes FIFO words from
several 1/0 bus words.

There are actually two FIFO buffers in sequence. Normally, the information (FIFO
words) “falls through” to the end of the second FIFO, or (if there is already information
in the buffer) down to the position behind the last word that was fed into the buffer
previously—until both buffers fill up. At that point, the pulse programmer signals
“FIFO full” to the acquisition CPU, which then temporarily stops producing FIFO
words until free space is again available in the FIFO.

The information that comes out at the end of the buffer can be fed back into the second
FIFO: a multiplexer (a parallel “Y switch” with two inputs and one output) determines
whether the information going into the second FIFO is taken from the first FIFO (the
normal case) or from the output. The latter is used fohgu@ware loopingin which

the information in the second FIFO (the loop FIFO) is circulating for a predefined
number of cycles. At the beginning of the last loop pass, the loop control circuitry (a
16-bit loop counter) switches the input (the multiplexer) back to the preloop FIFO.

A part of every FIFO word is state-related information, often caléed bits(because

they can be switched instantaneously with any FIFO word. At the output, these bits
directly drive rf gates and switches, set phases in 90-degree increments, and blank (or
unblank) amplifiers.

From the remaining bits in the FIFO word, 16 are used to define the time; out of these,
12 define thdime count(1 to 2% i.e., 1 to 4096 units), the remaining four are used to
define thetime basdseconds, milliseconds, microseconds, “nanoseconds”). The
timing information is fed into the timing circuitry, which activates the corresponding
timer. When the timer has counted down to zero, a trigger signal is given to the FIFO,
causing it to release the next FIFO word. Alternatively, the newer versions of the pulse
programmer board can disable the timers for specific FIFO words and cause the
following FIFO word to be released upon sensing an external trigger signal. This
allows synchronizing a pulse sequence with external events (such as a rotor period for
solids experiments, or the heart beat or a respiration cycle for imaging experiments).

Because there are only four different time bases, only two bits are needed to select the
time base. The four control bits at the same timereaiefinethe timing part of a FIFO

word to be information that is fed into the AP bus by which 16 devices can be
addressed directly (i.e., a part of the 16 timing bits serves as address). The rest is
numeric information that is transferred to the addressed device (e.g., the small-angle
phase shifters).

Alternatively, the AP bus can be used in indirect mode, in which the address is first
transmitted in a separate AP word, followed by AP words containing the numeric
information. This way, an unlimited number of devices (several thousand) can be
addressed, and numeric information of arbitrary precision can be transmitted (e.g.,

1 This differs greatly from the way information is stored and recalled randomly in RAM. In a FIFO,
no addressing is involved: only one word at a time can be read out, and the read-out sequence is given
by the order of the input.

86 VNMR Pulse Sequences 01-999014-00 A0398



9.1 Layout of the Pulse Programmer

frequency information for the PTS synthesizer). During AP bus traffic, the timing
circuitry is still activated, ensuring that every AP bus word remains on the bus for a
specific, well-defined time (1.15 microseconds for UNpIYs systems, 2.15
microseconds on earlier systems), such that there is sufficient time for the addressed
devices to decode the address and read the information off the bus.

The last four bits in the FIFO word include the “command to convert” (CTC) bit that
triggers the ADC. Unlike all other bits, this bit is not held up during an entire time
event, but is electronically reformed to a short trigger pulse. The remaining three bits
are used for loop and FIFO control.

All Varian pulse programmers have essentially the same layout—be it the output board
used in XLs and VXRs, the acquisition control board used in VXRs and UNITY
spectrometers, the pulse sequence control board used in iNi$¥pectrometers, or
similar boards in other Varian spectrometers. With few exceptions, the differences are
only quantitative: both the depth and the width of the FIFO has changed over the years
(adding more fast bits), the timing resolution has been improved, and the external
trigger has been added.

In summary, the various pulse programmers can be characterized as shicuioheirl.
The differences can be summarized as follows:

® The FIFO width varies from 28 bits (Gemini) and 36 bits (XL, VXR, and UNITY)
to 54 bits (UNITYplus); the number of fast bits in essence is equal to the total
number of bits per FIFO word minus 20.

® The length of the loop FIFO has been increased from 63 words (Gemini, XL, and
VXR) to 1024 words (VXR-S and UNITY) and 2048 words (UN@IYS).

® The preloop FIFO does not exist on the Gemini output board. It was half the size
of the loop FIFO in the output board and is of the same depth as the loop FIFO in
newer systems.

® On the acquisition control board, the timing resolution has been improved to 25
nanoseconds (100 nanoseconds in earlier boards).

* |Inthe UNITYplus the AP bus has been speeded up by almost a factor of two (see
Chapter 12, “AP Bus Traffic,” on page 137

Table 1. Pulse programmer characteristics

Ormenrs | oupgoun | st | Fse seauerc
Use Gemini ezﬁ;/\\//))((RR,-S Iatl‘jltl/l)'l('s-s UNITY plus
FIFO width (fast bits) 28 (8) bits 36 (16) bits 36 (16) bits 54 (34) bits
Pre-loop FIFO none 32 words 1024 words 2048 words
Loop FIFO 63 words 63 words 1024 words 2048 words
Timing Resolution 100 nsec 100 nsec 25 nsec 25 nsec
AP Bus Speed 2.15psec/word | 2.15usec/word | 2.15usec/word | 1.15pusec/word
External Trigger no no yes yes

01-999014-00 A0398

VNMR Pulse Sequences

87



Chapter 9. Pulse Programmers

® The external trigger only became available with the acquisition control board.

Fast bits are covered in the next section, and timing characteristics are considered in
more detail at the end of this chapter. The consequences of various preloop and loop
FIFO lengths are discussed moreSiction 14.3, “Hardware Loops,” on page 150

9.2 Fast Bits

Fast bits have been provided for those states that possibly need to be changed with
every time event, even as short as 0.2 microseconds, such as transmitter gates, 90-
degree phase shifts, receiver gates, and amplifier blanking, plus eventually external
devices, such as a laser for CIDNP experiments; also waveform generators need to be
triggered with a fast bit.

The demand for fast bits has been growing over the years. The Gemini had only very
modest needs in terms of fast bits (using only two rf channels), a UM3$Y
spectrometer with up to six rf channels is much more demanding in terms of the
number of fast-switching lines. For a long time, systems (all except Gemini and
UNITY plus) were equipped with a fixed number of 16 fast bits—with the consequence
that in systems with third rf channel and waveform generators (particularly UNITY
systems) some of the fast bits had to be reassigned by shifting some of the fast bit
functionality (the decoupler modulation modi@min particular) to the AP bus. This
cut-over happened with the transition from AP interface board type 2 to type 3 of the
same board (only type 3 permits controllimgmvia the AP bus).

Table 2lists the assignment for the fast bits in pulse programmers with 16 fast bits. The
hexadecimal number in the first row describes the numeric value of the corresponding

Table 2. Fast bit assignments, output boards and acquisition control boards

HEX Value AP Interface Type 2 AP Interface Type 3
Ox1 VAR1(Varian-reserved line 1) WEFG(fast line for WFG #1)
0x2 VAR2 (Varian-reserved line 2) WFGZfast line for WFG #2)
0x4 SP1 (spare bit 1) SP1 (spare bit 1)
0x8 SP2 (spare bit 2) SP2 (spare bit 2)
0x10 DECLVL(decoupler level switching) DECUPLRZdecoupler 2, gate)
0x20 MODMAImm bit 1) DC2_90 (decoupler 2, 90 deg. phase)
0x40 MODMBImm bit 2) DC2_180 (decoupler 2, 180 deg. phas¢)
0x80 HomoSpoilON (homospoil gate) HomoSpoilON (homospoil gate)
0x100 DECPP (homodecoupler gating) WFGJfast line for WFG #3)
0x200 DC90 (decoupler, 90 deg. phase) DC90 (decoupler, 90 deg. phase)
0x400 DC180 (decoupler, 180 deg. phase) DC180 (decoupler, 180 deg. phase)
0x800 DECUPLRdecoupler gate) DECUPLRdecoupler gate)
0x1000 RFP90 (observe xmtr. 90 deg. phase) | RFP90 (observe xmtr. 90 deg. phase)
0x2000 RFP180 (observe xmtr. 180 deg. phase)RFP180 (observe xmtr. 180 deg. phase)
0x4000 TXON(observer xmtr. gate) TXON(observer xmtr. gate)
0x8000 RXOFHreceiver off gate) RXOFHreceiver off gate)

88 VNMR Pulse Sequences 01-999014-00 A0398



9.3 Timers and Timer Words

bit within the 16-bit “fast-bit word” or within the “quiescent states” word inLtbe
structure. This information is taken from the headenfidenst.h  found in

/vnmr/psg . The CTC (command-to-convert) bit does not count as a regular fast bit,
because it behaves differently (see above).

Evidently, itis a bad idea to try addressing the ambiguous BEC{VL/DECUPLR?2
MODMA/DC2_90MODMB/DC2_18pandDECPP/WFGBdirectly (using low-level
statements taken fromnmr/psg ), because this would generate code that is only
correct for one particular type of hardware and could create havoc when executed on a
different system. Actuallynofast bit should be addressed directly (in the UN[IYs

the assignments changed altogether, and in factydtee statement for manipulating

fast bits directly no longer exists in VNMR 4.3 or later.)

The pulse sequence control board in the UNJighas a totally different fast bit
assignment, as can be seen froable 3 The fast bits are organized in groups of five

bits per rf channel; each channel has its own “receiver gate” (the amplifier blanking),

a transmitter gate, a gate for the waveform generator, and two gates for the 90-degree
phase shifts. The observe is switched together with the blanking line for the observe
channel amplifier. Four additional bits control the homospoil pulse, the rotor
synchronization hardware, and the two spare gating lines (for triggering external
devices). The latter two are no longer part.@F->squi  (the 32-bit “quiescent states”

word in the LC structure), but are handled separately.

9.3 Timers and Timer Words

All pulse programmers use four different timers, and the time count (the number of
time units to be counted down by the timer) is a 12-bit binary number, resulting in
values between 1 and 4096. The four timers include:

® Seconds timer (1 to 4096 seconds)
* Milliseconds timer (1 to 4096 milliseconds)
® Microseconds timer (1 to 4096 microseconds)

® “Nanosecond” timer, which is in units of 100 nanoseconds for output boards and
on the Gemini (resulting in a theoretical range of 0.1 to 409.6 microseconds), or in
units of 25 nanoseconds for acquisition control boards and pulse sequence control
boards (resulting in a theoretical range of 0.025 to 102.4 microseconds).

The minimum timer word is 0.2 microseconds on all pulse programmers. Timer words
shorter than that cannot be executed and are suppressed already at C level in the pulse
sequence software (they would result in a pulse programmer error message).

A problem seems to exist with the timers listed above, in that it seems that time events
above 4 seconds can only be executed in steps of 1 second, time events between 4
milliseconds and 4 seconds can be executed with a precision of 1 milliseconds, and
time events between 102 microseconds (409 microseconds on older boards) and 4
milliseconds can be performed with a precision of 1 microsecond only. This seems
rather limited and would in fact have a severe impact on multidimensional experiments,
because most likely the 2D increments could probably not be spaced properly due to
the “granularity” of the duration of time events. The same limitation would apply to the
1D dwell time, which would impose severe restrictions to the settability afithe
parameter. All this is clearly unacceptable.

01-999014-00 A0398 VNMR Pulse Sequences 89



Chapter 9. Pulse Programmers

Table 3. Fast-bit assignments on pulse sequence control boards

HEX Value RF channel| Function

0x1 channel 1 amplifier blanking / receiver gating
0x2 channel 1 transmitter gate

0x4 channel 1 waveform generator gate
0x8 channel 1 90 degrees phase shift

0x10 channel 1 180 degrees phase shift
0x20 channel 2 amplifier blanking (“receiver”)
0x40 channel 2 transmitter gate

0x80 channel 2 waveform generator gate
0x100 channel 2 90 degrees phase shift
0x200 channel 2 180 degrees phase shift
0x400 channel 3 amplifier blanking (“receiver”)
0x800 channel 3 transmitter gate

0x1000 channel 3 waveform generator gate
0x2000 channel 3 90 degrees phase shift
0x4000 channel 3 180 degrees phase shift
0x8000 channel 4 amplifier blanking (“receiver”)
0x10000 channel 4 transmitter gate

0x20000 channel 4 waveform generator gate
0x40000 channel 4 90 degrees phase shift
0x80000 channel 4 180 degrees phase shift
0x100000 channel 5 amplifier blanking (“receiver”)
0x200000 channel 5 transmitter gate

0x400000 channel 5 waveform generator gate
0x800000 channel 5 90 degrees phase shift
0x1000000 channel 5 180 degrees phase shift
0x2000000 channel 6 amplifier blanking (“receiver”)
0x4000000 channel 6 transmitter gate

0x8000000 channel 6 waveform generator gate
0x10000000 channel 6 90 degrees phase shift
0x20000000 channel 6 180 degrees phase shift
0x40000000 homospoil gate

0x80000000 rotor synchronization

[0x10] Spare gate 1

[0x20] spare gate 2

90

VNMR Pulse Sequences

01-999014-00 A0398



9.3 Timers and Timer Words

The solution is to perforrdouble-precision timer wordsyhere necessary. If there is a
remainder after performing the major part of a time event in one unit (e.g., seconds for
time events above 4.096 secondsgeeondime event is included that performs the
remainder of the time event in the next smaller unit. Single-precision timer words are
used only if there is no remainder from a single time unit. With these two options for
time events, we get the following possibilities:

* Time events above 4100 seconds are performed as a double timer word with the
seconds timer; the maximum time event is 8192 seconds. The round-off error (up
to 0.5 seconds) is less than 0.012% for this range of durations.

® Time events above 4.1 seconds can be performed with millisecond precision, with
a round-off error of less than 0.012% (up to 0.5 milliseconds absolute).

® Time events between 4.2 milliseconds (4.5 milliseconds on boards with 100
nanoseconds resolution) and 4.1 seconds are performed with microsecond
precision, the maximum round-off error being again below 0.012% (up to 0.5
microseconds absolute).

® Time events smaller than 4.2 milliseconds (4.5 milliseconds on boards with 100
nanoseconds resolution) are performed with the timing resolution of the pulse
programmer (100 or 25 nanoseconds). By nature, the round-off error can be
considerable in this range: for the output board it is up to 50 nanoseconds absolute,
or 12 ppm at the upper end, and 25% at the lower end (0.2 microseconds). With
newer boards, itis up to 12.5 nanoseconds in absolute terms, or up to 3 ppm at the
upper limit and below 6% for the shortest time intervals.

The reality is somewhat more complicated. On all pulse programmers it takes 150
nanoseconds for the hardware to decode the time base, store the time count in the time
counter, and start the corresponding timer. Consequently, there is a 150 nanoseconds
dead-time involved with every timer word (300 nanoseconds with double-precision
time events). For small time events, the software corrects for this error by adjusting the
nanosecond count, for larger durations this error remains uncorrected, but is negligible
(0.007% maximum).

One more thing was neglected up to now: the numeric range of a 12-bit binary number
is actually from 0 to 4095, but the timers, on the other hand, always perform at least
one time count to begin with (0 input results in a count of 1). Thus, the 12-bit input
range translates to a count range of 1 to 4096 units.

Table 4summarizes the various possibilities with single- and double-precision time
events. Single precision (except for those with the smallest units) is, of course, only
performed if there is no remainder. The somewhat “odd” lower limits are due to the fact
that smaller delays will be performed with the next smaller time base (and because
there is some overlap in the ranges of the individual time bases). Whenever the
“nanoseconds” time base is involved on boards with 25-nanosecond resolution, 6 or 12
counts are subtracted from the “nanoseconds” part for single- and double-precision
time events, respectively; these time events will be accurate to 25 nanoseconds.

On the output board (63-word loop FIFO), short time events have slightly different
characteristics, because the timing resolution is 100 nanoseconds only and timing
errors are not corrected for this hardwarable 5covers output boards.

Itis not necessary to fully understand all of the tables shown here, but this information
should help in understanding how certain events are translated into single- or double-
precision timer words. The question whether double-precision timer words are used or
not isn't relevant for most cases either, but may play an important role in the execution

01-999014-00 A0398 VNMR Pulse Sequences 91



Chapter 9. Pulse Programmers

of hardware loops, especially on systems with 63-word loop FIFO (seBeaiton
14.3, “Hardware Loops,” on page 150

9.4 Problems with Timer Word Errors

Compared with the total duration of a timer word, the possible timing errors seem small
and, overall, the timer word precision seems more than sufficient for the common
NMR experiments. There is one important exception, howeveDiaxperiments the
evolution delay is performed as a single time event that is calculated for every
increment (see alseection 19.1, “Indirect Time Domain Incrementation,” on page

Table 4. Single- and double-precision timer word characteristics

[Counts (min/max)]
Duration range

[4096 + 1 up to 4096 + 4096]
4097 sec - 8192 sec

single | sec 5 sec - 4096 sec 1sec 150 nsec longer

[4 + 97 up to 4096 + 4096]
4.097 sec - 4100.096 sec

single | msec 5 msec - 4096 msec 1 msec 150 nsec longer

[4 + 97 up to 4096 + 4096]
4.097 msec - 4.100096 sec

single | usec a “nsec” time event is always added to correct for dead times

[102 + 11 (+ 12) / 4096 + 4096 (+ 12
102.575usec - 4198.7usec

[2 (+ 6) - 4096 (+ 6)]

0.2psec - 102.5%sec

Type Time Base(s) Resolution| Timing Error

double | sec/sec 1sec 300 nsec longer

double | sec/msec 1 msec 300 nsec longer

double | msec jisec 1 psec 300 nsec longer

double | psec / 25 nseg ]0.025psec accurate

single | 25 nsec 0.025usec | accurate

Table 5. Single- and double-precision timer word characteristics, output boards

[Counts (min/max)]
Duration range

[4096 + 1 up to 4096 + 4096]
4097 sec - 8192 sec

single | sec 5 sec - 4096 sec 1 sec 150 nsec longer

[4 + 97 up to 4096 + 4096]
4.097 sec - 4100.096 sec

single | msec 5 msec - 4096 msec 1 msec 150 nsec longer

[4 + 97 up to 4096 + 4096]
4.097 msec - 4.100096 sec

single | usec 411 psec - 4096usec 1pusec 150 nsec longer

[409 + 7 up to 4096 + 4096]
409.7usec - 4505.fisec

[2 up to 4096]
0.2psec - 409.qisec

Type Time Base(s) Resolution| Timing Error

double | sec/sec 1sec 300 nsec longer

double | sec/ msec 1 msec 300 nsec longer

double | msec jisec 1 psec 300 nsec longer

double | pusec/100 nse 0.1usec | 300 nsec longer

single | 100 nsec 0.1usec | 150 nsec longer

92 VNMR Pulse Sequences 01-999014-00 A0398



9.5 Timer Words and Fast Bits in the Acode

215. What counts in the end is tH#ferencebetween the increments, which should

be as equal as the dwell times during the standard acquisition. Any random variation
in the “evolution dwell time” will translate to noise in the indirect dimension of the
final spectrum and, much worse, any periodic variation will lead to extra signals
(sidebands) in the indirect domain.

What is the nature of these timing erroraihexperiments? Typically (with spectral
windows of a few kHz) the evolution time for first increments orm@nexperiment is
below 4 msec (i.e., it is performed accurately with the full timing precision of the pulse
programmer, 25 nsec on most systems). But for those increments that have an
evolution timegreater than 4 mse(see the above tables) two errors occur:

* The delays are rounded off to fulsec time events. This will lead to a periodic
error in the course of the evolution time incrementation.

® The timer word overhead is no longer corrected for (i.e., evolution times larger
than 4.097 msec are 300 nsec too long, or 150 nsec for single-precision
millisecond time events).

We could set the spectral window in the indirect dimensions such that the evolution
time is always a multiple of a fylisec (which certainly would be inconvenient), but
then still there would be a single incrementation discontinuity when crossing the 4.097
msec limit, beyond which the timing overhead is not corrected. This alone probably
wouldn’t be too bad, but worse is that when the evolution time happens to “fall onto”
a full msec duration, which will occur periodically, the timing overhead would only be
half of what it is for the other time events above 4.097 msec. This can translate to
visible artifacts (sidebands) in nD spectra with a large dynamic range.

To correct for these problems, as of VNMR 5.1 the mobuler/psg/delay.c
has been modified such that any time event above 4 msec and below 4 sec is performed
in three timer words

® a (single) msec timer word, with the msec portion of the durations 2 msec

® a double (usec/nsec) timer word of 2 msglaisthe sub-msec fractiominus the
timing overhead of the first timer word

This change has the effect of producing triple-precision timer words for durations
between 4 msec and 4 sec, and withahliime events up to 4 sec are performed at

the full precision of the pulse programn{&b nsec on most systems). These “triple-
precision time events” will, of course, lead to extra FIFO words in the pulse
programmer; however, this only affects delays above 4 msec, and hence should not lead
to problems such as having too many events in a hardloop, etc.

9.5 Timer Words and Fast Bits in the Acode

For acquisition control boards and pulse sequence control boards, time events are
encoded with the instructiod$1 and152, EVENT1_TWRRNdEVENT2_TWRD
EVENT1_TWRIibstructions are followed by a 16-bit timer word (the time base is in the
4 most-significant bits);VENT2_TWRRre followed by two 16-bit timer words.

01-999014-00 A0398 VNMR Pulse Sequences 93



Chapter 9. Pulse Programmers

Fast bits are set by separate instructions: gate-related information (excluding the 90-
degree phase shifts) is set by instructiéf (HighSpeedLINES , followed by a 32-

bit pattern), 90-degree phase shifts are set with the instrd&i¢(®@ETPHAS90Q

followed by a channel identifier and the address of a location inGls¢ructure):

362
365
368
371
374
377
380
382
385
387
390
392

356
359
362
365
368
371
374
376
379
381
384
386

250
253 150
256 150
259 16
262 150
265 150
268 151
270 150
273 151
275 150
278 151
280 150

150

HighSpeedLINES
HighSpeedLINES
HighSpeedLINES
SETPHAS90
HighSpeedLINES
HighSpeedLINES
EVENT1_TWRD
HighSpeedLINES
EVENT1_TWRD
HighSpeedLINES
EVENT1_TWRD
HighSpeedLINES

(void)
(void)
(void)
CH1

RXOFF
RXOFF

10.000 usec
RXOFF TXON

7.000 usec
RXOFF

10.000 usec
(void)

zero

Any pulse sequence statement that can possibly alter the fast bitstlikke or the
various gating instructions within ti& pulse statement, even if the pulse duration

is zero) produces lighSpeedLINES instruction in the Acode. Because many time
events in a pulse sequence may be set to zero (like in the above example using the

s2pul

pulse sequence), it is not unusual to find a seriebghfSpeedLINES with

identical arguments and no time events in-between. Of course, only instrdéions
and152 (EVENT1_TWRBNdEVENT2_TWRIactually produce FIFO words (1 and 2,
respectively); thélighSpeedLINES andSETPHAS90only change specific bits in

the “quiescent states” registeC->squi

For pulse programmers with 16 fast bits (output boards and acquisition control boards),
the two spare lines (set and unset in the pulse sequence code by the statements

splon() , sploff()

, sp2on() , andsp2off()

) are part of the standard fast bit

pattern and are set the same as the other gating bits, throudighBeeedLINES
instruction. For the pulse sequence control board, the two spare lines are set with a
special instructiod56 (SPARE1D, followed by a 16-bit word containing the numeric
equivalent to the two fast bits (0x10 for spare line 1, 0x20 for the spare line 2), because
these two bits are not part of the standard 32-bit fast bit @resqui

Earlier software releases (prior to UNIPY¥isand the pulse sequence controller board)
did not have the Acode instructiobS0 to 156; at that time, the high-speed lines
(including the two spare lines) were set together with the time event instructions
EVENT1landEVENT2(46 and47). These instructions were followed by one or two
timer words, plus an extra 16-bit word with the fast bitslighSpeedLINES

instruction was not required; only the 90-degree phase shifts were set by the same
instructionSETPHAS90(16) as today.

94

VNMR Pulse Sequences

01-999014-00 A0398



chapter 10. Phase Calculations

Phase cyclingn pulsed NMR experiments is the alteration of rf phases as a function
of the scan number, thereby co-adding experiments with different rf phases, by altering
the phases in a pulse sequence as a function of the transient counter \ariakiere

are many reasons to do phase cycling, including:

® Coherence pathway selection, such as multiple-quantum filtefiogff
guadrature selection, etc.

® Cancellation of artifacts arising from spectrometer imperfections, such as channel
imbalance (quadrature images), dc offsets (center glitch), phase errors, pulse
imperfections (off-resonance effects).

® Cancellation of phase errors due to J-coupling.
® Cancellation of phase errors due to (sometimes deliberately) improper refocusing.

10.1 How Do Phase Calculations Work?

The most natural thing seems to be to calculate the phases directly frein toginter

via some mathematical algorithm. Of course, this presumes that such an algorithm
exists: we need a mathematical prescription that generates a given vector (a one-
dimensional array of scalar numbers; for 90-degree phase shifting typically integer
numbers between 0 and 3) from the vector of natural numbers (i.et, theunter). It

can be shown that for amgpetitivesequence of numbers, such an algorithm exists.

Phase cycles by nature are repetitive; therefore, the calculation is feasible, supposing
we have the necessary mathematical tools. The complexity of the mathematical
procedure (the number of mathematical operations and the storage requirements for
intermediate results) heavily depends on the (repetitive) sequence of numbers (the
target vector) that is to be created; the means that VNMR provides should actually be
sufficient for creatinginy phase cycle used in NMR experiments.

True random sequences of numbers cannot be generated this way, but pseudo-random
sequences of sufficient length and quality can be generated using integer math (using
modulo functions, seBection 10.8, “Real-Time Random Numbers,” on pagg.112

The Tools

The basis for phase mathematics is formed by two main ingredipetsitors(the

math operations themselves) amkrandgthe objects—numbers and storage
locations—that are used and manipulated by the operators). A third ingreeliént,
time logical decisionss sometimes also used for the construction of more complex
phase cycles. Als@; constructsare often used to make phase calculations dependent
on certain VNMR parameters lilghase .

C constructs can only happen oper-FID basis, because after the Acode generation

C constructs can have no effect on the execution of real-time math. Also, C math
operators cannot be used for real-time math: phase math operators are interpreted by
the acquisition CPU in “real time”; operands are addresses (offsetsliCtsteucture),

on which the real-time math operations are performed.

01-999014-00 A0398 VNMR Pulse Sequences 95



Chapter 10. Phase Calculations

Real-Time Operands

The operands for real-time math can be divided into constants and variables:

® Simple numeric constantgero , one. two , three (LC elements with numeric
values 0, 1, 2 and 3, respectively).

® Constantssval
transients.

* Predefined variableg , ssctr , andbsctr , holding the transient counter (least-
significant half only, sed_C Data Structure” on page Y,3he steady-state
transient counter, and the block size transient counter, respectively.

andbsval , holding the number of steady-state and blocksize

® True real-time variablegl ,v2, .. .v14.

It obviously doesn’t make sense to change the values of the numeric constants and,
with very few exceptions, to modify other constants and predefined variables.
Therefore, results are normally placed only in the true real-time varigbliess14 .

Real-Time Operators

A full set of basic math operators exists for the construction of phase cycles. These
include unary operators (one argument only), and operators with two and three
arguments. Always the last argument is thieyet operandand that contains the result

of the calculation (it is therefonmodifiedby the operator), preceding operands are not
modified by the calculatiorf.able 6shows the set of real-time math operatphel

ph2, etc. are real-time operands, see above.

With all these operators, the last argument is the target operand and is modified by the
real-time calculation. Math results can, of course, be used in subsequent calculations.
Complex algorithms are built by chaining a series of simple operations.

All calculations are integer operations. Divisions always result in an integer, and
fractional numbers are truncated to the next lower integer number. All operations are

Table 6. Real-time math operators

Type Syntax Meaning
assignment assign(ph1,ph2); ph2 = ph1
increment / incr(phl); phl=phl+1
decrement decr(phl); phl=phl-1
addition / add(ph1,ph2,ph3); ph3 = phl + ph2
subtraction sub(ph1,ph2,ph3); ph3 = phl - ph2
T dbl(ph1,ph2); ph2 =2 *phl
multiplication mult(ph1,ph2,ph3); ph3 = ph1 * ph2
. hiv(ph1,ph2); ph2=phl/2
division divn(ph,ph2,ph3); ph3 = ph1/ ph2
mod2(ph1,ph2); ph2 = phl % 2
modulo mod4(ph1,ph2); ph2 =phl %4
modn(ph1,ph2,ph3); ph3 = phl % ph2

96 VNMR Pulse Sequences

01-999014-00 A0398



10.1 How Do Phase Calculations Work?

performed in 16-bit integer format with a range of —32768 up to 32767. Integer
overflow is suppressed—results are subjected to an implicit (mod 32768) operation.

Variable operands can contain positive as well as negative numbers. In most of the
typical applications for phase calculations (e.g., the calculation of 90-degree or small-
angle phase shift steps, the use of a real-time variable is as a table index) the function
for which the result is used has a very limited numeric range, such as 0 to 3 for 90-
degree phase shifts, or 0 to 7 for 45-degree phase steps. In these cases, the value in the
variable undergoes an implicit modulo function (without altering the variable itself):

for 90-degree phase shifts, the two least-significant bits are extracted (-1 mod 4 is 3),
for 45-degree phase steps, the three least-significant bits are taken (-1 mod 8 is 7). In
other words, as long as the number of possible (phase) values is a power of two (2, 4,
8, ...), a negative numbarin phase cycling behaves like 32768} |

As mentioned above, in most cases the result of a real-time calculation is subject to
some modulo function in the end (either implicitly or explicitly). For instance, with 90-
degree phase shifting it normally does not matter whether a variable contains the
numbers 3, 7, 11, or —1. In fact, many people tend to think that in such situations “4 is
the same as 0” and mentally apply a modulo function to every intermediate result in a
phase calculation. This thinking is certainly not correct, but it still leads to the proper
result,as long as no divisiordivn , hlv ) is involved.

New Real-Time Numeric Constants

The real-time numeric constarzisro , one, two , andthree  exist for calculations.
In principle, three of those could be calculated from a single value, for example:

assign(zero,vl); *0*

incr(vl); [* 1%
dbl(v1i,v2); [*2 %
add(vi,v2,v3); [* 3%

In other words, three of the four constants are not really a necessity, but are a pure
convenience for the programmer (actually, we save some Acode space because saving
three more constants costs three 16-bit words, while the above calculations take up 12
AP words). Sometimes we would like to make calculations with much higher numeric
values, the value 127 perhaps (for an exampl&segon 10.8, “Real-Time Random
Numbers,” on page 1)2Again, such numbers can be calculated:

dbl(two,v1); *4%*
dbl(vi,vl); /*8*
mult(vl,vl,vl); /* 64 *
dbl(v1,v1); /* 128 */
decr(vl); [* 127 */

On the other hand, it would seem convenient if we could just create a new numeric
constant. This is in fact possible, using ithieval statement:

initval(127.0,v1);

This initializesvl (LC->v1 ) with the numeric value 127 (instead of 0). This way we
haven't wasted a single word of Acode! However, there is achigeatin this method:

vl in fact contains the value 127 when the above statement is used, but this happens
only once: upon typingo, when the Acode is generateabfter when thel C structure

is created and initialized). Hnyreal-time calculation overwrites the valuewdf (i.e.,

if v1 is used as target operand), the initial value is lost for the current transient and any

01-999014-00 A0398 VNMR Pulse Sequences 97



Chapter 10. Phase Calculations

subsequent transients for that FID! The consequence is that the variable that is
initialized usinginitval is lost as a real-time variable for that pulse sequence.

There is also a potential danger that the programmeiinises  at the beginning

of a pulse sequence and then by mistake overwrites the value. This leads to very subtle
pulse sequence errors that can be hard to find and debug (certainly, the syntax checker
does not find such errors!).

The conclusion is thaitval allows simplifying the pulse sequence code, but in
general it is probably better to avoid using it, thus saving real-time variables and
avoiding pulse sequence errors. We should be careful wheninisiaj  to store

power levels in real-time variables (this practice was common in Varian pulse
sequences for a long time). If by mistake power levels are altered by real-time
calculations, excessive rf load and heating may damage the probe and precious
samples. It is better to avoid setting power levels through real-time variables (see also
Chapter 12, “AP Bus Traffic,” on page 137

The fact thatnitval happens ajo time and not at real time means that it doesn’t
matter where thimitval ~ statement is placed. It can be the last statement in the pulse
sequence, but the value can be used in the first real-time calculation.

Phase Calculations in the Acode

Phase calculations are the part of the pulse sequence program that is transferred into
Acode almost directly. Every statement creates one Acode instruction, and every real-
time math argument translates to an Acode waxd gddress pointer). The following
example is generated from a slightly modified version of the staridaddt.c  pulse
sequence in VNMR 4.3:

384 378 272 37 MODA4FUNC ct v3
387 381 275 34 HLVFUNC ct vo
390 384 278 34 HLVFUNC vO VO

393 387 281 39 ASSIGNFUNC zero v10
396 390 284 39 ASSIGNFUNC  v9 vi
399 393 287 34 HLVFUNC v9 VO

402 396 290 39 ASSIGNFUNC  v9 v2
405 399 293 34 HLVFUNC v9 VO

408 402 296 34 HLVFUNC VO VO

411 405 299 36 MOD2FUNC vo v9
414 408 302 33 DBLFUNC vi vi

417 411 305 29 ADDFUNC vo vl vi
421 415 309 39 ASSIGNFUNC vl oph
424 418 312 33 DBLFUNC v2 V8

427 421 315 29 ADDFUNC Vo V2 w2
431 425 319 29 ADDFUNC v8 oph oph
435 429 323 33 DBLFUNC v3 V4

438 432 326 29 ADDFUNC v3 v4 V4
442 436 330 29 ADDFUNC v3 v9 V3
446 440 334 29 ADDFUNC v4 oph oph
450 444 338 29 ADDFUNC v10 oph oph

Considering the fact that this code generates several phase cycles that are 64 steps long,
the above code can be regarded as being quite efficient: only 70 Acode words (21

instructions) are used to generate these phase cycles (and this isn’'t even the shortest
possible coding!).

98

VNMR Pulse Sequences

01-999014-00 A0398



10.2 Case 1: Decoding Phase Calculations

10.2 Case 1: Decoding Phase Calculations

Anyone programming sequences with real-time math has two hurdles to overcome in
connection with the real-time math: to understand how a sequence with real-time math
works, and then to find an appropriate real-time math algorithm that generates the
desired phase cycle. The understanding part is the easier of the two tasks and is
therefore discussed first.

If we take the above example, we might find a phase cycling (calculation) section in
the pulse sequence that looks as follows (assuming that there are no comments):

mod4(ct,v3);

hlv(ct,v9); hiv(v9,v9);
assign(v9,vl);

hlv(v9,v9); assign(v9,v2);
hiv(v9,v9); hiv(v9,v9); mod2(v9,v9);
dbl(v1i,vl); add(v9,vi,v1);
assign(vl,oph);
dbl(v2,v8);

add(v9,v2,v2);
add(v8,oph,oph);
dbl(v3,v4); add(v3,v4,v4);
add(v3,v9,v3);
add(v4,oph,oph);

The only safe way (apart from using a computer program) to evaluate the resulting
phase cycles is to write down the result of every single calculation step. For the
beginner, an easy method is to write the vectors in columns (at least for shorter and less
complex phase cycles):

mod4 hlv hiv assign hlv assign hiv

(ct,v3) (ct,v9) (v9,v9) (vo,vl) (vo,v9) (vo,v2) (v9,v9)

ct v3 v9 v9 vl v9 v2 v9
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 1 0 0 0 0 0
4 0 2 1 1 0 0 0
5 1 2 1 1 0 0 0
6 2 3 1 1 0 0 0
7 3 3 1 1 0 0 0
8 0 4 2 2 1 1 0
9 1 4 2 2 1 1 0
10 2 5 2 2 1 1 0
11 3 5 2 2 1 1 0
12 0 6 3 3 1 1 0
13 1 6 3 3 1 1 0
14 2 7 3 3 1 1 0
15 3 7 3 3 1 1 0
16 0 8 4 4 2 2 1
17 1 8 4 4 2 2 1
18 2 9 4 4 2 2 1

01-999014-00 A0398 VNMR Pulse Sequences 99



Chapter 10. Phase Calculations

mod4 hlv hiv assign hlv assign hiv

(ct,v3) (ct,v9) (v9,v9) (vo,vl) (v9,v9) (vo,v2) (vo,v9)
ct v3 v9 v9 vl v9 v2 v9
19 3 9 4 4 2 2 1
20 0 10 5 5 2 2 1
21 1 10 5 5 2 2 1
22 2 11 5 5 2 2 1
23 3 11 5 5 2 2 1
24 0 12 6 6 3 3 1
25 1 12 6 6 3 3 1
26 2 13 6 6 3 3 1
27 3 13 6 6 3 3 1
28 0 14 7 7 3 3 1
29 1 14 7 7 3 3 1
30 2 15 7 7 3 3 1
31 3 15 7 7 3 3 1
32 0 16 8 8 4 4 2
33 1 16 8 8 4 4 2
34 1 17 8 8 4 4 2
35 2 17 8 8 4 4 2

For more complex phase cycles, the vectors are better written in rows instead of
columns, either on a piece of paper or, even better, directly in the pulse sequence as a
comment behind every single function call:

mod4(ct,v3); /*v3 =01230123 */
hlv(ct,v9); [*v9 =001122334455 ... */
hlv(v9,v9); /*v9 =000011112222333344 ... = ct/4 */
assign(v9,vl); *vl =ctl4*/
hiv(v9,v9); *v9 =ct/8*
assign(v9,v2);  /*v2 =ct/8*
hlv(v9,v9); *v9 =ct/16 */
hlv(v9,v9); /*v9 =ct/32*
mod2(v9,v9); *v9 =(32*0) (32*1) */
dbl(v1,v1); /*vl =0000222244446666 ... */
I* =0000222200002222 (quadrature phases) */

add(v9,v1,vl); /*vl =00002222000022220000222200002222
11113333111133331111333311113333 */

assign(vl,oph); /*oph=vl*

dbl(v2,v8); /*v8 =0000000022222222 */

add(vo,v2,v2);  *v9 =00000000222222220000000022222222
11111111333333331111111133333333 */

add(v8,0oph,oph); /* oph =00002222222200000000222222220000
11113333333311111111333333331111 */

dbl(v3,v4); I*v4 =02460246 */

add(v3,v4,v4) /*v4 =03690369 = 03210321 */

add(v3,v9,v3);  /*v3 =01230123230123010123012323012301
12301230301230121230123030123012 */

add(v4,oph,oph); /* oph =03212103210303210321210321030321
10323210321010321032321032101032 */

100 VNMR Pulse Sequences 01-999014-00 A0398



10.3 Case 2: Creating Phase Math for Given Phase Tables

Phase cycles can be rather long. To avoid excessive typing, a shorthand syntax is very
helpful (although it makes addition of phase vectors more difficult). Itis recommended
to use the shorthand syntax that is also used in the definition of phase tables (covered
in the sectioriShorthand Notation” on page 1)t6

(abcd)n repeat the entire sequence within the parentheseses
(e.g.,forn=2:abcdabcd )
[abcd]n repeat each individual element within the bracketisnes

(e.g., forn=2:aabbccdd )

Such a simplified comment would look as follows:

mod4(ct,v3); *v3 = 0123%
hiv(ct,v9); *v9 =[0123]2%
hlv(v9,v9); Fv9 =[012314%*
assign(v9,vl); vl =[012314%*
hlv(v9,v9); *v9 =[0123]8%*
assign(v9,v2); Fv2 =[0123]8%*
hlv(v9,v9); Fv9 =[0123]16*
hiv(v9,v9); Fv9 =[0123]32*
mod2(v9,v9); *v9 =[011]32%
dbl(v1,v1); vl =[02]4%*

add(vo,viyvl); /vl =[02020202 13131313J4%

assign(vl,oph); /oph=[02020202 13131313}4*%

dbl(v2,v8); *v8 =[02]8%*

add(v9,v2,v2); *v9 =[02021313]8%

add(v8,oph,oph); *oph=[02200220 13311331]4%

dbl(v3,v4); Fvd = 0202%

add(v3,v4,v4); *v4 = 0321*

add(v3,v9,v3); /*v3 =(01230123 23012301)2
(12301230 30123012)2%

add(v4,oph,oph); /*oph=(03212103 21030321)2
(10323210 32101032)2%

10.3 Case 2: Creating Phase Math for Given Phase Tables

While the reconstruction of phase cycles from real-time math statements is not very
difficult and can be solved by applying pure logic (e.g., in a computer program), the
opposite task is quite different: nobody has yet come up with a simple logical approach
for the construction of real-time math statements for a given phase cycle. The problem
of creating a real-time math algorithm is largely a question of intuition, experience, and
(mental) pattern recognition. Generating phase cycling math is also not an “exact
science” in the sense that for any phase cycle there are many algorithms that lead to the
correct result. The general goal is to create short and understandable algorithms, but
what finally counts is the resulting phase cycle. For the execution of the pulse sequence
in the pulse programmer, it normally doesn’t matiewa phase cycle was generated.

Simple Phase Cycles

As we shall see later, most phase cycles (except perhaps the most simple ones) can be
constructed by co-adding simpler (sub-)cycles: simple phase cycles can form the tools
from which we can construct complex cycles. We should, therefore, first learn how to
construct some simple phase cycles fiam

01-999014-00 A0398 VNMR Pulse Sequences 101



Chapter 10. Phase Calculations

Phase Incrementation

Incrementing phases are generated either &ordirectly or by using division
operation to slovet down (the finamod4 operations are optional for quadrature
phases):

assign(ct,v1); /¥0123%

mod4(ct,v1); *0123*

hiv(ct,v1); /001122334455 ...%
mod4(v1,v1); 00112233%
hiv(ct,v1); *[0123]2%

hiv(vl,vl); *[012314%

hiv(v1i,v1); *1012318%*

divn(ct,three,vl); /*[0123]3*

Alternating Phases

Alternating phases are obtained by doubling an incrementing sequence (of 90-degree
phase shifts). Again, for quadrature phases, therfiod# operations are optional:

dbl(ct,v1); 0202*

add(ct,ct,v1); x0202*

hiv(ct,v1); 0011223344..%
dbl(v1,vl); /0022446688 ...*
mod4(vl,vl); F0022%*

hiv(ct,v1); 0011223344..%
mod2(v1,vl); 00110011%
dbl(v1,vl); /¥00220022%
hlv(ct,v1); [0123]2%
hiv(vl,vl); [0123]4%
dbl(vi,v2); *[02]4%

hiv(v1i,v1); /*[0123]18%
dbl(v1,vl); *[02]8%*
divn(ct,three,vl); #[0123...]13*
dbl(vl,vl); /*[0246...13%
mod4(v1,vl); *[0213%*

Decrementing Phases

Decrementing phase cycles can be obtained by adding three copies of an incrementing
phase cycle (multiplying an incrementing cycle by the consgteed ) or by
subtracting an incrementing phase from a fixed phase:

add(ct,ct,v1); 0246 ..%
add(ct,v1,v1); *0369..%
mod4(vl,vl); /¥03210321%

mult(ct,three,vl); /0369..=0321%

hiv(ct,v1); 00112233..%

102 VNMR Pulse Sequences 01-999014-00 A0398



10.3 Case 2: Creating Phase Math for Given Phase Tables

add(three,one,v2); /* 4 (=0)*/

sub(v2,v1,vl); *4433221100-1-1%

mod4(vl,vl); F[0321]2%

hiv(ct,v1); I* 0 01 1 2 2 3 3 4 ..%
sub(zero,v1,v1); /0 0-1-1-2-2-3-3-4..%

mod4(v1,vl); 1* 0 0 33 2 2 1 1 0 ..%
Shifted Pattern

Shifted patterns “look like” simple patterns but are “not positioned right” (e.g.,
(0011110000111100 ) looks like 0001111 ), but

its values are shifted by two positions). Such phase cycles can be obtained by altering
ct first:

add(ct,two,v1); *23456789..%

hiv(vi,v1); [£11223344..%
hiv(vl,vl); /x00111122..%
mod2(v1,vl); 00111100%

sub(one,v1,v1); /¥11000011%
mult(vl,three,v3); /*00333300*

add(ct,one,v1); 12345678..%
hiv(vl,vl); /¥01122334..%
dbl(v1i,vl); /¥02200220%

Complex Phase Cycles

The trick for generating complex phase cycles with real-time math is to recognize
“internal periodicities,” or repeating pattemgéthin a phase cycle, and (more difficult)

a shifted pattern in a phase cycle. The target is to “decompose” a complex phase cycle
into statements that can either be generated directly or through one of the short
algorithms presented above (“reverse synthesis”). In the pulse sequence, we can then
compose the complex phase cycle simply by adding up the elements. We now look at
a few examples (all used for quadrature phase shifting with a range of 0 to 3).

00222200 Pattern

This phase cycle can either be regarded as a shifted pattern (see above) or it can be
thought of as being identicalto (0 2 2 2 2 4 4 ). We can split that into two groups

of four phases, within which the phase is alternat@d:42 ), (2244 ). The

second of these groups is shifted by two units compared to the first group. This leads
to the following decomposition:

00222244=00220022+00002222

We can, therefore, generate this phase cycle from two simple cycles. Note that an
intermediate result from the second part can be used for the first part:

hiv(ct,v1); 00112233%

hiv(vl,v2); /¥0000111122223333%
dbl(v1i,vl); /*0022%

dbl(v2,v2); 00002222*%

add(vi,v2,v1); ¥002222447%

mod4(v1,vl); *00222200%

01-999014-00 A0398 VNMR Pulse Sequences 103



Chapter 10. Phase Calculations

The treatment as shifted pattern (as shown previously) is slightly more efficient:

add(ct,two,v1); 23456789 ..%

hiv(vi,vl); [¥11223344..%
hiv(vl,vl); /00111122..%
dbl(v1,v1); ¥00222244..%

02 1 3 Pattern

This phase cycle can be interpreted as being composed from two sub&y@gsiid
(0011 ), with the second two pulses shifted by one unit (90 degrees) against the
first two. This leads to the following algorithm:

dbl(ct,v2); ~0202*
hiv(ct,v1); /¥00112233%
mod2(v1,vl); /F0011%
add(vi,v2,v1); $0213%

02 3 1 Pattern

Exchanging the last two phases in the previous pattern changes things completely. We
get a cycle composed of the simple cyd@e@ 1 1) and a shifted patter®(2 2 0):

add(ct,one,v2); [*1234%
hiv(v2,v2); 0110%
dbl(v2,v2); *0220%*
hiv(ct,v1); /¥00112233%*
mod2(v1,vl); 0011%*
add(vi,v2,v1); 0231*

02132031 Pattern

Splitting this cycle, which is equivalentt@0 (2 1 3 2 4 3 5), into two groups of
four leads to the two subcycles,{00222 2 )and 02130213 ),
with the 0 213 ) part of the second subcycle being composed from two more
subcycles,2 )and Q011 ).

dbl(ct,v2); ~0202*
hiv(ct,v1); /¥00112233%
hiv(v1,v3); *1012314%*
dbl(v3,v3); *[02]4*
mod2(v1,vl); /F0011%
add(vi,v2,v1); *0213%*
add(vi,v3,vl); /¥02132031%

It turns out that there is a much simpler solution if we take four groups of two phases,
in which case the elements a®e2() and 00112233 ):

hiv(ct,v1); F00112233%
dbl(ct,v2); [0 2%
add(v1,v2,v1); F02132031%

104 VNMR Pulse Sequences 01-999014-00 A0398



10.3 Case 2: Creating Phase Math for Given Phase Tables

0231201320130231 Pattern
Splitting this phase cycle into four groups of four phases we get an A-B-B-A pattern

with A=(0231 )and B=@ 013 ). B is phase-shifted by 180 degrees (2 units);
this becomes obvious if we think about the equivalent of 4 and 0 or 5 and 1 for
gquadrature phase shifting: B34 53 ). The decomposition of phase cycle

(0231201320130231
(0000222222220000

)isequalto@231 )plus
), a simple shifted patterfQ 2]8

left-shifted by four steps.

add(ct,one,v2); Fv2=1234%

hiv(v2,v2); [Fv2=0110%

dbl(v2,v2); [*v2=0220%

hiv(ct,v1); Fv1=00112233%

mod2(vl,vl); Fvli=0011%*

add(vi,v2,vl); Fv1=0231%

dbl(two,v3); [*v3=4%

add(ct,v3,v4); *vA=45678910111213..%

dbl(v3,v3); [*v3=8%*

divn(v4,v3,v4); v4=0000111111112..%

dbl(v4,v4); *v4=[02244668810..]4
vd =[0220]4*

add(vl,v4,vl); *v1=02312453 24530231

vl =02312013 20130231%

Note that even for quadrature phases the “impti@t4 function” can only be applied

if no division is involved (after a division it is all right again)!

03212103210303211032321032101032 Pattern

The best approach for this phase cycle is to start by splitting into two groups, and then
splitting the resulting 16-step cycle into four groups of four steps each:

0321210321030321 1032321032101032=

0321210321030321 0321210321030321+
000000000O00O0O0OOO0O0 11111211711211217111211111

0321210321030321+=
0321032103210321+
0000222222220000

These are all subcycles we have discussed previoQsdy2 (L ) is a simple
decrementing cyclgd 2 2 0]4 was used in the previous phase calculation, and the

subcycl€0 1]16

can be calculated ast (/16) mod 2:

dbl(two,v1); [Fvl=4%*

add(ct,v1,v2); Fv2=45678910111213..%

dbl(v1,v1); [*vl=8*

divn(v2,v1,v2); Fv2=0000111112121212.%

dbl(v2,v2); *v2=[02244668810..]4
v2 =[022014%

dbl(v1i,vl); [*vl=16*

divn(ct,v1,v3); *v3=ct/16=[0123]16

mod2(v3,v3); *v3=[01]16

sub(zero,ct,v4); Fv4d=0-1-2-3=0321%

add(v4,v2,v4); *v4=0321210321030321%*

add(v4,v3,v4); *v4=0321210321030321

01-999014-00 A0398

1032321032101032%

VNMR Pulse Sequences 105



Chapter 10. Phase Calculations

This phase cycle is longer than the previous one, but it requires fewer math statements.
If we skip themod2 step, we would even obtain a phase cycle of 64 steps, which uses
less Acode (39 words) than if we would store the resulting phase table in the Acode (as
16-bit numbers)! Divisions normally multiply the phase cycle length by the divisor,
multiplications and modulo steps usually shorten the length of a phase cycle.

Phase Cycles for Many Pulses

By tradition, Varian pulse sequences were mostly written with a code section
containing the real-time phase math for all pulses (and the receiver), followed by the
actual pulse sequence. This has the advantage of keeping things apart for more clarity,
and also it often permits using intermediate results or the final phase cycle for one pulse
also for the calculation of other phase cycles, reducing the total number of math
statements for the entire pulse sequence. On the other hand, if there are many pulses
with many different phase cycles, there may be a problem with the limited number of
real-time variables (14 total). There may be more phase cycles in a single pulse
sequence than real-time variables. Also, such a convoluted, complex phase cycling
section is often difficult to decode.

The other extreme would be to calculate each phastdefore using itThis keeps the
individual phase calculations simpler and avoids conflicts with the number of real-time
variables (after having calculated and used one phase cycle, all variables can be reused
for the next calculation). On the other hand, this method may dramatically increase the
total number of math statements in a pulse sequence, can make it difficult to read
(pulses and delays are interspersed with phase calculations), and blows up the Acode.
In particular, this method also neglects the pmakgionswithin a pulse sequence—

the fact that intermediate results and entire phase cycles can often be reused for other
phase calculations is notincidental, but due to the close relationship between all phases
in a pulse sequence! More about thaChmapter 11, “Phase Tables,” on page.115

10.4 Real-Time Logical Decisions

The Acode interpreter not only has the ability of performing a linear interpretation, but
it can also make decisions and perform branching based on the contents of real-time
variables (a looping capability is also built in, Sékapter 14, “Repeating Events,” on
page 14Y. The use of real-time decisions for the conditional creation of FIFO words
(conditional pulses or pulse sequence fragments) is discussed in more detaitin

15.2, “Real-Time Decisions,” on page 1&{ere, we just discuss the application of
real-time decisions to the construction of phase cycles using real-time math.

Let’s look at a phase cycle used in a phase-cycling-based implementation of the
E.COSY experiment (basically a linear combination of different double-quantum
filtered COSY experiments). In this experiment, the first two pulses undergo a
complicated scheme of 45-degree phase shifts:

0107012701470167 0107012701470365

106 VNMR Pulse Sequences 01-999014-00 A0398



10.4 Real-Time Logical Decisions

There must be a direct mathematical way to construct this kind of phase cycle, but that
algorithm would be excessively complicated. Instead, let us take a different approach
by separating the phases for the even and odd scans (the phases are in 45-degree
increments, the range of values therefore is0to 7) :

0107012701470167 0107012701470365=

The new (sub-)phase cycles look much more manageable than the original one, at least
the subcycle for the odd pulses (for the even scans we need some exception handling,
because the last two phases behave differently from the others).

What we now need is some construct that can be described as follows:
if (odd scan)
(use phase cycle a); I* 00020406 *

else
(use phase cycle b); I* 17171717%

Fortunately, this is very easy to do. We just use a real-time variable that is zero for all
the odd transients by applyimgod2to ct , and then we can use real-time branching to
calculate specific phases for both the odd and even transients (for more information in
real-time decisions, se&tection 15.2, “Real-Time Decisions,” on page)160

mod2(ct,v1); /%0101 */
ifzero(vl);

/* phase selection for odd transients */
elsenz(vl);

/* phase selection for even transients */
endif(vl);

Using this mechanism, we can switch between two phase cycles with every scan.
Unlike shown above, the partial phase cycles do not have gaps, but the “empty
positions” are filled with suitable numbers (such that the partial phase cycles are easy
to calculate).

Full cycle: 01 07012701470167 0107012701470365

Cycle A: 0000002200440066 000000220044006©6
Cycle B: 1 1771177117711 77 1177117711773355
Flag A/B: 0101010101010101 0101010101010101

The two resulting subcycles are definitely easier, but still not trivial to construct using
standard math—but we can use exactly the same algorithm to construct the two
subcycles:

CycleA: 0000002200440066 00000022004400 66
Cycle C: 0000O0O0O0OO0 OOO0OO0 O0OOOO 00 00 00 OO 0O OO 0O OO

CycleD: 00 0022 2244 4466 66 00 0022 2244 44 66 66
FlagC/D: 0011001100110011 0011001100110011

01-999014-00 A0398 VNMR Pulse Sequences 107



Chapter 10. Phase Calculations

Subcycle A can be derived from two trivial phase cycles by switching between the two
secondary subcycles with every pair of scans. Subcycle B can be constructed in a
similar way & stands for a non-zero value in the flag variable):

CycleB: 1177117711771177 1177117711773355

CycleE: 3355335533553355 335533553355 3355
Cycle F: 1177117711771177 117711771177 1177
Flag E/F: XXX XXX XXX XXXXXXX XXXXXXXXXXxx0000

In the actual coding, we first construct the four secondary subcycles (one of them—
subcycle C—is trivial) and the three flag variables, and then construct the final phase
cycle with a series of nested real-tithe statements (this allows bypassing the
intermediate construction of the subcycles A and B). The flag variglf#e ‘is best
created as a shifted incrementing cycle:

FlagE/F: 1111222233334444 5555666677770000

This is constructed usingodulo 8 of ct/4+1 . The entire phase “calculation” can
be coded as follows:

mod2(ct,v10); /[*v10=01=flag A/B */
hiv(ct,v1); /*vl =ct/2*
mod2(v1,v11); *v11=0011="flag C/D */
hiv(vl,v12); [*v12 = ct/4 */
incr(v12); [*v12 =ctld + 1%/
dbl(two,v13); [*4*
dbl(v13,v13); /*8*
modn(v12,v13,v12) /¥[123456701]2="flag E/F */
mod2(v1,v2); [Fv2=0011%
dbl(v2,v2); Fv2=0022%
mult(v2,three,v3); *v3=0066*
add(v2,three,v2); /*v2 =3 355 =subcycle E */
incr(v3); [*v3=1177=subcycle F*
hiv(vl,vl); [* vl =ct/4*/
dbl(v1,vl); *v1=[024681012..]4%
modn(vl,v13,vl); /[*v1=[0246]4=subcycle D*/
ifzero(v10); /* odd scans */
ifzero(v11l); /* scans 1(,2),5(,6),etc. */
assign(zero,vl); /* subcycle C */
endif(v1l); /* (subcycle D is default in v1) */
elsenz(v10); /* even scans */
ifzero(v12); /* scans 30,32 */
assign(v2,vl); /* select subcycle E */
elsenz(v12); /* scans 2,4,8,...,28 */
assign(v3,vl);  /* select subcycle F */
endif(v12);
endif(v10);
stepsize(45.0, TODEV);

xmtrphase(vl);

The full E.COSY phase cycle is six times longer than the one shown above, with yet
another “exception” in the sixth loop. Although it is obviously simpler to generate such
phase cycles using tables, the main intention here was to demonstrate the possibility of
generating “arbitrary” phase cycles using real-time math in combination with real-time
decisions.

108 VNMR Pulse Sequences 01-999014-00 A0398



10.5 Steady-State Phase Cycling

10.5 Steady-State Phase Cycling

All phase calculations up to now were based ondheeal-time variable. This works

fine for all standard pulses uprt=32768 . After that many transients, the phase
cycling continues as ift would restart at 0, because the real-time variablés only

the low-order half of. C->ct . For scan 32768,C->ct is set to 32768, which is 1 in

the high-order half (word) and 0 in the low-order word. This should be fine, because
the number of steps in most phase cycling schemes is in powers of two anyway; even
if this is not the case. After that many scans, a disruption in the phase cycling has no
noticeable effect on the final spectrum.

Nevertheless it is bad ideato usect as exclusive basis for phase cycling. During
steady-state pulses, tbie counter remains at 0, and therefore no phase cycling
occurred during steady-state transients! This means that no matter how big a number
of steady-state scans is selected, the steady state durisg thdses idifferentfrom

the steady state reached after the first few real scans. In all but the most primitive
experimentsg2pul with cp='n' ), the true steady state is only reached after the first
“real” scans! This is particularly bad with cancellation experiments, unless some
presaturation scheme (homospoil-90-homospoil, or two long orthogonal spin locking
pulses at the beginning of each scan) is used to erase all residual coherence from
previous scans.

The proper solution isotto usect directly for phase calculations, but to construct a
counter that varies though the steady-state pulses. This is possible by usiagithe
real-time variablessctr is equal to the value afsval for the first steady-state scan
and is decremented after esshscan. When thesctr  variable is zero, the real scans
start. Various schemes have been proposed to combine #redssctr  counters,

like the following:

ifzero(ssctr);

assign(ct,v9); /*0,1,2,..nt-1%
elsenz(ssctr);

sub(ssval,ssctr,v9); /0,1, 2,..ss-1%

endif(ssctr);

After this,v9 would be used instead of for all phase calculations. This scheme takes
into account the fact thasctr  “counts backwards” (it is decremented, instead of
incremented liket ) so phase cycling starts the same way as with the “real” scans.

This scheme is certainly better than usihgonly, but it still has some deficiencies.

After the steady-state scans, the phase cycling counter jumps back to zero and may,
therefore, disrupt the steady state. This can again be particularly bad with cancellation
experiments (e.g., using an odd number of steady-state scans with double-quantum
filtered experiments). In principle, this scheme requires sestnig the total length of

the phase cycle! The idea behind steady-state scans is to “make the spins believe that
we have been performing an infinite number of scans in the past,” before the “real”
scans start. This can be achieved by perforiiadast elementsf the phase cycle

rather than the beginning elements during the steady-state scans. This can be achieved
in a very simple way:

sub(ct,ssctr,v9); [* -ss,-ss+1,.. -1,0,1,.. nt-1 */

This works fine, because the signed binary value -1 is equivalent to the unsigned binary
value 1,111,111,111,111,111 (decimal 65535)"%t.2As long as the length of the

phase cycle is a power of two, this will execute the last elements of a phase cycle. As
there are only very few examples of pulse sequences where the phase cycle length is

01-999014-00 A0398 VNMR Pulse Sequences 109



Chapter 10. Phase Calculations

not a power of two (COSY-3 is one of them), this should be made the default way to
generate a base counter for phase cycling.

10.6 C Constructs and Phase Calculations

C constructs are used to implement parameter-dependent phase cycling. The most
frequently used parameter-dependent phase cycling is the type for phase-sensitive
multidimensional NMR, where a coding similar to the type below is applied. A pseudo-
variablephase is used to differentiate between the TPPI (time-proportional phase
incrementation) and hypercomplex (States-Haberkorn-Ruben) types of phase-sensitive
2D (nD) spectra. The Varian convention is to ysese=3 for TPPI spectra (adding
90 degrees to the phase shift of the first pulse with every time increment) and
phase=1,2 for hypercomplex experiments, whegkase=1 is unshiftedphase=2
has 90 degrees added to the pulses prior to the evolution phase (and relevant to the
phase of the observed signal), as well as to the observe phase. In the coding/thelow,
is supposed to be the phase of the pulse prior to the evolution (e.g., in a NOESY
experiment):
int t1_counter = (int) (d2 * swl + 0.1);
int phasel = (int) getval("phase");
if (phasel == 2)

incr(vl);
else if (phasel == 3);

initval((double) t1_counter), v10);
add(v1,v10,v1);
}

This is only the most basic implementation for phase-sensitive NMR. Modern
sequences use refinements for the hypercomplex method that are discussed in more
detail inChapter 19, “Multidimensional Experiments,” on page.215

There is another nice example of the use of C constructs for implementing variable
phase cycles: in thelayh sequence’s relayed COSY variargtldy greater than

0), in which the number of refocusing elements is determined by the parawiater.

The refocusing pulses cannot (or at least should not) be cycled only synchronously,
because this would lead to an accumulation of the errors due to imperfections in the
refocusing pulses. In the Varian implementation of this sequence, C constructs are used
in two places to adjust the phase cycling to the actual setting ottag parameter:

* The length of th®@0112233 phase cycling is calculated in a&& loop.

® The phase cycling for the refocusing periods is calculated “on the fly”, while
coding the relay (refocusing) intervals such that the 90- degree pulse after the first
relay has the fastest phase alternation and the phase inversion of 90-degree pulses
following subsequent relay periods is slowed down progressively (by a factor of
two per relay period).

This is a slightly simplified version of this pulse sequence:

I* relayh - relayed cosy, including regular cosy */

pulsesequence()

{
int i, relay = (int) (getval("relay") + 0.5);
double tau = getval("tau™);

110 VNMR Pulse Sequences 01-999014-00 A0398



10.7 Why Phase Calculations?

hiv(ct, v1); /*v1=00112233 */
for (i=0;i<relay + 1; i++)
hiv(vl,vl); [*[0 12 3]2**(relay+2) */
dbl(ct,oph); [* oph = 0202 0202 */
add(ct,v1,v2); /*v2 =0123 0123 + 00112233 */
add(oph,v1,oph) /* oph = 0202 0202 + 00112233 */
hlv(ct,v3); /*v3 =0011 2233 4455 ... */
status(A);
hsdelay(d1); [* preparation period */
status(B);
pulse(pw,v1);
delay(d2); /* evolution period */
pulse(pw,v2); [* start of mixing period */
for (i = 0; i<relay; i++)  /* relay coherence */
{
delay(tau/2);
pulse(2.0*pw,v2);
delay(tau/2);
hiv(v3,v3); /* v3 =[0123 ]2%(elay+1) */
dbl(v3,v4); *v4 =10 2]2*(relay+1) */
add(v2,v4,v5); *v5 = v4+v2 (with 00112233) */
pulse(pw,v5);
}
status(C);

10.7 Why Phase Calculations?

There is no doubt that real-time phase calculations are not the simplest way to generate
phase cycling in pulse sequences, because it may be difficult (some users may even call
it painful) for inexperienced users to decode phase calculations, or even more to
generate areal time calculation algorithm for a given phase table if a pulse sequence is
published with the phase cycles in the form of numeric tables. On the other hand, there
are definitely also arguments for phase calculations (as opposed to using tables):

® For very long phase cycles, the calculations are more efficient in terms of Acode
space (see alsohapter 11, “Phase Tables,” on page)115

® Scientists who generate new pulse sequencestibink in phase tables but rather
in algorithms (like phase cycling individual pulses and/or the observe phase for a
specific coherence level selection, multiple-quantum filtering, etc.). Real-time
phase calculations offer a way to directly implement such algorithms.

* Understanding the internal phase cycling mechanisms from long numeric tables
may be as difficult (if not more difficult) than trying to understand real-time math.
Changing the phase cycling order with tables may be more difficult than with real-
time math.

01-999014-00 A0398 VNMR Pulse Sequences 111



Chapter 10. Phase Calculations

10.8 Real-Time Random Numbers

There are many examples of a systematic variation of a variable during the execution
of a pulse sequence, such as:

* Incrementation of the evolution time as function of the increment number.

® Systematic incrementation or decrementation of the mixing time or associated
time intervals in some NOESY-type experiments.

* Time-proportional phase incrementation for phase-sensifivexperiments.

There are also examples of random variation of variables, like the variation of the
mixing time in some (other) types of NOESY experiments. In this case, the
randomization happens from increment to increment, and a C construct can be used to
generate individual random numbers for every code segment:

#define CONSTANT 1073741824
double rv;
if (ix ==1)
srandom(getpid());
rv = ((double) (random() - CONSTANT))/((double) CONSTANT);
mix = mix * (1.0 + rv * getval("mixvar"))

The randomizer must be initialized once (with the first increment) by calling the
srandom function (calling it with the current process-ID ensures true randomization,
also between subsequent calls of the same pulse sequence). The fraratin then
generates a random number between 0 and 2,147,483,647 (the maximum positive 32-
bit integer).mixvar is a scaling factor (between 0 and 1.0 in this case, some
implementation may use a scaling between 0 and 100.0) that allows controlling the
degree of randomization (the proportion of the variation range and the total duration of
the delay. The implementation above varies the delay in both directions.

In some rare cases—like some Z-filters, or randomizaticsildfior avoiding phasing
problems in the case of lofig-relaxation (sharp lines) and short repetition rates—
such a randomization should occur within a single increment, and systematic variation
is not desired or not possible. This is a tricky issue, because the acquisition operating
system (the Acode interpreter) does not provide a random number generator.

This problem has two solutions: randomization using a table of random numbers (see
alsoSection 11.7, “Using Tables as Source for Random Numbers,” on pag@ai@5s
randomization using a real-time pseudo-random number generator.

An algorithm for the second solution has been presentetdgmetic Moments the
coding below is adapted from that article:

double random = getval("random");

if ((d1 - random/2.0) > 0.2e-6)
delay(dl - random/2.0);

if (random > 0.0)

{
initval((double) ((ix*13) % 511),v14); [* seed */
initval(4.0,v13); [*v13 = 4 = phasecycle */
dbl(two,v7); dbl(v7,v7); *v7 =8%*
mult(v7,v7,v7); *v7 =64%*
dbl(v7,v8); /*v8 =128"*
decr(v7); *v7 =63*

IR Boyko, B. Sykes & G. Grajagnetic Momenidll.3, p.4.

112 VNMR Pulse Sequences 01-999014-00 A0398



10.8 Real-Time Random Numbers

decr(v8); *v7  =127*
modn(ct,v13,v6); /*v6 = 012..phasecycle-1*/
ifzero(vb);
divn(ct,v13,v6); /*v6 = ct/phasecycle */
mult(v7,v14,v14); [*v14 = (seed*63) */
add(v14,v6,v14); [* v14 = (seed*63 + ct/phasecycle) */
modn(v14,v8,v14); /* v14 = (seed*63 + ct/phasecycle)%127 */
endif(v6);
loop(v14,v6);
delay(random/126.0);
endloop(v6);

}

This method generates random numbers in the range of 0 to 126. The authors of the
algorithm verified that this mechanism generates nearly ideally distributed numbers
within the specified range. The initializationaf4 (the random seed) with a function

of the increment numbeéx also ensures true randomization between different traces.
Unlike the variation using a C randomization based on the process-ID, this type of
randomizer generates tekame random numbers with eveiry commanduUltimately,

the real-time random number is used to determine the (real-time) loop cycles over a
small delay (1/126 of the total variation range). Loops are discussed in detéibinter

14, “Repeating Events,” on page 147

Note that in the above code, the real-time variatik¢ (the random seed) is initialized
using thenitval statement. This number is then modifisdpurpos€in the vast
majority of the cases this is “forbidden”). The random variation occurs at the beginning
of every phase cycle. It is a good idea to complete every phase cycle under identical
conditions in order to ensure proper subtraction and cancellation.

01-999014-00 A0398 VNMR Pulse Sequences 113



Chapter 10. Phase Calculations

114 VNMR Pulse Sequences 01-999014-00 A0398



chapter 11. Phase Tables

The basic syntax and the mechanisms of using phase tables are simple and easy to
understand, construct, and use.

11.1 Basic Syntax

A simple, external ASCII file, such as the filemr/tablib/sample of
~/vnmrsys/tablib/sample , takes up the actual phase tables:
/* sample phase table file */

t1=0000111122223333 [* 1st pulse */
t2=0213132020313102 [* 2nd pulse, oph */

The table file syntax is nearly trivial. Comments are defined the same way asina C
program:
® Tables have names betwaénandt60 .

® Table values are positive integer numbers (16-bit, range between 0 and 32767),
separated by spaces.

® Table values are separated from the table name byuai sign(=) that must be
surrounded by spaces

® Table length is arbitrary. If necessary, tables can be extended over several lines.

In the pulse sequence, the table file must be loaded explicitly (specifying its name);
thereafter, the specified tables (t2 in the above example) can be used directly:

#include "standard.h"
pulsesequence()

{

loadtable("sample™);
status(A);
hsdelay(d1);
status(B);
pulse(pl,tl);
hsdelay(d2);
status(C);
pulse(pw,t2);
setreceiver(t2);

}

The table file name is relative. In this examptenmrsys/tablib/sample has
preference ovelvnmr/tablib/sample . The table named andt2 are used like
real-time variables. They are of typedeint , but unlike real-time variables ot

point to some element in theC structure. As we will see later, the table names are used

in the C code only to differentiate between the various tables (the table names are lost
in the Acode, see below). The receiver phase is defined in the real-time vandthle

If the receiver phase should be taken from a phase tapfemust be set from a table.

This is usually done with theetreceiver statement, but the same can also be
achieved by thgetelem statement:

getelem(t2,ct,oph);

01-999014-00 A0398 VNMR Pulse Sequences 115



Chapter 11. Phase Tables

This explicitly extracts element numbetr from the table2 . getelem can also be
used to extract phases from tables into other real-time variables, for example:

getelem(t1,ct,v10);
This way, real-time math can be performed on phases from phase tables (real-time

math does not work with table names). Applications for this feature will be discussed
in detail inSection 11.6, “Combining the Best of the Two Worlds,” on page 129

Shorthand Notation

Two types of shorthand notation exist for external phase table files: repeated table
sequences and repeated table elements.

Repeated Table Sequences

By definition, any table is a repeated sequence. If the table index (the pointer to the
current table element) is larger than the number of elements in the table, the table look-
up automatically restarts at the beginning of the table. Thus, the table index is
automatically takemodulo of the table lengtfhis occurs individually for each table.

For example, even if the total phase cycle length (in a pulse sequence) is 16, it is not
necessary to define:

1=1313131313131313

This would be a waste of Acode space. The much shorter table

t1=13

defines exactly the same table, but requires much less space. We don’t need a shorthand

notation for this case On the other hand, a shorthand notation is useful in the case of
a table like:

t1=0202020202020202
1313131313131313
2020202020202020
3131313131313131

In shorthand notation this would be written as
t1=(02)8 (13)8 (20)8 (31)8
The sequence between the parentheses is repeated as many times as indicated by the

repetition number that must follow the closing parenthgilsout spacdthe spaces
between parentheses and the numbers inside are optional).

Repeated Table Elements
Very often tables consist of repeated elements, such as

t1=0000000022222222
1111111133333333

In shorthand notation, this can be dramatically simplified and written as
t1=[ 0213 ]8

1There is an exception: table-to-table math functittasid , ttsub , ttmult , ttdiv ) require

that the target table (which is also one of the two operand tables) is at least as long as the second
operand table. For this reason, we may have to write down a table sequence more than once (usually
done using shorthand notation). See the mavildMIR User Programmingpr more information.

116 VNMR Pulse Sequences 01-999014-00 A0398



11.1 Basic Syntax

The syntax around the brackets is the same as with the parentheses, except that the
index after the brackets indicates the number of repetitions for each table element
between the brackets.

Brackets and parentheses can be used sequentially in within the same table but cannot
be nested. Note that the shorthand notation is just an easy and simple definaig

and enterindong phase tablesthe tables are internally generated at full lendite.,

no Acode space is saved by using shorthand notation, see also below).

Advanced Features

Several advanced features, including the division factor and an automatically
incrementing index, make working with tables easier.

Division Factor
The last table described above can also be written differently:
t1={ 0213 }8

Again, the same syntax as with the parentheses and the brackets applies to the braces
(“curly brackets™). This looks like exactly the same thing as the shorthand syntax using
the brackets and, from a superficial point-of-view, this is true. The index after the
braces defines how many times each element is repeated before passing to the next
element in the table. However, internally the braces work differently. In the case of the
braces, the table generated internally is only the table elements between the braces.

The index after the braces defines what is calledithision factor(sometimes also
called thedivision return facta). Before reading a table element, the table index (the
pointer to the current table elementylisidedby the division factor, before the modulo
function (modulo the table length) is performed and the table element is extracted.
Every table has a division factor. The default setting for the division factor is 1, and the
braces simply alter that value.

In other words, the braces not only are a shorthand notation for tables with repeated
elements, they also define a “shorthand table” internally (i.e., different from the
brackets, the braces also save Acode space, see bEt@rgfore, it is recommended

to use braces instead of brackets wherever possible

Brackets and parentheses cannot be nested within themselves, but they can be nested
within braces, as seen in the following examples:

t1={ (02)4(13)4 }4
2={[021]4(13 )4 }4
In conventional syntax, these tables would be written as follows:
t1=0000222200002222
0000222200002222

1111333311113333
1111333311113333

2There is an exception to this as well. Table-to-table math operatiadd (, ttsub , ttmult

andttdiv ) directly operate on the vectors as they are defined internally, without taking into
consideration any division factors. This can lead to unexpected results if division factors different
from 1 are used, apart from complications due to the restrictions with respect to the table lengths in
such operations (see the previous footnote).

01-999014-00 A0398 VNMR Pulse Sequences 117



Chapter 11. Phase Tables

t2=0000000000000000
2222222222222222
11113333111133383
1111333311113333

Note that the division factor always applies to the entire table; whereas, brackets (and
parentheses) can also be used on parts of a table only:

t1=[ 0214 20202020

This table is perfectly acceptable, but the same line with braces instead of bgackets
not

The maximum division factor is 64. For tables with a higher number of repetitions on
the individual table elements, the following definitions can be used:

t1={ 0000111122223333 }64
t1={[ 0213 4 }64

The division factor can not only be defined in the table file, but it can also be defined
or altered within the pulse sequence, usingsthtdivnfactor statement, for
example:

setdivnfactor(t1,16);

This feature is used frequently in the type of coding describEtampter 19,
“Multidimensional Experiments,” on page 215

Tables with Automatically Incrementing Index

The table index (the pointer to the current table element) is normally either specified
explicitly (using thegetelem statement), or the transient counteris automatically
(implicitly) taken as index (when specifying a table addtess. .t60 as phase
argument to statements likalse , txphase , etc.). This way, the table index is
incremented automatically with every transient (implicit use) or set as specified by the
index argument tgetelem .

However, there are applications where we would like to “scan” through a entire table
(or parts of it) during a single transient, for instance, when the table defines the
amplitudes of a pulse shape or the phases of an explicitly programmed decoupling
pattern. Using table features discussed up to now, this could be programmed in the
following manner:

assign(one,v9); [* table index */
initval(32.0,v10); [* loop cycles (no. of table elements) */
loop(v10,v11);
getelem(t1,v9,vl); [* extract table value */
rgpulse(pw,v1,0.0,0.0); /* perform one pulse element */
incr(v9); [* increment table index */
endloop(v10);

Much of the code above is for the pointer generation and incrementation after reading
an using each table element in turn (note that the number of loop cyates is
necessarilyequal to the number of table elements). To make it easier to use tables for
reading out successive amplitude and phase elements from tables within a single pulse
sequence pass, phase tables have been equipped \siticamcrement attributeT his
attribute is unset by default. It can be set in the table file by usi¥j instead of the

simple equals sigr=" between the table name and the table elements:

t1+={ 02202002 }4

118 VNMR Pulse Sequences 01-999014-00 A0398



11.1 Basic Syntax

Alternatively, the autoincrement attribute can be set wittséksutoincrement
statement (there is no function to unset the autoincrement attribute):

setautoincrement(tl);

With this feature, a “scan through a phase table” can be realized in a much simpler way:

initval(32.0,v10); [* loop cycles (no. of table elements) */
loop(v10,v11);

rgpulse(pw,t1,0.0,0.0); /* perform one pulse element */
endloop(v10);

Note that with the autoincrement attribute the table index is s per FID(when
creating the code). If a table is not read out completely during one scan, the table index
is incremented frorsomewhere within the tableith the next scan.

Autoincrementing tables can be used not only directly (e.g., as phase argument to a
pulse ortxphase statement) but also through thetreceiver andgetelem
statements; however, in the casesefreceiver andgetelem , the specified table
index isdisregarded

How Does a Table Work?

To the user, a table consists of a tatdene tablevalues and thedivision factorand
autoincremenattributes gutoincrements a flag). At the C level, each table has two
more attributes: the current talitelexand the tabléength The table index is only

used in connection with the autoincrement attribute. Both the table length and the
division factor are used to extract a table element either from an implicit or a specified
table index:

extract_index=((index / division_factor) % table_length)

If the extraction index iaot specified (“direct use” of phase tables as argument to
statements likpulse , txphase , etc.),ct is used as table index (unless the table has
the autoincrement attribute set). The variailas the default table index.

With thegetelem statement, the table value is extracted into the specified real-time
variable. With thesetreceiver function, it is extracted into thaph real-time

variable. Where tables are used “directly,” the table value is extracted into a dedicated
real-time variableablert  (the address dfC->tablert  ):

txphase(t3);
is equivalent to

getelem(t3,ct,tablert);

txphase(tablert);

In other words, statements that take a real-time variable as an argument check whether
the real-time variable is a table name or a normal variable, and then take the
corresponding actions.

For example, thexphase statement can be written as follGws

(void) txphase(ph)
codeint ph;
{
if ((ph >=t1) && (ph <= t60))

3The actual coding is quite different é@tquadphase statement does not actually exist), but the
equivalent to this construct is still used in the real software (the stateatphise90 in
/vnmr/psg/rfchan_device.c ).

01-999014-00 A0398 VNMR Pulse Sequences 119



Chapter 11. Phase Tables

getelem(ph,ct,tablert);
setquadphase(tablert, TODEV);

}

else
setquadphase(ph, TODEV);

}

This also works with autoincrementing tables, because this simply causgsitigex
to be disregarded at a lower level (in the Acode interpreter).

Note that with the standard VNMR software the default table index (e.9.,
whenever a table that is not autoincrementing is used directly). Therefore, there is
phase cycling during steady-state puldéegs strongly recommended to not use the
table variables directly, but to ugetelem with a pseudat counter:

sub(ct,ssctr,v13);

getelem(t1,v13,v1);

getelem(t2,v13,t2);

Extracting table values into tlerrespondingeal-time variables] ->v1,
t2 ->v2, etc.) makes it easier to read and understand the sequence.

11.2 Inline Phase Tables

It is possible to avoid a separate file for tables by defining the tables as (static) arrays
in the pulse sequence source file itself between the header (include lines) and the
functionpulsesequence

static int table1[8] = {0,2,1,3,3,1,2,0};

static int table2[16] = {0,0,0,0,1,1,1,1,2,2,2,2,2,3,3,3,3};

The name of the static variable is arbitrary. This static array of integers is then
converted to a table using thettable  statement:

settable(t1,8,tablel);
settable(t4,16,table2);

In contrast to the table definition using external files, tables defined theatigible

can also contain negative numbers (i.e., numbers in the full range of signed 16-bit
integers, from -32768 to 32767). Division factors and the autoincrement attribute have
to be set separately (after the calb&ttable ), using thesetautoincrement and
setdivnfactor statements.

With the exception of cases where negative numbers are required in a table (e.g., if the
table is used to set the amplitude of pulsed field gradients), using inline tables in
general is not recommended because of the following reasons:

® The definition syntax is more complicated (theréris checking on it, though),
® No shorthand syntax is available.

® Division factors and autoincrement attribute cannot be set together with the table
definition (it is less obvious what the tables actually are if division factors are
involved).

® Changing phase tables requires recompiling the pulse sequence.

120 VNMR Pulse Sequences 01-999014-00 A0398



11.3 Table Math

11.3 Table Math

Tables cannot be created or defined only as static objects. Scalar and vector math are
possible with tables. Four statements are provided for scalar operations on tables:
tsadd(tablename,scalarvalue,modulovGalue);

tssub(tablename,scalarvalue,modulovalue);

tsmult(tablename,scalarvalue,modulovalue);

tsdiv(tablename,scalarvalue,modulovalue);

The argumentablename is one of the table addressts,tot60 . The operation
(addition, subtraction, multiplication, division) is applied to every value in the table. At
the end, a modulo function is applied to the result, unless the last argument
(moduloval ) is set to zero, in which case the numeric range of the resulting table
often exceeds the numeric range of the table prior to the execution of the scalar
operation (in the vast majority of the cases, this has no adverse effects due to the
implicit modulo operation that occurs when using the table). Obviously, the divisor
(second argument) tediv  cannot be zero, because division by zero would lead to
mathematical overflow.

There is also a set of table-to-table (vector-to-vector) statements available for more
complex math with tables:

ttadd(target_table,operand_table,modulovalue);

ttsub(target_table,operand_table,modulovalue);

ttmult(target_table,operand_table,modulovalue);
ttdiv(target_table,operand_table,modulovalue);

The mathematical operation in these statements is applied to each “equivalent” pair of
numbers in two tables, and the result is stored in one of the two specified tables. It is
not possible to generate new tables using table math. Also, the operand table cannot be
longer than the target table, because table math cannot alter the length of tables.

The following example should illustrate the functionality of table-to-table math. Let's
assume we have defined the following two tables:

t1=00002222
t2=0123

In the pulse sequence, we now apply the following function:
ttadd(t1, t2, 0);

This causes each element in tatdeto be added to the corresponding element in table

tl . If the operand table is shorter than the target table, the shorter table is expanded to
the same length before performing the operation. The result of the above function is the
following tabletl :

t1=01232345

(no modulo value was specified; therefore, values above 3 are obtained). The other
table-to-table operations use the same working principlettéior ,the operand table
must not contain zeroes, of course, because this would lead to math overflow.

There is a fundamental difference between table math and real-time math using
variables. Different from the real-time variables, table math occurs in the host
computer, when executing the pulse sequence code. That means that a table may not be
changedvithin a pulse sequence. Once a table has been built into the Acode (see
below), it cannot be modified. In fact, a table cannot be modified using table math after

01-999014-00 A0398 VNMR Pulse Sequences 121



Chapter 11. Phase Tables

it has been used the first time (be it as argument to a pulse or phasing function, through
getelem or setreceiver calls)—this will lead to a run-time error message.

This precludes the alteration of tables within composite pulses and similar pulse
sequence elements (like BIRD pulses) that use multiple closely related (“parallel”)
phase cycles. For such cases it is either necessary to define separate tables or to use
real-time math to derive the related phases (seeSastion 11.6, “Combining the Best

of the Two Worlds,” on page 129

11.4 Phase Tables in the Acode

Tables are incorporated into the instruction segment of the Aatdtie point where
they are used for the first tim&Jnused tables are discarded. The table values are stored
as 16-bit integers. Evidently, long tables can occupy a lot of Acode space.

Besides the table values, four more 16-bit integers per table define the table length, the
autoincrement flag, the division factor, and the table index. The table name itself is not
at Acode level. Tables are identified by their address in the instruction segment
(actually the offset of the first attribute). The table size attribute also permits the Acode
interpreter to calculate the offset to the next instruction after the table.

Let’s first have a look at the code generated lyetelem statement (extracted from
the Acode for aoesy experiment):

369 36325739 ASSIGNFUNC zero v5

372 366260105 TABLE 261size 2, autoinc 0, divn_ret 1, ptr O
0 2

379 373267106 TASSIGN table 261 ct vl

383  377271105TABLE 272size 2, autoinc 0, divn_ret 16, ptr O
0 2

390 384278106 TASSIGN table 272 ct v2

394  388282105TABLE 283size 4, autoinc 0, divn_ret 2, ptr 0
0 1 2 3

403 397291106 TASSIGN table 283 ct v3

407 40129529 ADDFUNC vlv5vl

411 40529929 ADDFUNC vl v2 oph

415 40930329 ADDFUNC v3 oph oph

419  413307105TABLE 308size 2, autoinc 0, divn_ret 8, ptr 0
0 1

426 420314106 TASSIGN table 308 ct v4

430 42431829 ADDFUNCo ph v4 oph

434 42832229 ADDFUNC vl v4 vl

438 43232629 ADDFUNC V2 v4 v2

442 43633029 ADDFUNC v3v4 v3

Each of the fougetelem calls in this part of the pulse sequence genera®sBiE
instruction (codel05) , which inserts the table into the Acode as described above,
followed by aTASSIGNinstruction (codd06), which extracts a table value into a
real-time variableTASSIGNis followed by the table address, the table indexig

this case), and the target address (a real-time variahl€)ir-or each of the tables, the
TABLE instruction is inserted at the point where a table is first referred to.

Thesetreceiver  statement generates the same kind of Acode (except that the target
address i€C->oph ):

846 840 734 105 TABLE 735  size 4, autoinc O, divn_ret 1, ptr O
o 1 2 3
855 849 743 106 TASSIGN table 735 ct oph

122 VNMR Pulse Sequences 01-999014-00 A0398



11.5 Tables vs. Real-Time Calculations

Even using tables directly (here as phase argumentsirigpalse  statement) does

not require a new Acode instruction. The target addres€istablert  in this case.

603 597 491 150 HighSpeedLINES  (void)

606 600 494 105 TABLE 495  size 4, autoinc O, divn_ret 8, ptr O
1 3 0

615 609 503 106 TASSIGN table 495 ct tbirt

619 613 507 16  SETPHAS90 CHL1 thirt

622 616 510 105 TABLE511  size 4, autoinc O, divn_ret 1, ptr O
0 2 3

631 625 519 106 TASSIGN table 511 ct thirt

635 629 523 16  SETPHAS90 CH2 thlrt

638 632 526 150 HighSpeedLINES (void)

641 635 529 150 HighSpeedLINES  XOFF

644 638 532 150 HighSpeedLINES RXOFF DECRG

647 641 535 150 HighSpeedLINES RXOFF DECRG

650 644 538 151 EVENT1_TWRD 1.000 usec

652 646 540 150 HighSpeedLINES RXOFF DECRG DEC

655 649 543 151 EVENT1_TWRD 7.925 usec

657 651 545 150 HighSpeedLINES RXOFF TXON DECRG DEC

660 654 548 151 EVENT1_TWRD 27.725 usec

662 656 550 150 HighSpeedLINES RXOFF DECRG DEC

665 659 553 151 EVENT1_TWRD 7.925 usec

667 661 555 150 HighSpeedLINES RXOFF DECRG

670 664 558 150 HighSpeedLINES DECRG

673 667 561 150 HighSpeedLINES  (void)

11.5 Tables vs. Real-Time Calculations

In this section, we make a point-by-point comparison of tables and real-time
calculations. The comparison is illustrated by examples.

Point-to-Point Comparison

Tables and real-time calculations can be compared on length, complexity, Acode space
required, understandability, constructionally, and changeability.

Possible Length, Complexity

Real-time calculationpermit calculating phase cycles that are virtually unlimited in
length (a phase cycle with 1024*1024 steps is no problem!), but limited in complexity
(“arbitrary” phase cycles may require an enormous amount of real-time calculations
that are difficult to construct and understariiblesare limited in length (up to 8192
steps per table, or about 9500 steps maximum per pulse sequence in total, excluding
division factors), but of unlimited complexity.

Acode Space Consumption

Real-time calculationare inefficient for relatively short and simple phase cycles like
02133120, butlong phase cycles can often be constructed with relatively few math
statementsTablesare efficient as long as they are short. Long tables can consume a lot
of Acode space. Acode space efficiency can be crucial in 3D and 4D experiments
(although these normally have very short phase cycles).

01-999014-00 A0398 VNMR Pulse Sequences 123



Chapter 11. Phase Tables

Easy to Understand? Easy to Construct?

Finding out the phase cycle generateddaj-time calculationss often not easy.
Constructing a real-time math algorithm for a given, non-trivial phase table is definitely
a difficult task for non-specialists. Given a complete (phase) table in literattablea

file is trivial to construct, and it also is trivial to see what the actual numeric sequence
is. On the other hand, with longer tables it camtare difficultto understand what the
underlying phase cycling algorithnase than with real-time math, because with the
latter such algorithms can often be directly coded. For the designer of a new pulse
sequence, real-time math may be the more adequate choice. NMR scientists often think
more in terms of phase-cycling algorithms, rather than final phase tables (of course, in
publications it is easier to simply print out phase tables rather than having to explain
the various phase cycling elements and algorithms).

Easy to Change?

Changing a phase cycle generateddsi-time matmormally requires analyzing and
rebuilding the entire algorithm and can be time-consuming. Changing a phase cycle
from full tablesfirst requires understanding and analyzing the underlying algorithms,
and then changing (all) the tables. With long tables, this can be as complicated as
changing real-time calculations, maybe even more difficult sometimes.

Comparison by Examples

To emphasize the differences, and in particular the advantages and disadvantages of
the two methods for generating phase cycles, a pulse sequence with relatively long
phase cycles (not excessive, thoughadgt.c , has been selected for the following
comparisonthe sequence was simplified for the purpose of this chapter

Using Calculations Only

Let's first have a look at a sequence that is written with phase calculations only:

pulsesequence()

{
double tau = 1.0/ (4.0 * getval("jcc"));
int phase = (int) (getval("phase") + 0.5);

mod4(ct, v3);
hiv(ct, v9);
hiv(v9, v9);
assign(v9, v1);
hiv(v9, v9);
assign(v9, v2);
hiv(v9, v9);
hiv(v9, v9);
mod2(v9, v9);/* v9 = F2 quad. image suppression */
dbl(vl, v1);/* vl = suppresses artifacts from
imperfections in 1st 90 deg. pulse */
add(v9, v1, v1);
assign(v1, oph);
dbl(v2, v8);
add(v9, v2, v2);/* v2 = suppresses artifacts from
imperfect 180 refocusing pulse */
add(v8, oph, oph);
dbl(v3, v4);

124 VNMR Pulse Sequences 01-999014-00 A0398



11.5 Tables vs. Real-Time Calculations

add(v3, v4, v4);
add(v3, v9, v3);
add(v4, oph, oph);/* v3 = selects DQC during t1
evolution period */
assign(zero, v10);/* v10 = F1 quadrature */
if (phase == 2)
incr(v10);
add(v10, oph, oph);

status(A);
hsdelay(d1);

status(B);
stepsize(45.0, TODEV);
xmtrphase(v10);
rgpulse(pw, v1, rofl, 0.0);
delay(tau);
rgpulse(2.0*pw, v2, rofl, 0.0);
delay(tau);

status(C);
rgpulse(pw, v9, rofl, 0.0);
xmtrphase(zero);
delay(d2);
pulse(pw, v3);

status(D);

}

The phase calculation section is rather long. There are five different phases, and the
phase cycle length is 64 steps. Even an experienced spectroscopist could spend many
minutes figuring out what the phase cycle is for the various pulses. In the Acode, the
phase calculations occupy 70 words, which isn’'t too bad for phase cycles of this length.

275 26916398 NextSCan

276 27016437 MODA4FUNCct v3

279 27316734 HLVFUNCct v9

282 27617034 HLVFUNCv9 v9

285 27917339 ASSIGNFUNCV9 vl

288 28217634 HLVFUNCvV9 v9

291 28517939 ASSIGNFUNCV9 v2

294 28818234 HLVFUNCVY v9

297 29118534 HLVFUNCvV9 v9

300 29418836 MOD2FUNCV9 v9

303 29719133 DBLFUNCv1 v1

306 30019429 ADDFUNCvI V1 vl

310 30419839 ASSIGNFUNCv1 oph

313 30720133 DBLFUNCv2 v8

316 31020429 ADDFUNCVI V2 v2

320 31420829 ADDFUNCV8 oph oph

324 31821233 DBLFUNCv3v4

327 32121529 ADDFUNCv3 v4 v4

331 32521929 ADDFUNCv3 v9 v3

335 32922329 ADDFUNCvV4 oph oph

339 33322739 ASSIGNFUNCzero v10

342 33623029 ADDFUNCvV10 oph oph
346 340234 6 APBOUT?2 items 0xa511 Oxb57c
350 344238150HighSpeedLINESDECUP
353 347241151EVENT1_TWRD1500 msec
355 349243150HighSpeedLINESDECUP
358 35224668 PHASESTEP CH190 units (45.00 degrees)
361 35524965 SETPHASE CH1v10

364 35825216 SETPHAS90 CH1vi

367 361255150HighSpeedLINESRXOFF DECUP
370 364258151EVENT1_TWRD40.000 usec

01-999014-00 A0398 VNMR Pulse Sequences 125



Chapter 11. Phase Tables

372 366260150 HighSpeedLINESRXOFF TXON DECUP
375  369263151EVENT1_TWRD10.400 usec

377  371265150HighSpeedLINESRXOFF DECUP

380  374268150HighSpeedLINESDECUP

383  377271152EVENT2_TWRD6 msec + 250 usec

386 38027416 SETPHAS90CH1 v2

389  383277150HighSpeedLINERXOFF DECUP

392  386280151EVENT1_TWRDA40.000 usec

394  388282150HighSpeedLINESRXOFF TXON DECUP
397  391285151EVENT1_TWRD20.800 usec

399  393287150HighSpeedLINESRXOFF DECUP

402  396290150HighSpeedLINESDECUP

405  399293152EVENT2_TWRD6 msec + 250 usec

408  402296150HighSpeedLINESDECUP

411 40529916 SETPHAS90CH1 v9

414  408302150HighSpeedLINESRXOFF DECUP

417  411305151EVENT1_TWRD40.000 usec

419  413307150HighSpeedLINESRXOFF TXON DECUP
422  416310151EVENT1_TWRD10.400 usec

424  418312150HighSpeedLINESRXOFF DECUP

427  421315150HighSpeedLINESDECUP

430 42431865 SETPHASECH1 zero

433 42732116 SETPHAS90CH1 v3

436  430324150HighSpeedLINESRXOFF DECUP

439  433327151EVENT1_TWRD10.000 usec

441  435329150HighSpeedLINESRXOFF TXON DECUP
444  438332151EVENT1_TWRD10.400 usec

446  440334150HighSpeedLINESRXOFF DECUP

449  443337150HighSpeedLINESDECUP

452  446340150HighSpeedLINESDECUP

455 44934316 SETPHAS90CH1 zero

458 45234616 SETPHAS90CH2 zero

461  455349150HighSpeedLINESRXOFF DECUP

464  458352151EVENT1_TWRD10.000 usec

466  460354150HighSpeedLINESDECUP

469  463357152EVENT2_TWRD122 usec + 350 nsec
472 46636090 SETInputCardMode

476 47036499 ACQXX loop np=4096, dwell 80.000 usec
479 473367 7 STartFIFO

480 47436897 HouseKEEPing

481 47536920 BRANCH Offset 159

Total code size 483 words / 966 Bytes / 0.9 KB

The Acode segment for the first FID is 477 words or 954 bytes. We now want to
compare this with another version of the same pulse sequence, where all the math
statements have been replaced by phase tables.

Using “Pure Tables”

If we remove all the phase calculations and write a table file instead, the pulse sequence
text is dramatically simplified. The only phase-related statements left are those that
deal with the f quadrature detection (see afSbapter 19, “Multidimensional
Experiments,” on page 2).5Apart from the fact that tables are used instead of phase
calculations, the functionality of the following version is exactly the same as with the
version above (at least as far as the pulse programmer is concerned).

126 VNMR Pulse Sequences 01-999014-00 A0398



11.5 Tables vs. Real-Time Calculations

pulsesequence()

{
double tau = 1.0/ (4.0 * getval("jcc"));
int phase = (int) (getval("phase") + 0.5);
loadtable("inadqt");
setreceiver(t5);
assign(zero,v6);
if (phase == 2)
incr(v6);
incr(oph);
}
status(A);
hsdelay(d1);
status(B);
stepsize(45.0, TODEV);
xmtrphase(v6);
rgpulse(pw, t1, rofl, 0.0);
delay(tau);
rgpulse(2.0*pw, t2, rofl, 0.0);
delay(tau);
status(C);
rgpulse(pw, t3, rofl, 0.0);
xmtrphase(zero);
delay(d2);
pulse(pw, t4);
status(D);
}

Shorthand syntax allows us to simplify the coding of all the phase tables involved.
Unfortunately, only three of the five tables can be shortened using division factors—
two tables must be left at full length. These tables also reveal a potential disadvantage
of the shorthand syntax: in order to correlate the different phase tables, we have to
(mentally) translate the tables back to full length!

Very rarely phase cycling occurs isolated in one table only. Changing the phase of a
pulse most likely causes the observe phase, if not also the phase of other pulses, to
change as well. It would, therefore, help if the tables were written at full length, on a
single line per table, such that the phase cycles could be vertically correlated. This
would of course prohibit any shorthand syntax and division factors and would,
therefore, make the tables even less efficient (in terms of Acode space consumption).
Also, long (full) tables aren’t necessarily more readable due to their length (each of
them would fill two or four lines if the line length is limited to less than 80 characters).

t1={(02)4 (13)4} /* 1st 90 */
£2={01231230)}8 /%180 */
t3={01)32 /* 2nd 90 */
t4=(0321)8 (1032)8 /*3rd 90 */
t5=(0321210321030321)2
(1032321032101032)2 /* oph */

01-999014-00 A0398 VNMR Pulse Sequences 127



Chapter 11. Phase Tables

In the Acode, the phase tables (at least those with a division factor of 1) occupy a
considerable number of words:
275 269 163 98 NextSCan

276 270 164 105 TABLE 165size 64, autoinc 0, divn_ret 1, ptr O
0 321210 3

21 0 3 03 21
0 321 2 10 3
2 1 0 3 03 21
1 0 3 2 3 2 10
3 21010 3 2
1 03 2 3 2 10
3 21010 3 2

345 339 233 106 TASSIGN table 165 ct oph

349 343 237 39 ASSIGNFUNC zero v6

352 346 240 6 APBOUT 2 items 0xa511 Oxb57c

356 350 244 150 HighSpeedLINES DECUP

359 353 247 151 EVENT1_TWRD 1500 msec

361 355 249 150 HighSpeedLINES DECUP

364 358 252 68 PHASESTEP CH1 90 units (45.00 degrees)

367 361 255 65 SETPHASE CH1 v6

370 364 258 105 TABLE 259 size 16,autoinc 0,divn_ret 4,ptr O
020202 0 2

131 31 3 13

391 385 279 106 TASSIGN table 259 ct tbirt

395 389 283 16 SETPHAS90 CH1 tbirt

398 392 286 150 HighSpeedLINES RXOFF DECUP

401 395 289 151 EVENT1_TWRD 40.000 usec

403 397 291 150 HighSpeedLINES RXOFF TXON DECUP

406 400 294 151 EVENT1_TWRD 10.400 usec

408 402 296 150 HighSpeedLINES RXOFF DECUP

411 405 299 150 HighSpeedLINES DECUP

414 408 302 152 EVENT2_TWRD 6 msec + 250 usec

417 411 305 105 TABLE 306 size 8, autoinc 0,divn_ret 8, ptr O
012 312 30

430 424 318 106 TASSIGN table 306 ct thirt

434 428 322 16 SETPHAS90 CH1 tbirt

437 431 325 150 HighSpeedLINES RXOFF DECUP

440 434 328 151 EVENT1_TWRD 40.000 usec

442 436 330 150 HighSpeedLINES RXOFF TXON DECUP

445 439 333 151 EVENT1_TWRD 20.800 usec

447 441 335 150 HighSpeedLINES RXOFF DECUP

450 444 338 150 HighSpeedLINES DECUP

453 447 341 152 EVENT2_TWRD 6 msec + 250 usec

456 450 344 150 HighSpeedLINES DECUP

459 453 347 105 TABLE 348 size 2, autoinc 0,divn_ret 32,ptr O
01

466 460 354 106 TASSIGN table 348 ct thirt

470 464 358 16 SETPHAS90 CH1 tbirt

473 467 361 150 HighSpeedLINES RXOFF DECUP

476 470 364 151 EVENT1_TWRD 40.000 usec

478 472 366 150 HighSpeedLINES RXOFF TXON DECUP

481 475 369 151 EVENT1_TWRD 10.400 usec

483 477 371 150 HighSpeedLINES RXOFF DECUP

486 480 374 150 HighSpeedLINES DECUP

489 483 377 65 SETPHASE CH1 zero

492 486 380 105 TABLE 381 size 64, autoinc 0,divn_ret 1,ptr 0
0 3210321

1

PR RPRRPROOO
OO OO WWwWw
WWwWwwN NN
NNNNERP PP
PR RREROOO
OO OO WWwW
WwWwWwwNNN
NNNN R P

128 VNMR Pulse Sequences 01-999014-00 A0398



11.6 Combining the Best of the Two Worlds

561 555 449 106 TASSIGN table 381 ct thirt

565 559 453 16 SETPHAS90 CH1 tbirt

568 562 456 150 HighSpeedLINES RXOFF DECUP

571 565 459 151 EVENT1_TWRD 10.000 usec

573 567 461 150 HighSpeedLINES RXOFF TXON DECUP
576 570 464 151 EVENT1_TWRD 10.400 usec

578 572 466 150 HighSpeedLINES RXOFF DECUP

581 575 469 150 HighSpeedLINES DECUP

584 578 472 150 HighSpeedLINES DECUP

587 581 475 16 SETPHAS90 CH1 zero

590 584 478 16 SETPHAS90 CH2 zero

593 587 481 150 HighSpeedLINES RXOFF DECUP

596 590 484 151 EVENT1_TWRD 10.000 usec

598 592 486 150 HighSpeedLINES DECUP

601 595 489 152 EVENT2_TWRD 22 usec + 350 nsec
604 598 492 90 SETInputCardMode

608 602 496 99 ACQXX loop np=4096, dwell 80.000 usec
611 605 499 7 STartFIFO

612 606 500 97 HouseKEEPing

613 607 501 20 BRANCH Offset 159

Total code size 615words/ 1230 Bytes / 1.2 KB

In this case, the Acode segment for the first FID is 609 words or 1218 bytes (compared
to 477 words or 954 bytes with phase calculations). The Acode size is increased by 254
bytes per FID (28%). This may seem rather marginal, however, we should also
consider 2D and 3D experiments.

Furthermore, there are certainly cases of complex pulse sequences that generate a lot
of Acode by themselves. In such cases, it is not impossible that phase tables can cause
the Acode size to exceed the upper limit (10000 words), in which case a sequence
would not execute at all. There are also 1D pulse sequences sech.as

(composite pulse inadequate) with a large number of different phase cycles of 256 or
even up to 1024 steps each. We can certainly imagine cases where the tables
themselves would not fit into the available Acode space unless they can be abbreviated.

11.6 Combining the Best of the Two Worlds

Obviously, neither pure calculations nor pure phase tables provide an optimum
solution for programming phase cycles. What we are looking for is a way of defining
the phase cycling that is at the same time all of the following:

® Easy to understand and analyze.
® Easy to create and compose.

® Easy to change the phase cycling scheme (this is mostly a feature for pulse
sequence developers).

® Visualizes the internal phase cycling algorithms.

® Does not use excessive Acode space.
A possible solution to this problem is to use a combination of phase tables and real-
time calculations. Why not use phase tables to define the (siphsé cycling

elementand real-time math to realiphase cycling algorithm@.e., phase
dependencies, synchronous phase variation, etc.)?

01-999014-00 A0398 VNMR Pulse Sequences 129



Chapter 11. Phase Tables

It turns out that most phase cycling elements are simple—the most common elements
are the following®

{0123}n
{02}n
{0321}n
{01}n
{0213}

Furthermore, most phase cycling algorithms (in the sense of phase cgtdiiang

are almost trivial. In most sequences, it simply involves adding up certain phases in
order to obtain the observe phase and to add some “macroscopic” phase cycling to all
phase cycles (at least for pulses on the observe channel).

The most striking case for using this solution is in the area of composite pulses. These
pulses use phases that are normally simply orthogonal or anti-phase relative to each
other, and it would be a real waste to define phase table for each of the pulses. Itis much
simpler to extract one phase and to calculate the others from that one.

How can we realize this concept? Let’s take the same pulse sequence as used above,
inadgt.c , analyze it, and see whether the new concept is feasible. We first start with
the full phase table file from the last version:

t1={(02)4 (13)4}4 /* 1st 90 */
2={01231230)8 /¥ 180 */
t3={01)32 /* 2nd 90 */
t4=(0321)8 (1032)8 /*3rd 90 */
t5=(0321210321030321)2
(1032321032101032)2 /* oph */

In order to find out about phase relations, it is best (at least for beginners) to first write
out the full phase cycles:

t1=00002222 00002222 00002222 00002222
11113333 11113333 11113333 11113333

t2=00000000 11111111 22222222 33333333
11111111 22222222 33333333 00000000
t3=00000000 00000000 OO0O0O0O0O0O0 OOOOOOOO
11111111 11111111 11111111 11111111
t4=03210321 03210321 03210321 03210321
10321032 10321032 10321032 10321032
t5=03212103 21030321 03212103 21030321

10323210 32101032 10323210 32101032

The one fact common @l these phase tables is that after 32 steps all phase cycles,
including the observe phasi, are repeated with a phase shift of 90 degrees (all tables
are incremented by 1). This is the quad image suppressig(the observed
dimensiony and is the slowest of the phase cycles in this sequence. It turns ot that

40One could even further simplify this list, saying that the most frequently used phase cycling
elements are jugtO 1 In and{02In ;{0123}n and{0213}n are just
combinations of the two simpler ond€ 1 2 3 }n ={01}n +{02}2n) , and
{0213l ={02I +{01}2n) .Thecycle{ 0 3 2 1 In isjustthereversal
of{0123}n

5 This forms part of a CYCLOPS phase cycling (A.D. Bdirylagn. Resarb6, 418 (1984); D.I.
Hoult, R.E. RichardsProc. Roy. Soc. London Sé.344, 311 (1975)), which is present only partially
in this pulse sequence. The “other half’ of the full cydeQ 2 }64 ), which would reduce any
axial signal (“center glitch”) in is not present (nor required) in this case.

130 VNMR Pulse Sequences 01-999014-00 A0398



11.6 Combining the Best of the Two Worlds

consists of only this phase cycle. It can, therefore, be regarded as constant phase (0),
with quad image suppression added. If we “subtract” (isolate) that phase cycle from all
tables, we end up with a much simpler list of tables. The subtracted phase cycle is
stored in a new table that we can add to all the other tables using real-time math:
t1=00002222
2=00000000 11111111 22222222 33333333
t3=0
t4=0321
t5=03212103 21030321 03212103 21030321
t6={01}32 /* macroscopic phase cycling (f2 quad image

suppression) to be added to t1 - t5 */

You might think that we have already reached a sufficient degree of simplificétion (
andt2 can be shortened dramatically using division factors), but this is not the end.
The observe phase often is simply a function of some (or all) of the pulse phases. In
this case, itis obvious that bath andt4 (andt3 ?) are contained in the observe phase
cycle. If we subtract these phases from the observe phase, we obtain

t5=00000000 22222222 00000000 22222222

If we then write this cycle as

t5=00000000 22222222 44444444 666666©6F6

we recognize that it is in fact twice the valueg®fl This mechanism has been called
EXORCYCLE®. Each time the phase of a refocusing pulse is altered by 90 degrees, the

phase of the observed signal (and hence the receiver phase) changes by 180 degrees.
Therefore, the observe phase initiedqt  experiment can be expressed as

t5=t1+2*2+1t4

In fact, we don't need to define the long observe phase cycle as atable at all. This phase
will be calculated in the pulse sequence. The phase table can, therefore, be reduced to
the following list:

/* inadqgt phase tables */

t1={02}4 /* 1st 90 */

t2={0123}8 /*180 */

t3= 0 /*2nd 90 */

t4= 0321 /*3rd 90 */

t6={01}32 /* macroscopic phase cycling */

/* phase cycling is performed in the following order:

1) t4 (nt=4): double-quantum coherence selection (4-step cycle)

2) t1 (nt=8): suppression of artifacts due to imperfections in
the first 90 (2-step cycle)

3) t2 (nt=32): EXORCYCLE phase cycling to remove artifacts from
imperfect spin refocusing (4-step cycle)

4) t6 (nt=64): f2 quad image suppression through macroscopic phase

cycling (2-step cycle) */

In the pulse sequence, we first create a pseudmunter to also obtain steady-state
phase cycling. With this counter as index, we then extract all phases from the tables,
calculate the observe phase using the formula we have obtained from the analysis, add
the “macroscopic{ 01 }32 phase cyclet§ ), and finally adjust the phases for f
quadrature detectioh.

6G.

Bodenhausen, R. Freeman, and D.L. Turhdylagn. ResorR7, 511 (1977).

01-999014-00 A0398 VNMR Pulse Sequences 131



Chapter 11. Phase Tables

pulsesequence()

{
double tau = 1.0/ (4.0 * getval(“jcc"));
int phase = (int) (getval("phase") + 0.5);

loadtable("inadqt");

sub(ct, ssctr, v10); [* pseudo ct counter */
getelem(tl, v10, v1); [* extract phases from tables */
getelem(t2, v10, v2);

getelem(t3, v10, v3);

getelem(t4, v10, v4);

getelem(t6, v10, v6);

dbl(v2, oph); /* calculate observe phase */
add(oph, v1, oph);

add(oph, v4, oph);

add(v1, v6, v1); /* add macroscopic phase cycling */
add(v2, v6, v2);

add(v3, v6, v3);

add(v4, v6, v4);

add(oph, v6, oph);

assign(zero, v5); /* f1 quadrature (phase=1,2) */
if (phase == 2) incr(v5);

add(oph, v5, oph);

status(A);
hsdelay(d1);

status(B);
stepsize(45.0, TODEV);
xmtrphase(v5);
rgpulse(pw, v1, rofl, 0.0);
delay(tau);
rgpulse(2.0*pw, v2, rofl, 0.0);
delay(tau);

status(C);
rgpulse(pw, v3, rofl, 0.0);
xmtrphase(zero);
delay(d2);
pulse(pw, v4);

status(D);

}

You might argue that the new calculation section complicates the sequence again
(compared to the version with “pure tables”). Also, we again are using what you might
call “real-time calculations that are difficult to understand.” However, a closer
inspection of the above code shows that there is no black magic in the real-time math
statements used here. We simply add up the various phases—the math operations
involved are almost trivial. Also, you have to realize that (with the exception of some
pulsed field gradient and some trivial 1D experiments) the phase cycling to a pulse
sequence is usually as important as the pulses and the delays themselves. A phase
cycling section as long as the example above (especially if it also nicely visualizes the
internal phase cycling algorithms and relations involved) is certainly justified.

”Remember that this pulse sequence has been simplified for this chapter. More explanation on how
to manipulate the phase cycles in order to achieve quadrature detection in various modes in nD
spectra is given iChapter 19, “Multidimensional Experiments,” on page.215

132 VNMR Pulse Sequences 01-999014-00 A0398



11.6 Combining the Best of the Two Worlds

Finally, we can double-check how much Acode we are using by combining phase
tables and real-time calculations:

275 269 163 98 NextSCan

276 270 164 30 SUBFUNC ct ssctr v10
280 274 168 105 TABLE 169 size 2, autoinc 0,divn_ret 4, ptr 0
02

287 281 175 106 TASSIGN table 169 vi10 vi1

291 285 179 105 TABLE 180 size 4, autoinc 0,divn_ret 8,ptr 0
0123

300 294 188 106 TASSIGN table 180 v10 v2

304 298 192 105 TABLE 193 size 1, autoinc O, divn_ret 1, ptr 0 0

310 304 198 106 TASSIGN table 193 v10 v3

314 308 202 105 TABLE 203 size 4, autoinc O, divn_ret 1, ptr O
0321

323 317 211 106 TASSIGN table 203 v10 v4

327 321 215 105 TABLE 216 size 2, autoinc 0,divn_ret 32,ptr O
01

334 328 222 106 TASSIGN table 216 v10 v6

338 332 226 33 DBLFUNC v2 oph

341 335 229 29 ADDFUNC oph vl oph

345 339 233 29 ADDFUNC oph v4 oph

349 343 237 29 ADDFUNC vl v6 vl
353 347 241 29 ADDFUNC v2 v6 V2
357 351 245 29 ADDFUNC v3 v6 v3
361 355 249 29 ADDFUNC v4 v6 V4

365 359 253 29 ADDFUNC oph v6 oph

369 363 257 39 ASSIGNFUNC zero V5

372 366 260 29 ADDFUNC oph v5 oph

376 370 264 6 APBOUT 2 items O0xa511 0xb57c

380 374 268 150 HighSpeedLINES DECUP

383 377 271 151 EVENT1_TWRD 1500 msec

385 379 273 150 HighSpeedLINES DECUP

388 382 276 68 PHASESTEP CH1 90 units (45.00 degrees)
391 385 279 65 SETPHASE CH1 5

394 388 282 16 SETPHAS90 CH1 vi1

397 391 285 150 HighSpeedLINES RXOFF DECUP

400 394 288 151 EVENT1_TWRD 40.000 usec

402 396 290 150 HighSpeedLINES RXOFF TXON DECUP
405 399 293 151 EVENT1_TWRD 10.400 usec

407 401 295 150 HighSpeedLINES RXOFF DECUP

410 404 298 150 HighSpeedLINES DECUP

413 407 301 152 EVENT2_TWRD 6 msec + 250 usec
416 410 304 16 SETPHAS90 CH1 v2

419 413 307 150 HighSpeedLINES RXOFF DECUP

422 416 310 151 EVENT1_TWRD 40.000 usec

424 418 312 150 HighSpeedLINES RXOFF TXON DECUP
427 421 315 151 EVENT1_TWRD 20.800 usec

429 423 317 150 HighSpeedLINES RXOFF DECUP

432 426 320 150 HighSpeedLINES DECUP

435 429 323 152 EVENT2_TWRD 6 msec + 250 usec
438 432 326 150 HighSpeedLINES DECUP

441 435 329 16 SETPHAS90 CH1 v3

444 438 332 150 HighSpeedLINES RXOFF DECUP

447 441 335 151 EVENT1_TWRD 40.000 usec

449 443 337 150 HighSpeedLINES RXOFF TXON DECUP
452 446 340 151 EVENT1_TWRD 10.400 usec

454 448 342 150 HighSpeedLINES RXOFF DECUP

457 451 345 150 HighSpeedLINES DECUP

460 454 348 65 SETPHASE CH1 zero

463 457 351 16 SETPHAS90 CH1 v4

466 460 354 150 HighSpeedLINES RXOFF DECUP

469 463 357 151 EVENT1_TWRD 1.000 usec

471 465 359 150 HighSpeedLINES RXOFF TXON DECUP
474 468 362 151 EVENT1_TWRD 10.400 usec

01-999014-00 A0398 VNMR Pulse Sequences 133



Chapter 11. Phase Tables

476 470 364 150 HighSpeedLINES RXOFF DECUP

479 473 367 150 HighSpeedLINES DECUP

482 476 370 150 HighSpeedLINES DECUP

485 479 373 16 SETPHAS90 CH1 zero

488 482 376 16 SETPHAS90 CH2 zero

491 485 379 150 HighSpeedLINES RXOFF DECUP

494 488 382 151 EVENT1_TWRD 10.000 usec

496 490 384 150 HighSpeedLINES DECUP

499 493 387 152 EVENT2_TWRD 122 usec + 350 nsec
502 496 390 90 SETInputCardMode

506 500 394 99 ACQXX loop np=4096, dwell 80.000 usec
509 503 397 7 STartFIFO

510 504 398 97 HouseKEEPing

511 505 399 20 BRANCH Offset 159

Total code size 513 words/ 1026 Bytes / 1.0KB

Here, the Acode segment for the first FID is 507 words (1014 bytes), compared to 477
words, 954 bytes, with pure real-time calculations, and 609 words, 1218 bytes, with

“pure tables”: we have almost reached the Acode space efficiency of real-time math,
while providing a C code that is superior to both other approaches in terms of clarity
and simplicity, while making it easier to change things and experiment with different
versions of the phase cycling.

Supposing we decided that the phase cycling on the first pulse is less important than
the EXORCYCLE (on the refocusing pulse); therefore, we wanted to cycle the phase
of the refocusing pulse before alternating the phase of the first pulse. Instead of
changing complex phase tables or rebuilding complicated real-time math, we could
simply supply an alternate phase table file:

t1={02}16 /* 1st 90 */

t2={0123}4  /*180%

t3=0 /*2nd 90 */
t4= 0321 /*3rd 90 */
t6={01}32 /* macroscopic phase cycling */

We wouldn’t even have to change the text of the pulse sequence.

This s, of course, mostly a point for pulse sequence designers; “standard” users seldom
alter the phase cycling of a pulse sequence. Also, the sequence of importance and
relative order of phase cycling certainly is a non-trivial issue. In cancellation
experiments (like double-quantum filtering or double-quantum spectroscopy like the
inadgt experiment shown above), we always do the main cancellation first, then we
would like to start cancelling the biggest artifacts (like the artifacts from off-resonance
effects, pulse missettings and imperfections, rf inhomogeneity) and gradually proceed
to the minor artifacts (like,fquadrature images and axial signals).

The reason for this order is that in the case of changing conditions (such as
environmental or instrumental instabilities, or a decaying sample), the cancellation
guality suffers if excessive time passes between the two scans that are supposed to
subtract the artifact from itself (by alternating its phase). The best chance for a good
cancellation is if the two scans follow each other immediately; hence, double-quantum
filters and the like are performed with first priority. Minor artifacts leave only very
small residual signals, even if they are imperfectly cancklled

134 VNMR Pulse Sequences 01-999014-00 A0398



11.7 Using Tables as Source for Random Numbers

Obviously, changing existing pulse sequences (whether they are written with real-time
math or with full phase tables) to the new style would require first analyzing the phase
cycling, which (as mentioned before) may be a non-trivial task for many users;
however, we do not suggest that people rewrite all existing (working) pulse sequences.
It's more the idea to provide a new, powerful concept for people that genevate

pulse sequences.

11.7 Using Tables as Source for Random Numbers

As an alternative to generating random numbers within a single FID using real-time
calculations (e.g., for Z-filtering, or fafl-randomization, see alstection 10.8,
“Real-Time Random Numbers,” on page ),3stich random numbers can, of course,
also be taken from a table. The table solution provides the option of using a fairly large
range of random numbers (up to the full or positive range of 16-bit integers, depending
on the method of definition). The length of the sequence of random numbers from
tables is almost unlimited (up to 8192 numbers), but this length has to be “paid” in
Acode space (2 bytes per number). For small numeric values, the method using real-
time calculations is superior, because long sequences can be generated with a limited
number of math statements, but this solution is probably limited to a linear distribution
within a given range.

For non-linear (e.g., Gaussian) distributions or for random numbers with large numeric
ranges (e.g., values between 0 and 4095), the table approach is the preferable solution.
Linearly distributed random numbers are best generated using a suitable C construct,
such as the following for 1024 values between 0 and 4095:

static int randomtable[1024];
pulsesequence()

{ - B
int i;
if (ix == 1) srandom(getpid());
for (i=0;i<1024; i++)
randomtable[i] =\
(int) (4095.999*((double) random())/2147483647.0);
settable(t1,1024,randomtable);

For non-linear distributions (like a Gaussian distribution of values), a suitable C
construct has to be found. For an approximate Gaussian distribution, the data can also
be taken from an FID with noise only (no signal). The corresponding procedure would
be as follows (1024 numbers, Gaussian distribution between 0 and 4095):

* In VNMR, set the following parameters and then acquire an FID:
pw=0 (avoid signal)
sw=100000 (the noise increases wis)
np=n (wheren is the desired number of random numbers)
nt =1 (for 16-bit ADC) ornt =4 (for 15-bit ADC) ornt =256 (for 12-bit ADC)

8The question of the optimum order in the phase cycling depends on the relative intensity of the
artifacts (which may be a question of parameter selection, or a question of rf and probe quality), and
on the environmental and instrumental stability. There is no global recipe for the phase cycling order.
It can be assumed that the VNMR pulse sequences have been optimized in this respect; however,
depending on the conditions and the instrument configuration, an alternate phase cycling order may
sometimes improve the results.

01-999014-00 A0398 VNMR Pulse Sequences 135



Chapter 11. Phase Tables

ss=0
increase thgain such that the ADC is almost filled

® In UNIX (Bourne shell script):

#!/bin/sh

cd

cd vnmrsys/expn/acdfil

echo -n "t50 = " > $HOME/vnmrsys/tablib/randomtable

od -iw2 fid +74 | awk
{ if(NR>0)&& (((NR - 1) % 8) == 0)) printf(“\n\t")
printf(" %7d",($2+32768.0)/65535.0*4095.999)
} >> $HOME/vnmrsys/tablib/randomtable

This generates a table file (talt$® ) with eight numbers per line.

136 VNMR Pulse Sequences 01-999014-00 A0398



chapter 12. AP Bus Traffic

States that are driven by the fast bits can change instantaneously (at least as far as the
programming goes), they can be set and unset within time intervals as short as 200
nanoseconds, with a timing precision of 25 (or 100) nanoseconds. It would be nice if
all spectrometer states could be changed that quickly! Unfortunately, with instruments
and experiments becoming more and more complex, for a fully equipped modern
spectrometer this would require over a thousand fast lines. Also, pulse programming
would be rather inefficient considering the fact that with most time events only one or
two of the fast bits would be altered, and yet we would have to feed the pulse
programmer with over 100 bytes for every FIFO word (and mostly the same bytes over
and over again). The system designers, therefore, divided the devices into three classes:

® Devices that require very fast switching (down to 200 nanoseconds for switching
in both directions): typically rf gates and 90-degree phase shiftSésgien 9.2,
“Fast Bits,” on page 98

® Devices that need to be switched with accurate timing, but not necessarily at the
speed of the fast bits, devices that would take longer anyway to switch to another
state, and devices that are not switched on and off in rapid succession, but rather
keep their state for many time events (or the entire sequence). These are the units
for which the AP (analog port) bus was built.

® Devices that do not need to be synchronized with the pulse sequence, such as the
sample changer, spinner control, sample insert and eject, and the like (these aren’t
even handled by the pulse programmer,Gegpter 13, “Acquisition CPU
Communication,” on page 1315

It was decided to limit the fast bits to those devices that really need the speed of the
state bits. Most other devices are addressed by the AP bus.

12.1 What Is the AP Bus

As the name indicates, the AP bus is a true bus structure. In computer terminology, a
businvolves a linear structure (a cable, sometimes a computer backplane) with several
parallel lines (16 in the case of the AP bus). The lines are used to transmit address and
control information as well as data to a (potentially large) number of devices that are
all hooked up to the AP bus with special interface chips (the AP bus chip). Some
devices (like attenuators and the linear amplifiers on UNITY systems) share a common
interface to the AP bus, the AP interface card.

The information sent over the AP bus is mostly numeric; a maximum of 8 bits (1 byte)
of information can be transmitted per AP word. Depending on the device, two different
transmission modes can be used:

® Direct binary information, as used by attenuators, phase and amplitude
modulators, shim or pulsed field gradient DAC values, etc. Depending on the way
the hardware works (positive or negative logic), this can be normal or bit-inverted
(negated) binary information.

® BCD (binary coded decimal) information. Here, every digit of a decimal number
is transmitted in a separate binary AP word. This may sound inefficient (only 4 out

01-999014-00 A0398 VNMR Pulse Sequences 137



Chapter 12. AP Bus Traffic

of 8 data bits are used per AP word), but it is adequate for some devices like the
PTS frequency synthesizers and other similar devices (decoupler moddtatdr [
offset synthesizers, etc.). These devices operate in (frequéacsgilesind would
otherwise have to generate the decimal information internally.

Apart from numeric values, the information transmitted through the AP bus can also
be of simple binary nature, like the “command” or flag that sets a linear amplifier into
CW mode or back into pulsed mode, or a “strobe”, a command that causes devices to
carry out previously transmitted numeric information. The strobe is used for small-
angle phase shifting on the UNIPWs (where the phase value is transmitted in two
words but only carried out when the second word is received), or in the case of PTS
frequency synthesizers with latching: With these, all decades are first transmitted in
BCD mglde, but the frequency only changes when the strobe is received in a separate
AP word".

For the vast majority of the cases, the AP bus operates in “indirect” mode (i.e., the first
word sent over the AP bus contains the address and the following words contain the
information to be transferred to the device). In this mode, the address fills 12 bits of the
first AP word. Thanks to this long address, the number of devices that can be driven by
the AP bus is virtually unlimited (4096 addresses are available). In very few cases (e.qg.,
small-angle phase shifting on UNITY and earlier systems), the AP bus is used in direct
addressing mode, where address and data are transmitted with the same AP word. This
mode is limited to 16 devices (4 address Hits).

The AP words pass the pulse programmer within normal FIFO words. The difference
to atime eventis that the timing part of the FIFO word in this case contains the AP bus
bits instead of time and time base. This part of the FIFO word is fed either into the
timer(s) or into the AP bus, depending on a special bit within the FIFO word that
differentiates timer words and AP words. The definition of the AP bus is such that
every word must be held on the bus lines for 1 microsecond (UNUEYor 2
microseconds (UNITY and earlier systems) to allow for the devices to decode the
address and read the information off the bus. AP words are, therefore, timed
(accurately) by the pulse programmer. It takes 150 nanoseconds to decode the timer or
AP word and initialize the timer circuitry; the total time per AP word is therefore 1.15
microseconds on a UNITpfusand 2.15 microseconds on all earlier systems. This is
the AP bus cycle time.

The time to transmit information to any device is always a multiple of the bus cycle
time. For instance, it takes 9 AP words to change the frequency on a PTS synthesizer
on a UNITYplus Therefore, it takes 10.35 microseconds to change a frequency with
theoffset statement. Complete tables for the number of FIFO and AP words
involved, as well as for time requirements are given in the mafNEIR User
Programming.

With respect to the fast bits, AP words behave like normal (fixed length) time events.
The fast bit part of the FIFO words is filled with the current settings of the fast bits.

10n PTS synthesizers without latching, each decade changes (or keeps) its frequency value.
2The addressing is actually more complex than that. There are 16 “board addresses” (4 bits) that are
shared between devices operating in direct mode (not used on PNE #nd devices that are
addressed via AP bus chip. For each of the board addresses (AP bus chips), there are 256 register
subaddresses, which allows for a variety of functions to be performed. Each AP bus chip can address
many devices.

138 VNMR Pulse Sequences 01-999014-00 A0398



12.2 What Devices are Driven by the AP Bus?

Fast bits are slightly different on older systems witlaiput board63-word loop
FIFO). On these systems, the fast bits maintain the settings lakthexecuted time
event If an AP word would immediately follow a pulse without post-pulse delay, that
pulse would be prolonged by the duration of the AP bus event(s).

To avoid this, AP functions that generate AP words also generate a 200-nanosecond
delay preceding the AP words. The total duration of AP events on these systems (early
VXR systems) is, therefore, 0.2 microseconds longer than on systems with the
acquisition control board (UNITY). The programmer can useploerride

statement to turn off this additional 0.2-microsecond delay fontheAP event (e.g.,

for the case of multiple AP events in sequence or if the fast bits were already set
correctly from the previous delay).

The AP bus overall is a fast transport medium: even in BCD mode, the equivalent of
over 3.5 million bits (UNITYlus) or 1.8 million bits (on earlier systems) can be
transmitted per second (in binary mode the transfer rate is twice as great).

12.2 What Devices are Driven by the AP Bus?

As instruments become more complex, the number of devices addressed by AP bus has
been growing constantly over the years. In VXR spectrometers, the following devices
were driven through the AP bus:

® PTS frequency synthesizers (not on fixed-frequency rf channels).

¢ Offset synthesizers with fixed frequency and broadband (as opposed to direct
synthesis) rf channels.

® Decoupler high-power level (class C decoupler amplifier).

* Decoupler low-power attenuator (class C decoupler amplifier).

® Decoupler modulator frequency.

® Audio filter bandwidth.

* Small-angle phase shifts (with direct synthesis rf only).

® Shim DAC values.
The UNITY spectrometer added a fair number of additional devices; including the
following:

* RF power attenuators (one per channel with linear amplifiers), 63 or 79 dB.

® Fine attenuators (optional, mostly used with systems having a solid-state module);
available for the first two channels only; the same port or AP words can be used to
drive an additional (“third”) 63-dB attenuator to facilitate pulse shaping without
waveform generators.

® Linear amplifier status (cw and pulse modes).

* Waveform generator shapes and pattern (seeCdlapter 16, “Waveform
Generators,” on page 163

* Waveform generator shape selection and time scaling.
* Amplitude of a pulsed field gradient (PFG amplifier).
* Imaging gradient amplitudes.

01-999014-00 A0398 VNMR Pulse Sequences 139



Chapter 12. AP Bus Traffic

The AP interface board (of which several versions exist) interfaces rf coarse and fine
attenuators and AMT linear amplifiers with the AP bus. The last version of this board
(type 3) allow setting the decoupler modulation modi@ifparameter) by the AP bus.

Finally, in the UNITYplusthe following devices were added to the list:
® | ock power, lock gain, and lock phase.
® Receiver gain.
® Linear amplitude modulator.

The AP interface board is not present in UNPIYs spectrometers.

12.3 AP Bus Words in the Acode

AP bus traffic is predominant in the initialization section of the instruction section in
the Acode, as can be seen from the following part of the (interpreted) Acode (note that
with the exception of rf attenuator commands, the contents of the AP bus wortstare
decoded with thapdecode command used here):

148 142 36 6 APBOUT 7 items 0xab40 0xbb0d 0x9b00 Oxab54
Oxbbec 0x9b2f 0x9b8f
157 151 45 6 APBOUT 9 items 0xa720 0xb700 0x97be Oxb7ef
Oxb7ae 0xb7fb Oxb7be 0x9701
0xb700
168 162 56 159 TUNE_FREQ CH1 9 words 0xa720 0xb700 0x97be Oxb7ef
Oxb7ae Oxb7fb Oxb7be 0x9701 0xb700
180 174 68 0 NO_OP

181 175 69 16 SETPHAS90 CH1c O
184 178 72 68 PHASESTEP CH1 360 units (90.00 degrees)
187 181 75 65 SETPHASE CH1fO0

190 184 78 59 APChipOUT APaddr 11, reg 51, +logic, 1 byte

max 79, offset 16, value 55
196 190 84 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes

max 4095, offset 0, value 4095
202 196 90 6 APBOUT 4 items 0xab98 Oxbbd2 0x9b00 0x9b00
208 202 96 6 APBOUT 2 items Oxab92 OxbbaO
212 206 100 6 APBOUT 2 items Oxab9b 0xbb00
216 210 104 6 APBOUT 2 items Oxab91 0xbb80
220 214 108 6 APBOUT  2items 0xab90 Oxbbl1l
224 218 112 6 APBOUT  8items 0x8201 0x8214 0x8220 0x8231

0x8241 0x8255 0x8264 0x8271

234 228 122 16 SETPHAS90 CH2c 0
237 231 125 59 APChipOUT APaddr 11, reg 50, +logic, 1 byte

max 79, offset 16, value 30
243 237 131 59 APChipOUT APaddr 11, reg 166, -logic, 2 bytes

max 4095, offset 0, value 4095

APBOUT 4 items Oxaba8 Oxbb2a 0x9b00 0x9b00
APBOUT 2 items Oxaba2 OxbbcO
APBOUT 2 items Oxabab 0xbb00
APBOUT 2 items Oxabal Oxbb80
APBOUT 2 items Oxaba0 Oxbb12
APBOUT 2 items 0xab48 0xbb01
APBOUT 2 items Oxab34 0xbb55
APBOUT 2 items Oxab35 0xbb00
APBOUT 2 items Oxab4d Oxbb21
APBOUT 2 items Oxab43 0xbb01
APBOUT 2 items Oxab49 0xbb00
APBOUT 2 items 0xab36 0xbb06
APBOUT 2 items Oxab9b 0xbb88
APBOUT 2 items Oxabab 0xbb88

249 243 137
255 249 143
259 253 147
263 257 151
267 261 155
271 265 159
275 269 163
279 273 167
283 277 171
287 281 175
291 285 179
295 289 183
299 293 187
303 297 191

DO DODOHIOOOODOOOOOOO,

140 VNMR Pulse Sequences 01-999014-00 A0398



12.4 Timing Considerations

Mostly for AP bus traffic, the codg (APBOUT is used. This Acode instruction is
grouped with an Acode word describing the number of AP words that follow (actually,
the number of words minus one) and the AP bus part (shown here as hexadecimal
value) of each FIFO word that will be generated. The 88d@PCOUTis used
specifically for rf attenuators and power modulators. The waveform generator
instructions (using the AP bus) have a special format.

12.4 Timing Considerations

The timing on the AP bus (or of AP bus FIFO words) is inherent and implicit. No delay
needs to be specified for the AP bus traffic to occur. Code like

delay(tau);
offset(getval("offset1l"), TODEV);
pulse(pw,oph);

is acceptable and complete. In general, inherent (hidden) AP delays are negligible
compared to most delays[) evolution, J-evolution, refocusing), which are mostly are
an order of milliseconds or longer. However, there is a danger of losing coherence due
to chemical shift evolution (precession) in (hypothetical) constructs like the following:
pulse(pw,v1);

delay(tau);

pulse(2.0*pw,v2);

delay(tau);

offset(getval("offset1l"), TODEV);

rlpower(tpwr, TODEV);

pulse(pw,v3);

The AP bus delays after the second refocusing delay are over 26 microseconds on a
UNITY with latching in the frequency synthesis (8.05 microseconds on a UNITY.

This makes the second refocusing interval longer by an amount that can cause
considerable precession due to chemical shift evolution with large spectral windows.
With any refocusing, make sure the two refocusing delayakm@utely equal

Therefore, the hidden AP delays in the above construct should be added to the first
delay or (more correctly) be subtracted from the delay adjacent to the AP events. At
the same time, symmetry with respect to the pre- and post-pulse delays should be
ensured:

rgpulse(pw,v1,rofl,0.0);

delay(tau-rofl);

rgpulse(2.0*pw,v2,rof1,0.0);

delay(tau-rof1-15.05e-6-2.15e-6);

offset(getval("offset1l"), TODEV);

ripower(tpwr, TODEV);

rgpulse(pw,v3,rof1,0.0);

In this example, the programmer has looked up the length of the hidden AP delays in
the tables in the manu&INMR User Programmingnote that at the level of the pulse
sequence, all time events are defined in seconds, irrespective of the VNMR parameter
definition involved). Because these delays are specific to certain types of hardware (a
UNITY without latching on the observe PTS synthesizer, in this case), this construct
(and with it the pulse sequence) becomes specific to an instrument and cannot be ported
to other systems without rechecking (and maybe adjusting) the delay corrections.

01-999014-00 A0398 VNMR Pulse Sequences 141



Chapter 12. AP Bus Traffic

Therefore, even if the example of code above is correct in every aspect, it should be
regarded as bad programming practice! VNMR software provides the tools for making
this correct code for every architecture:

rgpulse(pw,v1,rof1,0.0);

delay(tau-rofl);

rgpulse(2.0*pw,v2,rof1,0.0);

delay(tau-rofl-OFFSET_DELAY-POWER_DELAY);

offset(getval(“offsetl”), TODEV);

rlpower(tpwr, TODEV);

rgpulse(pw,v3,rof1,0.0);

The file /vnmr/psg/apdelay.h defines a series of such (pseudo) constants
(macros that select the right constant for the current architecture) to be used instead of
fixed delaysTable 7gives a list of the predefined AP delay constants. The AP delays

Table 7. Predefined AP bus delay constants.

Constant Name

Comments

POWER_DELAY

coarse and fine attenuators with linear amplifiposver , rlpower )

SAPS_DELAY small-angle phase shiftingrotrphase , dcplrphase , dcplr2phase
dcplr3phase )

OFFSET_DELAY offset , obsoffset ,decoffset ,dec2offset ,dec3offset
(PTS synthesizer without latching)

OFFSET_LTCH_DELAY offset , obsoffset , decoffset ,dec2offset ,dec3offset

(PTS synthesizer with latching)

WFG_START_DELAY

starting one waveform generator (starsbfped_pulse ,
decshaped_pulse ,dec2shaped_pulse ,dec3shaped_pulse )

WFG_STOP_DELAY

stopping one waveform generator (at endlaiped_pulse
decshaped_pulse , dec2shaped_pulse ,dec3shaped_pulse
(0.0 on UNITYplug)

WFG2_START_DELAY

starting two waveform generators (e.g., stagiofshaped_pulse)

WFG2_STOP_DELAY

stopping two waveform generators (e.g., at enslrofhaped_pulse )
(0.0 on UNITYplug)

WFG3_START_DELAY

starting three waveform generators (e.g., stastoBshaped_pulse )

WFG3_STOP_DELAY

stopping three waveform generators (e.g., at end of
sim3shaped_pulse) (0.0 on UNITYplug)

PRG_START_DELAY

obsprgon decprgon , dec2prgon , prg_dec_on

PRG_STOP_DELAY obsprgoff , decprgoff , dec2prgoff , prg_dec_off (0.0on
UNITY plug)

SPNLCK_START_DELAY | start ofspinlock , decspinlock , dec2spinlock , genspinlock

SPNLCK_STOP_DELAY | end ofspinlock , decspinlock , dec2spinlock , genspinlock

(0.0 on UNITYplug)

SPN2LCK_START_DELAY,

start ofgen2spinlock

SPN2LCK_STOP_DELAY

end ofgen2spinlock (0.0 on UNITYplug

GRADIENT_DELAY

rgradient ,vgradient ; start and end afgradpulse

142

VNMR Pulse Sequences

01-999014-00 A0398



12.4 Timing Considerations

associated with the setting of the fine attenuators usingwitfe andrlpwrf
statements (6.45 microseconds on UNITY, 4.6 microseconds on UplliEgystems)
arenot covered by constants definedmr/psg/apdelay.h

Another place it is strongly recommended to compensate for “hidden” AP bus delays

is in the evolution time imD experiments, where constructs like the following one can

be used (at the same time we compensate for the precession during two adjacent 90-

degree pulses):

rgpulse(pw,v1,rof1,0.0);

if ((d2- rof1-SAPS_DELAY-4.0*pw/3.14159) > MINDELAY)
delay(d2-rof1-SAPS_DELAY-4.0*pw/3.14159);

xmtrphase(zero);

rgpulse(pw,v2,rof1,0.0);

Note that UNITY and VXR systems were normally equipped with PTS synthesizers
withoutlatching, and on UNITYlusand"NT™INOVAsystems, OFFSET_DELAY and
OFFSET_LTCH_DELAY have identical values; therefore, using OFFSET_DELAY
covers the vast majority of the hardware configurations.

Note also that status changes can cause hidden AP delays to occur (see the manual
VNMR User Programmirjg

01-999014-00 A0398 VNMR Pulse Sequences 143



Chapter 12. AP Bus Traffic

144 VNMR Pulse Sequences 01-999014-00 A0398



chapter 13. Acquisition CPU Communication

Apart from the pulse programmer, the acquisition CPU has yet an other channel to
communicate with devices in the spectrometer. It can use one of its RS-232 ports, and
it can use the host I/O bus that is also used to transfer information to and from the pulse
programmer. For the latter, the CPU communicates with the automation control board
(seeChapter 7, “Digital Components,” on page.65

Because it is not passing the pulse programmer, such communication with acquisition
devices can only be loosely coordinated with the timing of the acquisition. It has to
happen when the FIFO (the pulse programmer) is stopped (or hasn’t been started yet).
This is appropriate for devices that typically have to be set or regulated once per sample
(sample changer, magnet leg pneumatics, etc.), where the reaction time is seconds or
minutes rather than microseconds (VT controller) or that would not possibly change
during the pulse sequence (lock power, gain, phase).

13.1 Regular Pulse Sequence Communication

What exactly are the tasks that are achieved this way? Let’s first list the devices for
VXR and UNITY spectrometers:

® Communication to and from the VT controller is done from one of the two serial
(RS-232) ports of the acquisition CPU (the other port being used for acquisition
diagnostics purposes).

® The automation control board is the communication link to the sample changer
(ASM-100 or SMS), the magnet leg pneumatics (eject/insert, slow drop period,
bearing control), the spinner control circuitry, the lock parameters (power, gain,
phase), and finally the receiver gain setting. This board is connected with the
acquisition CPU via the same bus (the host I/O bus) as the pulse programmer.

On the UNITYplusspectrometer, the tasks that were achieved via these channels have
changed slightly:

* Communication with the VT controller has been moved to the new automation
control board.

® | ock parameters (power, gain, phase) and receiver gain are now set via the AP bus.

® The tasks left for the automation control board include the magnet leg pneumatics
control, and interaction with slow devices that involve two-way communication,
like the sample changer (ASM-100 or SMS) and the VT contfoller

1 The interfaces to the sample changer and the VT controller are standard serial (RS-232) ports. For
setup and diagnostics purposes, these devices can also be operated off-line, with a “dumb” terminal.
Both devices should not be disconnected as long as the software is configured for them; otherwise,
because of the two-way communication scheme, acquisitions can abort with error messages. Before
disconnecting or switching off either of these two devices, always reconfigure VNMR by either using
config ,or by settingvttype=0  (to disable VT control) ofraymax='n"  (to disable the sample
changer).

01-999014-00 A0398 VNMR Pulse Sequences 145



Chapter 13. Acquisition CPU Communication

13.2 Diagnostics and Error Output

One of the two serial (RS-232) ports on the acquisition CPU can be used for
diagnostics purposes by hooking up a terminal. Different types of information can be
obtained this way, depending on the acquisition bootup selector switch (a thumbwheel
beside the acquisition CPU cardcage on VXR and UNITY spectrometers, or a toggle
switch on the UNITYlusautomation control board):

® |f the switch is in position “0”, error output is obtained only for serious incidents
(CPU hangup and the like). This information may be valuable to software and
hardware engineers for debugging purposes, but is seldom used in the field.

® |fthe switchisin position “1” or “2”, continuous diagnostics output is made during
an experiment. Position “1” creates output for terminals with cursor addressing
(typically Televideo 915 or 925 terminals), position “2” is for “dumb” terminals.
With dumb terminals, the output appears line by line; with addressable terminals,
the output is organized as full-page display and is, therefore, easier to read and
follow.

Itis important to know that diagnostics (as opposed to error) output is generated during
the housekeeping delay at the end of each scan. If the bootup selector switch is in non-
zero position, the diagnostics output is generated, regardless whether a terminal is
connected or not. This makes the length of the housekeeping stletg non-
deterministic!

Hooking up a terminal may cause a further slow-down if the communication speed or
the terminal are slow (low baud rate or handshaking, due to a slow terminal). Typically,
with non-zero setting on the bootup selector, only about 5 scans can be performed per
second, because of long housekeeping delays. Position “0” should, therefore, be the
normal settin@.

Even with the acquisition bootup selector switch in position “0”, the residual
housekeeping delay is still in the order of milliseconds. If an acquisition should be
faster than that, this is only possible by doing multi-FID scans (using multiple
acquire calls in the pulse sequence in connection witmthandcf parameters).
This way, we can acquire several FIDs with a single housekeeping delay. This
technique is used extensively in multiecho imaging experiments.

2The position of the bootup switch is checked with egrytherefore, it isot requiredto reboot
the acquisition CPU when changing the bootup selector setting.

146 VNMR Pulse Sequences 01-999014-00 A0398



chapter 14. Repeating Events

Repetitious events in a pulse sequence may be defined better by C loops, real-time
loops, or hardware loops. Each type of loop is discussed in this chapter.

14.1 C Loops

Any C construct can basically be used in a pulse sequence; therefdoentatly
correct to generate successive, repetitive real-time events in a pulse sequence using a
C loop:
inti;
for (i = 0; i < 1000; i++)
{
rgpulse(pw,zero,rof1,0.0);

rgpulse(pw,one,rof1,0.0);
}

This is not only correct C code, but it also creates correct Acodes that should execute
properly—maybe! What is the problem?

® This construct is extremely inefficient in that it creates huge amounts of Acode
(1000 copies of the same sequence of four time eventsHBtHNES instructions
in-between), such that there can easily be an Acode overflow (10000 Acode words
per FID maximum).

® Depending on the length of the time events involyedgndrofl in the above
example), the Acode interpretation could become the rate-determining step, in
which case the sequence would abort with a “FIFO underflow” message.

This does not mean that C loops are “forbidden” in pulse sequences, butin general they
should not be used in sections that generate Acodes. A good example for an exception
to this rule is thaelayh pulse sequence that adds a variable number of relay periods
(depending on the parametetay ) to a standard COSY pulse sequence using a C
loop (se€Section 10.6, “C Constructs and Phase Calculations,” on page 110

The following code fromivnmr/psg/shape_pulse.c is maybe an interesting
exception. Here, @hile loop construct is used to set a real-time variable() to the

value of a C (integer) variablegqulses ), without usingnitval . This is

particularly interesting for external proceduriegval statements reserve a

variable completely and also restrict its use. With this construct, the variable can still
be used elsewhere in the pulse sequence:

assign(zero,v12); [*v12 =0*
mult(three,three,v13); /*v13 =9 (RT increment) */
i=9; /*1=v13 (C increment) */
while (npulses) [* npulses > 0? */
if (npulses >= i) /* difference > increment? */
add(vi2,v13,v12); /* add increment */
npulses -=1i; [* calculate remainder */
}
else /* difference<increment */

01-999014-00 A0398 VNMR Pulse Sequences 147



Chapter 14. Repeating Events

divn(v13,three,v13); [* divide increment (RT) */
i/=3; [* divide increment (C) */
}
}

This construct is not optimized for large numbers, but it shows a way to circumvent
initval  calls even in cases where a real-time variable should be initialized to a value
that is parameter-based (i.e., not known prior to the function call).

14.2 Real-Time Loops

A much more adequate way to define repeating events is tealséme loops
(sometimes also called “software loops”). Different from C, where there are three
different looping mechanisms (tifi loop, thewhile loop, and thelo . . . while

loop), there is only one mechanisms for generating loops in the Acode interpretation,
as shown in the following example of an explicitly encoded decoupling sequence on
the transmitter channel (WALTZ-16, the text shown includes the table file and a part
of a hypothetical pulse sequence):

t1+=220 020 202 202
002 202 020 020
002 202 020 020
220 020 202 202

initval(tau/(16.0*6.0*pw),v10); [* # WALTZ cycles */
dbl(two,v12); [* 4%
mult(v12,v12,v12); /* 16 = composite pulses per cycle */
xmtron();
loop(v10,v11);
loop(v12,v13);
txphase(tl);
delay(pw);
txphase(t1);
delay(2.0*pw);
txphase(tl);
delay(3.0*pw);
endloop(v13);
endloop(v1l);
xmtroff();

In this example, the number of WALTZ loop cycles() is calculated first. The

WALTZ sequence itself is constructed using a nested loop of composite pulses,
whereby the pulse phases are taken from an autoincrementing table. Real-time loops
can easily be nested over to several levels. The corresponding Acode instruction
segment looks as follows:

314 308 202 33 DBLFUNC two vi12

317 311 205 31 MULtFUNC vl2 v12 vi2

321 315 209 150 HighSpeedLINES TXON

324 318 212 39 ASSIGNFUNC  zero v1l

327 321 215 42 IFMInusFUNC v10 one Offset= 315

331 325 219 39 ASSIGNFUNC zero vi13

334 328 222 42 IFMInusFUNC v12 one Offset= 309

338 332 226 105 TABLE 227 size 48,autoinc 1, divn ret 1,ptr O

2 2 0 0 2 020

2 2 0 2 00 2 2
02 0200 20

148 VNMR Pulse Sequences 01-999014-00 A0398



14.2 Real-Time Loops

00 2 2 0 2 0 2

002 02 200

2 02 0 2 2 0 2
391 385 279 106 TASSIGN table 227 thirt

394 388 282 16 SETPHAS90  CH1 thirt

397 391 285 151 EVENT1_TWRD 8.000 usec

399 393 287 106 TASSIGN table 227 tbirt

402 396 290 16 SETPHAS90  CH1 thirt

405 399 293 151 EVENT1_TWRD 16.000 usec

407 401 295 106 TASSIGN table 227 thirt

410 404 298 16 SETPHAS90  CH1 thirt

413 407 301 151 EVENT1_TWRD  24.000 usec

415 409 303 27 INCRFUNC  vi3

417 411 305 42 IFMInusFUNC  v13 v12 Offset= 226
421 415 309 27 INCRFUNC  vil

423 417 311 42 IFMInusFUNC  v11 vi0 Offset= 219
427 421 315 150 HighSpeedLINES (void)

The two arguments specified to thep statement specify the lo@ount(v10 and

v12 in this example) and the lo@punter(the variable that is used to count the loop
cycles). The loop count variable itself is not altered by the loop construct. The loop
counter variable is also supplied to #relloop statement—mainly to define which
loop statementthendloop call refers to (it also makes it easier to read the code and
helps avoiding mistakes). Strictly speaking, the argumesidmop isn’t really
necessary, because loops always musither sequential or hierarchically nestetl
doesn’t make sense to start a loop inside an other loop, but to terminate it outside.

The Acode interpreter works on a more primitive level than the pulse sequence
language itself. First, the loop counted( for the outer loopy13 for the inner loop)

is initialized to zero. Then, the system checks whether “loop counts - one” is negative
(i.e., the loop count is zero), in which case the entire loop segment is skipped (jump to
offset 315 for the outer loop, to offset 309 for the inner loop). At the end of each loop
cycle (supposing a non-zero loop count was specified), the loop counter is
incremented, and if “loop counter - loop count” is negative (i.e., “loop counter < loop
count”), abranchto the first instruction inside the loop is performed (jump to offset
226 for the inner loop, to offset 219 for the outer loop).

There are some principal limitations with the above implementation of a delay with
WALTZ decoupling. The length of the delay has a distinct “granularity”, in that it is a
multiple of the duration of a WALTZ cycfe Also, the WALTZ modulation can only

run synchronously, and the only way to program events (e.g.: pulses) simultaneous to
this delay is to break up the delay into several segments, with the additional events in-
between. Of course, this would even increase problems with the “duration granularity”.

In general, the above implementation of an explicit modulation scheme is quite elegant
and efficient (in terms of Acode space usage); however, it may suffer from some
further limitation—through the software loop we feed the pulse programmer with a
large number of FIFO words. If the events inside the loop are now all very short (a few
microseconds only), the Acode interpretation may become the rate-determining step,
and the system may run into a FIFO underflow problem (the sequence would abort at
that point). The real-time loop is a very efficient, flexible and elegant tool, but it may
not be suited for very fast loops as they are needed in many cases like CRAMPS and

L 0ne could in principle always round down the WALTZ loop cycles and perform an additional delay
to fill the remainder such that the total delay is accurate, but then that remainder would not be
properly modulated (unless more complex coding is used).

01-999014-00 A0398 VNMR Pulse Sequences 149



Chapter 14. Repeating Events

similar experiments. Note also that the loop count is a 16-bit real-time variable, and the
number of loop cycles is therefore limited to 32767.

As shown in the above example, a real-time loop cycle may include phase changes (and

phase calculations). It could even include real-imestatements (segection 15.2,
“Real-Time Decisions,” on page 16The loop cycles can therefore be variable not
only in the phase, but even in the number and kind of events inside the loop.

14.3 Hardware Loops

The hardware loop (i.e., the possibility to cycle words in the loop FIFO of the pulse
programmer) was created to compensate for the basic deficiency of real-time loops: the
lack of ultimate speed (i.e., to cover the difference between the speed of Acode
interpretation and the possible speed of propagation of FIFO words in the pulse
programmer). Typical examples for experiments that require the hardware looping
capability of the pulse programmer are multipulse and CRAMPS type of experiments
such as MREV-8 or BR-24 (a part of the MREV-8 sequence is shown here):

pulsesequence()

{

double tau = getval("tau"),

dtau = tau - pw - rofl - rof2;

initval(np/2.0, v9);

delay(dl);
rgpulse(pw,v4,rofl,rof2);
starthardloop(v9);
delay(dtau);
rgpulse(pw,v4,rofl,rof2);
delay(dtau);
rgpulse(pw,v3,rofl,rof2);
delay(tau+dtau);
rgpulse(pw,v1,rofl,rof2);
delay(dtau);
rgpulse(pw,v2,rofl,rof2);
delay(tau+dtau-2.0e-7);
acquire(2.0,2.0e-7);
rgpulse(pw,v2,rofl,rof2);
delay(dtau);
rgpulse(pw,v3,rofl,rof2);
delay(tau+dtau);
rgpulse(pw,v1,rofl,rof2);
delay(dtau);
rgpulse(pw,v4,rofl,rof2);
delay(tau);
endhardloop();

}

[* prep pulse */

I*  x*
[* -y *l
* y*
[*-x*

[* acquire */
[*-x*/

[*-y*

In the case of the MREV-8 sequence, a series of 8 pulses and 9 delays (typically 25
single-precision time events in total, witf2 set to zero) is insertédto each

sampling interva(the dwell time being 10 to 100 microseconds). The BR-24 multi-
pulse experiment even asks for 24 pulses and 25 delays (73 time events in total) to be
squeezed into the same time interval. All these time events typically are on the order of
1 to a few microseconds. There would be no chance for this experiment to work with a
soft loop, but for the pulse programmer with its hardware looping capability this is no

150 VNMR Pulse Sequences

01-999014-00 A0398



14.3 Hardware Loops

problem, as long as the number of events in the loop doesn’t exceed the number of
words in the loop FIFO. Older systems with output boards (63-word FIFO) cannot
perform BR-24 experiments, but all newer systems (using acquisition control boards
and pulse sequence control boards) should have no limitation in the area of multipulse
experiments.

Hardware loops have some inherent limitations:

® The length of a hardware loop is limited to the size of the loop FIFO: 63 FIFO
words for output boards, 1024 FIFO words for acquisition control boards, and
2048 FIFO words for pulse sequence control boards (real-time or software loops
can be as big as an entire code segment). When calculating the number of FIFO
words in a hardware loop, be aware of double-precision time events. The manual
VNMR User Programmingontains detailed lists on the number of FIFO words
involved in the statements that use the AP bus.

® All loop cycles are identical (in real-time or software loops, real-time decisions
can be made inside the loop, and phase can be altered either by real-time
calculations, by using auto-incrementing tables, or by recalculating table indices).

® Hardware loops can not be nested, because only one loop is implemented in real
hardware (the loop FIFO of the pulse programmer).

® The limitation in the number of loop cycles is the same as for real-time loops,
because the (hardware) loop counter is also a 16-bit numbeth@.enaximum
number of loop cycles is 32767

Multiple hardware loops can be used sequentially. If hardware loops are placed back-
to-back (no time event in-between), there is a restriction in the duration of all but the
last (back-to-back) hardware loops, in that the total duration of all FIFO words in aloop
must beat least0.4 microseconds for each FIFO word in the loop that follows.

With output boards, there are additional restrictions and limitations in that there must
be at least a single time event (e.g., a delay of 0.2 microseconds) between any two
hardware loops. A hardware loop cannot be shorter than 6.3 microseconds per cycle
(the “fall-through time” of the loop FIFO), and with multiple hardware loops following
each other, the length of all but the first loop cycles must be at least 80 to 100
microseconds. Also, try to limit the number of events between sequential hardware
loops (but keep at least one event in-between); otherwise, it is possible that the loop
FIFO runs empty when starting the second loop. Due to the limitation in pre-loop FIFO
size, there may not be enough space to pre-load the second loop. Explicit hardware
looping is not available on Gemini spectrometers

Note that also the implicit acquisition and an explicit acquisition over the fulPf$D
performed using hardware looping ($&eapter 18, “Acquiring Data,” on page 205

There are also songrogramming restrictionsvith respect to hardware loops: the use

of real-time mathand of the use of autoincrementtiadplesis not permitted inside
hardware loops. This is mainly because it would make programmers believe that real-
time math and the incrementation of table pointers also continues during the execution
of hardware loops. In addition to thegal-time decisiongseeSection 15.2, “Real-

2The Gemini pulse programmer is not equipped with a pre-loop FIFO; therefore, no events can be
pre-loaded after a hardware loop. The consequence is that only one hardware loop per pulse sequence
can be performed at the very end of the sequence. This almost by definition is the acquisition loop.
3More exactly, theacquire statement for more than two data points (per call) outside a hardware
loop.

01-999014-00 A0398 VNMR Pulse Sequences 151



Chapter 14. Repeating Events

Time Decisions,” on page 1§@ndreal-time loopsare not permitted inside hardware
loops. This mostly has to do with the way hardware loops are programmed in Acode

Therefore, C constructs (loops and calls to statements) are the only way to simplify the
coding of hardware loops at C level. This also implies that hardware loops may not be
very efficient in terms of Acode space. Let's see how the WALTZ-16 decoupling
sequence would be coded in a pulse sequence—the same or similar types of constructs
have been used in explicitly programmed MLEV-16, MLEV-17, and similar
modulation schemes.

#include <standard.h>

waltza()

{
txphase(two); delay(3.0*pw); txphase(zero); delay(4.0*pw);
txphase(two); delay(2.0*pw); txphase(zero); delay(3.0*pw);
txphase(two); delay(1.0*pw); txphase(zero); delay(2.0*pw);
txphase(two); delay(4.0*pw); txphase(zero); delay(2.0*pw);
txphase(two); delay(3.0*pw);

}

waltzb()

{
txphase(zero); delay(3.0*pw); txphase(two); delay(4.0*pw);
txphase(zero); delay(2.0*pw); txphase(two); delay(3.0*pw);
txphase(zero); delay(1.0*pw); txphase(two); delay(2.0*pw);
txphase(zero); delay(4.0*pw); txphase(two); delay(2.0*pw);
txphase(zero); delay(3.0*pw);

}

pulsesequence()
{
status(A);
delay(dl);
status(B);
rgpulse(pw,zero,rofl,0.0);
initval(getval("tau")/(16.0*6.0*pw),v10);
xmtron();
starthardloop(v10);
waltza(); waltzb(); waltzb(); waltza();
endhardloop();
xmtroff();
status(C);
pulse(pw,oph);
}

We could of course have followed the coding scheme of the real-time loop solution and
split up the sequence in simple composite (90-180-270) pulses. As mentioned before,
the hardware loop solution is not very efficient in Acode space usage, as you can see

4The number of FIFO words inside a hardware loop (which is an argumentH®ti@OFAcode
instruction) is calculated by the time when the Acode is built (i.e., when tgpignd not during
execution time.

152 VNMR Pulse Sequences 01-999014-00 A0398



14.3 Hardware Loops

from the printout below(what really counts, of course, is the experimental flexibility,
not the ultimate level of Acode economy):

317 311 205 0 NO_OP

321 315 206 67 HWLOOP with acq interrupt 36 words v10
322 316 210 16 SETPHAS90 CH1 two
325 319 213 151 EVENT1_TWRD 24.000 usec
327 321 215 16 SETPHAS90 CH1 zero
330 324 218 151 EVENT1_TWRD 32.000 usec
332 326 220 16 SETPHAS90 CH1 two
335 329 223 151 EVENT1_TWRD 16.000 usec
337 331 225 16 SETPHAS90 CH1 zero
340 334 228 151 EVENT1_TWRD 24.000 usec
342 336 230 16 SETPHAS90 CH1 two
345 339 233 151 EVENT1_TWRD 8.000 usec
347 341 235 16 SETPHAS90 CH1 zero
350 344 238 151 EVENT1_TWRD 16.000 usec
352 346 240 16 SETPHAS90 CH1 two
355 349 243 151 EVENT1_TWRD 32.000 usec
357 351 245 16 SETPHAS90 CH1 zero
360 354 248 151 EVENT1_TWRD 16.000 usec
362 356 250 16 SETPHAS90 CH1 two
365 359 253 151 EVENT1_TWRD 24.000 usec
367 361 255 16 SETPHAS90 CH1 zero
370 364 258 151 EVENT1_TWRD 24.000 usec
372 366 260 16 SETPHAS90 CH1 two
375 369 263 151 EVENT1_TWRD 32.000 usec
377 371 265 16 SETPHAS90 CH1 zero
380 374 268 151 EVENT1_TWRD 16.000 usec
382 376 270 16 SETPHAS90 CH1 two
385 379 273 151 EVENT1_TWRD 24.000 usec
387 381 275 16 SETPHAS90 CH1 zero
390 384 278 151 EVENT1_TWRD 8.000 usec
392 386 280 16 SETPHAS90 CH1 two
395 389 283 151 EVENT1_TWRD 16.000 usec
397 391 285 16 SETPHAS90 CH1 zero
400 394 288 151 EVENT1_TWRD 32.000 usec
402 396 290 16 SETPHAS90 CH1 two
405 399 293 151 EVENT1_TWRD 16.000 usec
407 401 295 16 SETPHAS90 CH1 zero
410 404 298 151 EVENT1_TWRD 24.000 usec
412 406 300 16 SETPHAS90 CH1 zero
415 409 303 151 EVENT1_TWRD 24.000 usec
417 411 305 16 SETPHAS90 CH1 two
420 414 308 151 EVENT1_TWRD 32.000 usec
422 416 310 16 SETPHAS90 CH1 zero
425 419 313 151 EVENT1_TWRD 16.000 usec
427 421 315 16 SETPHAS90 CH1 two
430 424 318 151 EVENT1_TWRD 24.000 usec
432 426 320 16 SETPHAS90 CH1 zero
435 429 323 151 EVENT1_TWRD 8.000 usec
437 431 325 16 SETPHAS90 CH1 two
440 434 328 151 EVENT1_TWRD 16.000 usec
442 436 330 16 SETPHAS90 CH1 zero
445 439 333 151 EVENT1_TWRD 32.000 usec
447 441 335 16 SETPHAS90 CH1 two
450 444 338 151 EVENT1_TWRD 16.000 usec
452 446 340 16 SETPHAS90 CH1 zero
455 449 343 151 EVENT1_TWRD 24.000 usec
457 451 345 16 SETPHAS90 CH1 two

5The WALTZ-16 solution using real-time loops shown previously Geetion 14.2, “Real-
Time Loops,” on page 148equired 113 Acode words (226 bytes). The coding with a hardware
loop shown here takes up 184 Acode words or 368 bytes. Tiasngcessarily a typical example.

01-999014-00 A0398 VNMR Pulse Sequences 153



Chapter 14. Repeating Events

460 454 348 151 EVENT1_TWRD 24.000 usec
462 456 350 16 SETPHAS90 CH1 zero
465 459 353 151 EVENT1_TWRD 32.000 usec
467 461 355 16 SETPHAS90 CH1 two
470 464 358 151 EVENT1_TWRD 16.000 usec
472 466 360 16 SETPHAS90 CH1 zero
475 469 363 151 EVENT1_TWRD 24.000 usec
477 471 365 16 SETPHAS90 CH1 two
480 474 368 151 EVENT1_TWRD 8.000 usec
482 476 370 16 SETPHAS90 CH1 zero
485 479 373 151 EVENT1_TWRD 16.000 usec
487 481 375 16 SETPHAS90 CH1 two
490 484 378 151 EVENT1_TWRD 32.000 usec
492 486 380 16 SETPHAS90 CH1 zero
495 489 383 151 EVENT1_TWRD 16.000 usec
497 491 385 16 SETPHAS90 CH1 two
500 494 388 151 EVENT1_TWRD 24.000 usec
502 496 390 150 HighSpeedLINES (void)

The HDLOORnNstruction that starts the hardware loop in the Acode is followed by the
number of FIFO words inside the loopdtthe number of Acode words!), and the loop
count (areal-time variable). Tleedhardloop  statement does not generate an Acode
instruction by itself, but it causes the number of loop FIFO words to be written into the
HDLOORnstruction.

154 VNMR Pulse Sequences 01-999014-00 A0398



chapter 15. Decisions

The use of C-based (or previously Pascal-based) decisions in pulse sequences has a
long tradition in Varian pulse sequences.

15.1 Decisions and Branchings in C

C-based decisions are based on both qualitative as well as quantitative checks. They
are used to increase the reliability of many pulse sequences, to make them easier to use,
and to increase their flexibility.

Aborting a Sequence in Case of a Improperly Set Parameter

Aborting a sequence can involve duty cycle calculations and checking, checks for
parameter settings that could possibly damage the spectrometer hardware (like rf coils
or amplifiers in the case of excessive rf power), and avoiding “impossible” parameter
settings (like trying to decouple a 2D spectrum with antiphase magnetization). The
following example is from the HMQC pulse sequence:

i{f ((dm[A] =="y") || (dm[B] =="y"))

printf("DM must be set to either 'nny' or 'nnn'.\n");

abort(1);
}
Standard output created by thentf  function shows up in the VNMR text window.
Theabort function terminates thgo command and the Acode generation through
the compiled pulse sequence, and Acode generated up to that point is discarded.

Ensuring Compatibility with Spectrometer Hardware

Many pulse sequences contain statements that can only be used on certain types of
spectrometer hardware. Therefore, many sequences include constructs such as:

if (newtrans)

{
stepsize(base, TODEV);
xmtrphase(vl);

}

else

phaseshift(base,v1, TODEV);

Although programmers prefer to write “universal” pulse sequences, it would often
make a pulse sequence very complicated if we tried to cover the entire range of
spectrometers that can be driven by VNMR software. Thus, some sequences use
constructs such as the following:
if ('newdec)
{

printf("This sequence requires direct synthesis RF  \

on DEC.\n");
abort(1);

01-999014-00 A0398 VNMR Pulse Sequences 155



Chapter 15. Decisions

As shown inTable § there are a number of predefined flag variables that can be used
in such constructs. Their definitions can be found in the header file
/vnmr/psg/acgparms.h

Table 8. PSG hardware flag and configuration variables

Flag Variable Meaning / Function
True if system equipped with direct synthesis (as opposed to broadband
newtrans )
or fixed frequency) rf on observe channel.
True if system equipped with direct synthesis (as opposed to broadband
newdec ) )
or fixed frequency) rf on (first) decoupler channel.
newtransamp True if system equipped with linear (as opposed to class C) amplifiers on
observe channel.
newdecamp True if system equipped with linear (as opposed to class C) amplifiefis on
(first) decoupler channel.
vitype 0 =none, 1 = Varian, 2 = Oxford
Hilfreq Proton frequency of instrument: 200, 300, 400, 500, 600, 750

True if system has computer-controlled lock, gain, and decoupler power.
automated This flag is left over from old software; all spectrometers running
VNMR are automatic.

Size of loop FIFO: 63 (output board), 1024 (acquisition control board),

fifolpsize or 2048 (pulse sequence control board).

NUMch Number of rf channels that are configured: 2, 3, or 4.

Issuing Warning Messages in the Case of Questionable Parameter Settings

Sometimes it may not be necessary to abort the pulse sequence, but it is perhaps
adequate to have the sequence display a warning message:

if ((newtransamp) && (rofl < 9.9e-6) && (ix == 1))
printf("Warning: ROF1 is less than 10 usec.\n");

In the case of arrayed and multidimensional experiments, it is strongly recommended
to only print a warning for the first increment; otherwise, the VNMR text window may

be flooded with error messages. Of course, there may be cases where a check should
be performed for each increment. The above example should just remind the operator
thatrofl is below its normal value for linear amplifiers (which could result in pulse
amplitude instabilities).

Turning On or Off Pulse Sequence Features

A very popular and powerful feature in VNMR pulse sequences is the utagsfor

enabling and disabling individual pulse sequence statements. This allows combining
many pulse sequences (in the sense of a defined sequence of pulses and delays) into a
single pulse sequence program. There are numerous examples of pulse sequences with
additional experimental flexibility through C decisions, like the HMQC sequence with

its optional nulling of protonated signals through a BIRD inversion pulse (simplified
coding), such as the following:

if (null > 0.0) && (mbond[A] == 'n"))

{

156 VNMR Pulse Sequences 01-999014-00 A0398



15.1 Decisions and Branchings in C

rgpulse(pw,vi,rofl, 0.0);
delay(bird-rofl);
decrgpulse(pwx,v9,rof1,0.0);
simpulse(2.0*pw,2.0*pwx,v1,v1,1.0e-6,0.0);
decrgpulse(pwx,v9,1.0e-6,0.0);
delay(bird-rofl);
rgpulse(pw,v2,rof1,0.0);
hsdelay(null);

}

The second conditional in this example ensures than BIRD nulling is not used when
the long-range optiom{bond="y" ) is used.

Other examples include sequences hikécor  (with a built-in long-range option and

the possibility to suppress proton multiplets usinghtielt="n' , which causes an
inversion pulse to be replaced by a BIRD pulse), and many others. Sometimes, numeric
parameters are used to make decisions (like checking whether thaulelais non-

zero in the above example), but mostly such switches are based on flag parameters
(such asnbond andhmult in the above examples).

Dynamically Arranging the Sequence of Events

Sometimes it is necessary to rearrange the sequence of events depending on the value
of a parameter. One example is found in the HMQC pulse sequence, where there is a
180-degree proton pulse in the middle of the evolution time. The principal sequence of
events is as follows:

decpulse(pwx,v3);

delay(d2/2.0-rof1);

pulse(2.0*pw,v4);

delay(d2/2.0-rof2);

decpulse(pwx,v5);

This constructookscorrect, but it has several deficiencies. The duration of the central
pulse is not compensated for in the evolution time, and the precession during the 90-
degree pulses surrounding the evolution time is not taken into accouriifseeer 19,
“Multidimensional Experiments,” on page J1&dditionally, the first increment the
delayd2 is zero, giving an error message about negative delays.

Apart from that (which is just a programming problem), the first increment has a
considerable gap between the two 90-degree X-pulses, which causes problems in the
first trace and baseline distortions in the final 2D spectrum. In order to do it properly,
the pulses on both rf channels should be performed on top of each other for the first
increment. Unfortunately, the two X-pulses don't have the same phase; therefore, a
singlesimpulse statement cannot be used. One can minimize interpulse dead times
by keeping the amplifiers unblanked for parts of a pulse sequence:

corr = 2.0*pwx/3.1416 + pw + 1.0e-6;

if (d2/2.0 > corr)

{

revroff();
decrgpulse(pwx,v3,rof1,0.0);
delay(d2/2.0-corr);
rgpulse(2.0*pw,v4,1.0e-6,0.0);
delay(d2/2.0- corr);
decrgpulse(pwx,v5,1.0e-6,0.0);
rcvron();

else

01-999014-00 A0398 VNMR Pulse Sequences 157



Chapter 15. Decisions

simpulse(pw,pwx,v4,v3,rof1,0.0);
simpulse(pw,pwx,v4,v5,1.0e-6,0.0);
}

This is a simplified solution: Strictly speaking, this is still not perfegwif is less

thanpw;, there is still a gap between the X-pulses, but with most configurations used for
this type of experiment, the X-pulses are longer than the proton pulses, and in this case
the above solution is accurate for the first increment. Also, increments other than the
first one can fall into a domain where the X pulses overlap with the proton 180, which
may require some modifications to the above algorithm.

An interesting example is the combination of two pulse sequences into a single one—
for the same experiment. The example shown here is a constant-time heteronuclear
correlation experiment, where a simultaneous inversion pulse moves within a fixed
time interval. Such experiments often suffer from limited resolution because the
moving pulse at some point (increment) reaches the end of the fixed delay. In the
example shown here, the fixed interval contains a BIRD pulse, which would normally
set a limit to the number of increments. Thanks to use of C decisions (and to the fact
that an Acode segment is calculated individually for each 2D increment), we can apply
the trick of letting the simultaneous inversion “jump over the BIRD pulse” and
continue behind it up to the very end of the fixed delay, which doubles the achievable
resolution in { (only relevant parts of the pulse sequence are shown here):

decpulse(pp,tl); [* excitation pulse */
if (d2/2.0 < d3)

if (d2/2.0 > rofl) [* start of evolution time */
delay(d2/2.0-rof1);
rgpulse(pw,tl,rof1,0.0); /*180 H + 180 X */

simpulse(2.0*pw,2.0*pp,t2,t3,1.0e-6,0.0);

rgpulse(pw,tl1,1.0e-6,0.0);

if (d3 - d2/2.0 > rofl)
delay(d3-d2/2.0-rof1);

decrgpulse(pp,t1,rofl,0.0); /* BIRD-pulse */

delay(tau-rofl);

rgpulse(pw,t1,rofl1,0.0);

simpulse(2.0*pw,2.0*pp,t2,t4,1.0e-6,0.0);

rgpulse(pw,tl1,1.0e-6,0.0);

delay(tau-rofl);

decrgpulse(pp,t1,rof1,0.0);

delay(d3 -tau -rofl);

else

delay(d3-rofl);

decrgpulse(pp,t1,rofl,0.0); /* BIRD-Pulse */
delay(tau-rofl);

rgpulse(pw,tl,rof1,0.0);
simpulse(2.0*pw,2.0*pp,t2,t4,1.0e-6,0.0);
rgpulse(pw,tl1,1.0e-6,0.0);

delay(tau-rofl);

decrgpulse(pp,t1,rofl,0.0);

Im. Perpick-Dumont, W.F. Reynolds & R. Enriquétagn. Reson. Cheri6, 358 (1988); W.F.
Reynolds, S. McLean, M. Perpick-Dumont & R. Enriqudagn. Reson. Cherfi6, 1068 (1988).

158 VNMR Pulse Sequences 01-999014-00 A0398



15.1 Decisions and Branchings in C

delay(d2/2.0-d3-rof1);

rgpulse(pw,tl1,rof1,0.0); /*180 H + 180 X */
simpulse(2.0*pw,2.0*pp,t2,t3,1.0e-6,0.0);
rgpulse(pw,tl1,1.0e-6,0.0);
delay(2.0*d3-d2/2.0-tau-rofl);

}
simpulse(pw,pp,t1,t5,rof1,0.0); /90 H+90 X */
delay(tau/2.0);

Implicit Decisions

Of course, decisions are not limited to the pulse sequence itself. Decisions are involved
internally in most pulse sequence statements, whether to do the right thing for the given
hardware or to avoid unnecessary Acode and FIFO words (like time events with zero
duration).

Decisions Set by the status Statement

Another class of decisions is hidden in st&tus statement (see alsbonplicit
Gating” on page 53 Most pulse sequences are divided into several basic sections by
insertingstatus  calls at suitable points in the pulse sequence:

status(A);
hsdelay(d1);

status(B);
pulse(pl,zero);
hsdelay(d2);
pulse(pw,oph);

status(C);

}

This is a simplified version of tre2pul pulse sequence. It is split into three basic
sections: status, which includes the relaxation periodl(); statusB, which includes

the two pulses and the evolution timk); and statu€, which is valid during the
acquisition time. The argument to the status function is a simple infegedefined

as 0Bis defined as 1, etc., up ) which is defined as 25tatus(A)  simply means

that during the following time events, the first (“Oth” in C syntax) character in
predefined multifield flag variabledrfy dm2, dm3, dmmdmm2 dmm3homo, homo2,

homo3, andhs) is active up to the nestatus call with a different value in the
argument. These flag variables can be up to 255 characters long (beyond the predefined
constant#\ to Z), but in practice only 3 to 5 fields are used.

These multifield flags are a very easy way of controlling the gating of transmitters and
modulation modes, and enabling or disabling homospoil puldesielay calls,
which significantly enhances the flexibility of most pulse sequences.

The definition is that if more fields are addressed in the pulse sequence than there are
characters in a flag string, the last character is propagated as much as necessary (i.e.,
dm='ny" isthe equivalent tdm="nyyyyyyyyyyy...' ). At the end of a scan (and

at the end of the experiment), the systerplicitly returns tostatus(A) . This is

most relevant to experiments that use high-power decoupling, or decoupling during the
acquisitionin general. For example, when uss@gul with decoupling, itis better not

to usedm='y' , but rathedm="nyy" , even if delaydl is not used. This switches off

the decoupler at the end of the experiment and avoids sample heating due to the rf
power fed into the probe continuously. If a relaxation delay is to be useds@sitil

01-999014-00 A0398 VNMR Pulse Sequences 159



Chapter 15. Decisions

(andp1=0), we can use€? instead ofi1, anddm="'nyy' for full decoupling or
dm='nyn' for gated decoupling.

Note that with some configurations (UNIpMsand UNITY spectrometers), the

status statement may not just change some fast bits (status lines), but may involve
AP bus FIFO words (depending on which flags change at that point) that take a finite
time (seeChapter 12, “AP Bus Traffic,” on page 137

Checking Flag Parameters

Simple flag tests are easy. Constructs IfKdm[A] == 'y") are adequate in most
cases and work also with flags that are newly created for a specific pulse sequence (like
if (mbond[A] =='n") in a previous example in this chapter). Problems occur
when flag fieldsother than the firsshould be testedf.(dm[C] =="y") sounds like
a correct test—but what if the parametienhas been settg' ? In this casedm[C]
returns a random valuefn[B] would return a null character, but still ngt !), and
the test would fail, because the test retUFA& SEinstead ofTRUE A proper construct
for testing flag fields, other than the first one, is not that simple:
int flagsize,

index = statusindx;
char xflag[MAXSTR];
getstr("xflag”,xflag);

flagsize = strlen(xflag);
if (index >= flagsize)

index = flagsize - 1;
if (xflag[index] =="y")

The variablestatusindx  is the currently active status, as set bysth&us

statement. Another solution would be to ensure (by means of a macro or parameter
entry restrictions) that this particular flag has the required length. Fortunately, the vast
majority of user-created flags use only one field.

15.2 Real-Time Decisions

Decisions that need to be made from transient to transient cannot be programmed in C,
because only one Acode segment is generated per FID, which performs all scans. In
such a case, we need real-time decisions—decisions made by the Acode interpreter.

Programming Real-Time Decisions

Suppose that in a particular sequence, with every odd scan we wanted to add a
refocusing period to a pulse sequence. This could be achieved as follows:
mod2(ct,v10); ¥0101%
ifzero(v10); [* every odd scan (ct=0,2,4...) */

delay(tau-rofl);

rgpulse(pw,v1,rofl,0.0);

delay(tau);
endif(v10);

There is only one logical test for real-time decisions: the test whether a real-time
variable ¢10 in this case) is zero. To fulfil this condition for every odd scan, we

160 VNMR Pulse Sequences 01-999014-00 A0398



15.2 Real-Time Decisions

calculatect mod 2 . The above construct generates the following Acpde-t,
tau=1/140 ,rofl=10 ):

298 292 186 36 MOD2FUNC ct v10

301 295 189 41 IFNotZeroFUNC v10 zero Offset = 218
305 299 193 152 EVENT2_TWRD 7 msec + 133 usec
308 302 196 16 SETPHAS90 CH1 vl

311 305 199 150 HighSpeedLINES RXOFF

314 308 202 151 EVENT1_TWRD 10.000 usec

316 310 204 150 HighSpeedLINES RXOFF TXON

319 313 207 151 EVENT1_TWRD 7.000 usec

321 315 209 150 HighSpeedLINES RXOFF

324 318 212 150 HighSpeedLINES (void)

327 321 215 152 EVENT2_TWRD 7 msec + 143 usec
330 324 218 150 HighSpeedLINES (void)

Theifzero  statement generates &NotZeroFUNC instruction in the Acode,
which performs a jump to address 218 (i.e., aftere¢héif statement) if the variable
(v10 in this case) is non-zero. Thedif statement itself does not generate Acode,
but it is used to determine the jump address inRNetZeroFUNC instruction.

The argument witlendif is not used in the Acode, but it serves to associate the
endif with the correspondinigzero  call:ifzero  constructs can also be nested
(see also the last exampleSaction 10.4, “Real-Time Logical Decisions,” on page
106), and in such cases the argument is an easy way for the software to “know” in
which IFNonZeroFUNC instruction it has to set the jump addfess

Mostly in the case of such conditional events, we would like to ensure that all scans are
performed with exactly the same overall timing, to avoid adding up FIDs with different
phase and amplitude. In this case,dls&enz function is also used between the

ifzero and theendif calls:

mod2(ct,v10); *0101%*

ifzero(v10); /* every odd scan (ct=0,2,4..) */
rgpulse(pw/2.0,v1,rof1,0.0);

elsenz(v10); /* every even scan (ct=1,3,5..) */
delay(pw/2.0+rof1);

endif(v10);

In this example, we are performing a 45-degree pulse with every odd scan, and with
the even scan numbers this pulse is replaced by a delay. Of course, the delay length
must not only include the pulse length, but also any pre- and post-pulse delay included
with thergpulse ~ statement (beware of implicit delays in statementsplikse !)3.

In the Acode, the above construct looks as follows:

352 346 240 36 MOD2FUNC ct vi10
355 349 243 41 IFNotZeroFUNC v10 zero Offset = 268
359 353 247 16 SETPHAS90 CH1 vi1
362 356 250 150 HighSpeedLINES RXOFF

2 Strictly speaking, this is not true because it is always clear wifeelho  andendif belongs to,
aslongasthdzero ...endif constructs are hierarchically stacked, and non-hierarchical stacking
(e.g. ifzero(vl) ...ifzero(v2) ...endif(vl) ...endif(v2) )doesn’tmake sense atall (the

same is true for real-time looping).

3To be accurate, we cannot simply replace a pulse with a delay of the same length, since we also need
to take into account the precession during the pulse. This can be done using a correction term that
shortens the delay. pfw is a 90-degree pulspy/2.0 therefore 45 degrees), the accurate delay

length ispw/2.0 - pw/3.1416 + rofl (see alséChapter 19, “Multidimensional
Experiments,” on page 215

01-999014-00 A0398 VNMR Pulse Sequences 161



Chapter 15. Decisions

365 359 253 151 EVENTI_TWRD 10.000 usec
367 361 255 150 HighSpeedLINES RXOFF TXON
370 364 258 151 EVENT1_TWRD 3.500 usec

372 366 260 150 HighSpeedLINES RXOFF

375 369 263 150 HighSpeedLINES (void)

378 372 266 20 BRANCH Offset 270

380 374 268 151 EVENT1_TWRD 13.500 usec
382 376 270 150 HighSpeedLINES (void)

Theelsenz statement again takes the same argument aizéne andendif calls
(the real-time variablel0 in this case). It terminates tlife part of the construct with
aBRANCHjump) instruction and sets the jump address inRENetZeroFUNC
instruction to the first instruction after tlife part (after theBRANCHinstruction). The
endif statement in this case sets the jump address BRA®ICHnstruction at the
end of thef part.

Real-time decisions can also be used in real-time math for the calculation of complex
phase cycles (seéghapter 10, “Phase Calculations,” on pag #&table index should
not be incremented with each scan, but perhaps with every fourth scan only.

Generating the Flag Variable

In most cases, the flag variable for real-time decisions is generated using some kind of
(real-time) modulo statement. To generate a flag variable with a periodazns, one

has to take modulo of a variable that is incremented with every scandtkeor
modulon/2 if the variable is incremented every second sc#? (), etc. Here are

some examples for the constructiorifeéro  flag variablesx in the comment stands

for a non-zero value):

mod2(ct,v1); 0101%

sub(one,v2); /¥1010%*

mod4(ct,v3); FOXXXO0OXXX*
add(ct,one,v4); [¥12345678%*

mod4(v4,v4); FXxx0xxx0*

hlv(ct,v5); /[¥0011223344556677*
add(v5,two,v5); ¥2233445566778899%
mod4(v5,v5); FXXXX00XXXXXX00XX*

modn(ct,three,v6); FOXXOXX*

Toinvertthe logicinasimplézero  construct (withouglsenz branch), simply use
theelsenz branch (to simulate a non-existing ifnotzero statement):

add(ct,two,v7); *23456789%

hiv(v7,v7); /¥1122334455667788*
mod4(v7,v7); AXXXXXX00XXXXXX00*
ifzero(v7);

elsenz(v7);

endif(v7);

162 VNMR Pulse Sequences 01-999014-00 A0398



chapter 16. Waveform Generators

The optional waveform generator (or programmable pulse modulator as it was called
in UNITY spectrometers) is primarily a board that permits changing the amplitude and
the (small-angle) phase of the output of a transmitter board simultaneously and
quickly. Different from the pulse programmer, it can set both the amplitude and the
small-angle phase shifts using fast status lines. You can regard it as “autonomous fast
bit extension of the pulse programmer.”

16.1 How Does a Waveform Generator Fit Into the System?

Figure 19is a diagram of waveform generator circuitry in the UNpIOS The

waveform generator sends output through the transmitter digital control board to the
(small-angle and 90-degree) phase and amplitude modulation circuitry on the (direct
synthesis) transmitter board. Both the amplitude and the phase modulation are also
accessible from the AP bus, but—as we will see—the waveform generator can do the
same thing, but much faster. The waveform generator is tightly coupled to a particular
transmitter board and can only interact with the channel on which it is installed (any
channel can be equipped with a waveform generator). Reconfiguring the waveform
generator for an other channel involves jumper changes on the board (the AP bus
addressing is channel-specific). It is not recommended as a routine operation.

The phase control circuitry on the transmitter board was also descrilstiion 4.2,

“How Do Pulses Work?,” on page 4ld does the small-angle phase shifts (0.25 degrees
resolution) and the 90-degree phase shifts in two separate, consecutive steps. It takes
42 MHz as input frequency; the output is the phase-modulated 10.5 MHz intermediate
frequency (I.F.). The phase control takes digital inputs from the pulse programmer (90-
degree phase shifts via fast lines, small-angle phase shifts via AP bus), from the
waveform generator (small-angle and 90-degree phase shifts via fast direct lines), and
from the phase modulator (just the 90-degree phase shifts via fast status lines). Each
channel is equipped with a phase modulator (for preprogrammed decoupling
sequences like square wave, swept square wave, noise, MLEV-16, WALTZ-16, XY-
32, GARP-1), and optionally with a waveform generator (freely programmable
decoupling sequences, pulse shaping). The 90-degree and small-angle phase shifts are
addedto the phase setting of the pulse programmer set via AP bus.

The amplitude modulation circuitry adjusts the amplitude of the 10.5 MHz I.F. signal
in 4096linear steps (12 control bits), as opposed to the (63 or 79 dB) attenuators that
operate in dB (i.e., in logarithmic units). The 4096 linear steps correspond to a power
range of 72 dB. The amplitude modulator takes input from either the pulse programmer
(via AP bus) or from the waveform generator (via fast status lines). From the 12 control
bits, the waveform generator only controls the 10 most significant bits (1024 steps, 60-
dB power range). The amplitude modulation circuitry takes the phase-modulated 10.5
MHz I.F. from the phase modulation circuitry. Its output is the phase- and amplitude-
modulated I.F., which is then mixed with the local oscillator frequency (which is the
same as the observe frequeptysthe I.F.) that is generated directly by a PTS
frequency synthesizer and is also used in the receiveC{sgger 18, “Acquiring

Data,” on page 205

01-999014-00 A0398 VNMR Pulse Sequences 163



Chapter 16. Waveform Generators

The output of the mixer (the mixing product) is the observe frequency, which carries
the phase- and amplitude modulation from the 10.5 MHz (I.F.) input. The observe
frequency that passes the transmitter gate (which can also be controlled by the
waveform generator) and the 79 dB (or 63 dB) attenuator is the amplified in the rf

power amplifier and finally enters the probe. The waveform amplitude takes
precedence over the pulse programmer amplitude that is set via AP bus.

Spectrometers earlier than UNIPWs(UNITY and VXR) used a variety of different

transmitter boards:

® Only the AM/PM (amplitude modulation and phase modulation) direct synthesis
transmitter board was compatible with a waveform generator, and the amplitude
modulation was only accessible via the waveform generator, not via the AP bus.
The AM-PM board had 0.5-degree phase resolution and 1024-step (60-dB) linear

amplitude range.

/}

AP bus ~ Transmitter
chip Digital Control Board
amplitude amplitude
3 amplitude logic
o]
o 5 LI
= Waveform >
(]
] Generator g ,
7 < hardware
— 1 hase <22 modulator
phase < 99 gdSZre
o - phase < 99
P »
\/ fast control Iine* 18 AA
90°
18¢°
Transmitter
Board xmtr|gate 9° 180 —
Yy
2710 \
42mHz_| Pphase 1:?: prase ]
> generator »| selector
w |pAc | |pAc|
xmtr gate
T ¢ 10.5 MHz| I.F.
\
| Obs. xmtr 90°
- gate splitter
| DAC |
From PTS __| |

(Obs + 10.5 MHz

Figure 19. UNITY pluswaveform generator circuitry

164 VNMR Pulse Sequences

01-999014-00 A0398




16.2 How Does a Waveform Generator Work?

® Previous direct synthesis boards only had phase modulation capability (0.5-degree
resolution, like the AM-PM board), accessible via the AP bus (and fast lines for
the 90-degree phase shifts). Due to the lack of amplitude modulation capability,
these boards were incompatible with waveform generators.

* Fixed frequency and broadband-type transmitter boards did not have amplitude or
phase modulation capability (except for 90-degree phase shifts) and were not
compatible with a waveform generator either.

Because the AM/PM transmitter board used in UNITY spectrometers did not allow
setting the modulator amplitude by AP bus and because the AM/PM board combines
both the digital and the analog functions on a single board, the corresponding
connection scheme (shownFkigure 20 is slightly simpler.

/} l AP bug ol %
chip AM/PM N b
Transmitter Board | £
xmtr gate
—>
[ 10.5 MH Y
amplitude| *° ZQQ L
" . control I.F. _oTs
B amplitude
o, Programmable )
— 10.5 MHz
— Pulse
Modulator ik <
L 18  phase 9®| phase
< [ control modulato
phase < 90 % -
c 180°
90° s A T
* ] 180°
\/ fast control line AR

Figure 20. UNITY programmable pulse modulator circuitry

16.2 How Does a Waveform Generator Work?

The waveform generator is similar to a pulse programmer in that it directly controls
spectrometer hardware (via fast lines only) and provides accurate timing, independent
of the Acode computing. However, there are some distinct differences: the pulse
programmer is built asflow-through(FIFO) buffer, because the information it

handles iglynamicand in essence non-repetitive (subsequent scans are normally not
identical, because of phase cycling etc.). A waveform generator, on the other hand, is
astaticbuffer (based on static RAM), built to handle a constant segeofericshapes

and pattern within a given pulse sequence. The term generic means that the duration
(the duration scaling) of a pulse shape may vary an arbitrary number of times within a
pulse sequence, but the phase and amplitude pattern remain constant. To better
understand the way a waveform generator works, we need to have a more detailed look
at the way it is built and how it operates.

As shown inFigure 21 the central part of the waveform generator board consists of a
256-Kbyte memory (static RAM, i.e., random access memory that does not require

01-999014-00 A0398 VNMR Pulse Sequences 165



Chapter 16. Waveform Generators

constant refreshing). That memory is organized in 65536 words (64 Kwords) of 32 bits
each. Avariable sizeportion is used for instructions; the rest is used to store pattern
and shapes (see below). The other components of the waveform generator include an
interface to the AP bus, an output buffer, control and timing circuitry (20 MHz, derived
from the 40 MHz input frequency), loop control circuitry, and an amplitude multiplier
that is only used (and present) for shaping pulsed field gradients.

J_ ) » spare 1
SRAM spares (2 bits) > SE are 2
Xmir gate » XMtr gate|
90P phase shifts (2 bits) > fgaca
3
small angle phase shifts o
. [} phase
9 bits £ | —
( ) _g (< 903)
5
=
[} 3
S °
5 \
c .
» | Instructions >
a
2] o . .
_8 < amplitude (10 bits) » amplitude
o
<
J
duration count (8 bits) 55
S5
S8
ES
loop control & high
control timing - speed
line
\/ I BTV [<2|«—}— 40mHz

Figure 21. Waveform generator board

The waveform generator is very fast in pulse shaping. All parameters under its control
(amplitude, 90-degree and small-angle phase shifts, and the transmitter gate) are
changednstantaneously and simultaneou@iylike changing these parameters via AP
bus, se€hapter 12, “AP Bus Traffic,” on page )3Theminimum time slicéor
waveforms and modulation pattern is 0.2 microsecondsintiireg resolutionis 50
nanoseconds on the UNIPYus and 100 nanoseconds on UNITY spectrometers.

This is the instruction timing. Apart from internal propagation delay (discussed in the
section“Shaped Pulses in the Acode” on page)littere are always some minor

delays until the parameter change takes effect in real hardware, especially with respect
to phase changes in UNITY spectrometer (see&dsbion 4.2, “How Do Pulses

Work?,” on page 40 For shaped pulses and modulation patterns, these minor
hardware delays are irrelevant because all time slices experience the same delays.

166 VNMR Pulse Sequences 01-999014-00 A0398



16.2 How Does a Waveform Generator Work?

Overall, the waveform generator is fast enough to shape even hard pulses as short as a
few microseconds. On the other hand, its pattern memory is large enough to hold even
the most complex pulse shapes and modulation pattern known today.

Sequence of Events in a Waveform Generator

While the internal data and information paths on the waveform generator board seem
complicated, the entire functionality can be explained fairly well based on the
organization and the usage of the RAM. Let's first have a look at the sequence of
events during the execution of a pulse sequence that uses the waveform generator:

® The pulse sequence executable reads the shape or pattern name from the statement
(shape_pulse , obsprgon , etc.) in the sequence or from the modulation
sequence parameteiseq, etc.), reads and interprets the shape or pattern file
(more about this below), and generates a waveform generator data file named
expn.username.PID.RF  1in /vnmr/acqqueue . This file contains both the
waveforms and the instruction blocks that will be uploaded to the waveform
generators. Each data segment (pattern and instruction blocks) is preceded by a
short header (8 bytes) that contains the AP bus address of the waveform generator
(to which the data will be sent) plus the starting RAM address and the number of
(32-bit) words in the pattern or block.

® Atthe same time, a filynmr/acqqueue/ldcontrol is generated or updated.
This file contains a memory map for all waveform generators of the system. It
shows where in the waveform generator memory (and in which waveform
generator) the current waveform(s) and the corresponding instruction blocks are
located (i.e., the starting address). This starting address is also used in the pulse
sequence when generating Acode instructions that call waveform generator
instruction blocks.

* Before uploading the Acode for a new experiment that uses waveform generators,
Acgproc uploads the waveform generattata (pulse shapes and decoupling
pattern) andnstruction blocksn the fileexpn.username.PID.RF  from
/vnmr/acqqueue into the HAL memory. The acquisition also uploads the data
via the pulse programmer and the AP bus into the waveform generator pattern and
instruction memory.

* The pulse sequence is then initiateddegproc , the same as any other
experiment. Whenever a waveform generator is to be started within a pulse
sequence (e.g., at the beginning of a shaped pulse), the execution of a specific
instruction block is initiated via AP bus. Among other information, that instruction
block contains the pattern start address, the pattern length and the duration of a
time slice for that particular shape call, see below. To perform a particular shaped
pulse, it is sufficient to send the (2-byte) address of an instruction block to a
waveform generator, plus a one-byte command that starts its execution (5 AP bus
words in total).

1The name of the file includes the experiment name, the user name, the process-ID of the pulse
sequence executable, and the suffk ( see alsdChapter 5, “Submit to Acquisition: go,”

on page 5p The name alone fokcgproc allows the association of such a file with a given Acode
file for a specific experiment of a particular user.

01-999014-00 A0398 VNMR Pulse Sequences 167



Chapter 16. Waveform Generators

® The final execution of a pulse shape or decoupling pattern is (normally) triggered
by a fast status line (there is one fast line per waveform generatd@estien 9.2,
“Fast Bits,” on page 98

How Are Patterns Stored in a Waveform Generator?

To better understand the functioning of the waveform generator, let's now have a look
at the organization of its RAM:

Waveforms and modulation patterns are stored in the waveform generaigeasre
patternthat describe the principal amplitude and phase modulation anelaltige
durationof each slice of a shaped or modulated pulse sequence element. The actual
length of a slice duration unit is defined in each instruction block that calls that
particular shape. This way, each shape only needs to be stored once. It can be called an
almost infinite number of times wiihdividual duration scalindor every single call.

The shapes or pattern are stored in 32-bit words organized as follows (see also the
schematic drawing ifrigure 2):

* 8 bits for the duration count—any element of a shape can be one up to 255 time
slices long. The duration of a time slice is not defined in the pattern, but will be
given through the instruction block.

® 10 bits for the amplitude—this allows setting the amplitude in 1024 steps (1 to
1024) on the linear modulator. On the UNIPlisthese are the 10 most
significant bits of the 12-bit linear modulator; via AP bus the full amplitude range
(4096 steps) can be addressed: the smallest step on the waveform generator
corresponds to four amplitude steps on the linear modulator. On UNITY
spectrometers, the linear modulator was 10 bits only, and these could be fully
addressed via the waveform generator only.

® 11 bits (10 bits on the UNITY) for the phase of the pattern element—out of this, 2
bits are the 90-degree phase shift, the remaining 9 bits (8 bits on UNITY) are the
small-angle phase shift (360 quarter-degree steps, or 180 half-degree steps on the
UNITY). On the transmitter board, this phase shitidsledto the current phase
shift (as set by the pulse programmer through two fast lines and the AP bus) such
that the 90-degree and small-angle phase shifting within a shaped pulseatcurs
top ofany preexisting phase shift.

* 1 bit for the transmitter gate—this can also be regarded as an additional amplitude
bit that allows setting the amplitude to zero. Note that the regular amplitude bits
have a gap between the positive amplitudes and “negative amplitudes” (amplitudes
with phase inversion). Taking into account 180- degree phase shifts (and there are
many pulse shapes with phase inversion), the “regular’ amplitude settings are —
1024 to -1 and 1 to 1024, the zero is accessible only through the transmitter gate
bit (the linear modulator does not have a zero amplitude).

® 2 bits are spares. These bits are not used or addressed by any regular software and
hardware up to now. These could possibly be used to trigger additional gates or
other devicesluring a waveform or decoupling pattern (this would currently
require changingsg/wg.c viapsggen mechanism, because there is no function
or feature that would allow setting these bits).

2Inthe shape or modulation files ghapelib , these amplitude values are represented by numbers
ranging from 0 to 1023 (1 less than actually obtained); this has sometimes led to confusion.

168 VNMR Pulse Sequences 01-999014-00 A0398



16.2 How Does a Waveform Generator Work?

Patterns or shapes can be between 1 and almost 64 Kwords long. Note that the 64
Kword pattern memory is shared among all shapes and instruction blocks for the active
experiment. A variable size part of the waveform generator memory is used for
instruction blocks.

The waveform generator shape definition is incomplete insofar as it only contains a
relative duration in each pattern word. In essence, this allows replacing successive
shape slices with identical phase and amplitude by a single slice with a larger duration
count. The vast majority of the pulse shape definitions have a (default) duration count
of 1in each slice. In modulation patterns, pulse angles are translated to duration counts;
therefore, decoupler modulation pattern frequently use slices with larger duration
counts, and the slice duration can be defined in units between 1 and 90 degrees.

Waveform Generator Instruction Words

Patterns are stored at the high end (OxFFFF in 32-bit words is the last memory location)
of the RAM address range. Instruction blocks are stored at the bottom end, from
address 0x0000 up. A typical instruction block for an rf pattern (pulse shape or
modulation pattern) consists of six 32-bit words. Based on the 3 most significant bits,
we can distinguish 8 different types of instruction words. The structure and the
contents depend on the word type: bits 29 to 31 are the word type, bit 28 is reserved in
all types for (default) transmitter gating, the rest of the block is variable. Major parts
of the instruction word are often not used and contain no further information.

UsingTable 9 let’s look at the various kinds of instruction words (unused parts of the
instruction words were left white).

Table 9. Waveform generator instruction words

Type 31[30(29|28(27|26|25|24 23‘22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9‘ 8|7/6|5|4[3|2|1]|0
IB_.START |0|0|0|G|L RAM start address

IB_STOP o|o0|1]|G RAM stop address delay count
IB_SCALE |0|1|0|G loop count ‘ amplitude scale
IB_DELAYTB|O|1|1|G delay time count, 50 nsec units

swars [1fo[6 (6 T T [ [ [ [ ][ [ T[] T][[TI][IT]]]
IB_.PATTB |1]|0|1|G pattern time count, 50 nsec units

IB_LLOOPENH 1| 1|0|G

IB_SEQEND [1[1|1|G

Each instruction block starts withlB_START instruction word that specifies the 16-
bit starting address of the associated pattern block; the next instruction word,
IB_STOP, defines the (16-bit) address of the first word behind the pattern. Note that
multiple pattern are stored next to each other without start or end marks.

ThelB_STOP instruction can also contain a duration count (0 to 255) for an optional
delay preceding the pattern in bits O through 7. This duration count goes together with
alB_DELAYTBi instruction that defines the duration time base in a 28-bit number (0 to
268,435,455). The time base is in 50-nanosecond units (a 20 MHz clock frequency is
used for the waveform generator timer); therefore, the time base can be up to 13.42
seconds. Together with a duration count, this permits specifying a delay of up to 3422

01-999014-00 A0398 VNMR Pulse Sequences 169



Chapter 16. Waveform Generators

seconds, or almost an hour. The minimum duration time base is 200 nanoseconds. Bit
28 determines whether the transmitter is on during that delay or notBTBELAYTB
instruction (together with the duration count in BBeSTOP instruction) could be

used to specify additional delays preceding and following a shaped pulse or other
pattern. It is currently not used for regular shaped pulses or programmed decoupling
(see below).

ThelB_SCALE instruction has two purposes. It allows specifying an amplitude
multiplier for shaped gradients (sBection 16.6, “Using a Waveform Generator for
Shaping Gradient Pulses,” on page )1 @hd it also defines an 8-bit loop counter for
cycling with a defined loop count over shapes or pattern. For pulse shapes, the loop
counter is set to 1. Programmed decoupling normally uses infinite looping (with the
loop count set to 1).

ThelB_WAITHS instruction makes the waveform generator to wait for a trigger signal
on its dedicated pulse programmer high-speed line before starting to execute a pattern.

ThelB_PATTB instruction defines the pattern time base the same way as the
IB_DELAYTB for the delay time base. The pattern time base can be between 0.2
microseconds and 13.42 seconds—together with a duration count of 1 to 255 in the
pattern definitiongach sliceof a shaped pulse or pattern can be between 0.2
microseconds and 3422 seconds long.

ThelB_LOOPENDiInstruction is used in connection with pattern looping, and the
IB_SEQENDiInstruction word terminates each instruction block.

Waveform Generator Data File

Upon typinggo, all pattern and instruction blocks for the current experiment are
collected in a single filévnmr/acqgqueue/expn.username.PID.RF (PID being

the process-ID of the pulse sequence executablé)mr/acqqueue/acqi.RF

for data generated througlo(‘acqgi') . This file consists of short headers consisting
of 4 unsigned integers, each followed by either an instruction block or a data block. The
headers consist of the AP bus address of the target waveform generator, the starting
address in the RAM of the waveform generator, the number of 32-bit words (- 1) in the
instruction block or pattern, and a “spare” number that has no real function in the
software, except that it allows the reader to distinguish between instruction blocks
(Oxabcd) and data blocks (Oxfedc). The file ends with a 32-bit trailer containing the
patternOxa5b6c7d8 . From the headers, the acquisition CPU “knows” which
waveform generator (i.e., which AP bus address) a block needs to be sent to, and at
what (RAM) address in the target device it needs to store the data (or instruction) block.

Unlike Acode (or NMR data structures), the commandds of little help in inspecting
waveform generator data, because all the (32-bit) words are complex bit patterns,
either instruction words or pattern data. On the other hand, pattern data have a fixed
structure, and there are only eight different kinds of instruction words, and also the
headers are very simple.

170 VNMR Pulse Sequences 01-999014-00 A0398



16.2 How Does a Waveform Generator Work?

Therefore, with the aid of the information found/immr/psg/wg.c  , itis relatively
easy to write a little program that decodes these data. Let's look at a simple example

INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words

0x08ffccO0 IB_START: RAM start address = Oxffcc

0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0xa000063f IB_PATTB: Time count = 1600 (0.00008000 sec / 80.00 usec)
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c18, WG start address = Oxffcc, 36 words

count amplitude phase gates

3 1024 180.00
4 1024 0.00
2 1024 180.00

4 1024 180.00
2 1024 0.00
3 1024 180.00

END OF FILE

This is a data file for waveform-generator-based WALTZ-16 decoupling (see also
below for a more detailed interpretation of the data contents). The file begins with an
instruction block, followed by a data block. Of course, there are often several
instruction and data blocks—there is at least one instruction block per data block. If the
same waveform or pattern is used several times with different parameters in the same
pulse sequence, there may be several instruction blocks referring to the same data
block. All instruction blocks are collected at the beginning of the file, followed by the
data blocks in the order of their usage in the pulse sequence (the order of the data
blocks is actually not relevant).

Both blocks are for the decoupler waveform generator (AP bus adiess8 4). The
instruction block will be stored at locatidnin the waveform generator RAM, and the
data block at locatiofixffcc . The instruction block is 6 words long, the pattern is 36.
The data block address is referred to intBeSTART instruction word, the address in
IB_STOPisOxffcc +0x24 =0xfff0 (65484 + 36 =65520). The delay countin the
same instruction word is the default; there is no delay in this instruction block. The
instruction block ends with the instruction woBl SEQEND

The other parts of the instruction block and the data block will be explain8ddtion
16.4, “Using Waveform Generators for Programmed Modulation,” on pagbédlow.

3The decoding shown here was produced using a C proggaiecode from the VNMR user
library (part ofuserlib/bin/apdecode ).

4The observe channel waveform generator has AP bus adik@s$0 , 0x0c48 is the address for
the second decoupler chanr®pc40 is for the third decoupler channel.

01-999014-00 A0398 VNMR Pulse Sequences 171



Chapter 16. Waveform Generators

Executing Waveform Generator Patterns

Through the AP bus and AP interface, the acquisition CPU can not only write to
waveform generator RAM, but it can also writgectly into the output registeoutput

buffer) and set the output status of any waveform generator. For each call, it sends the
address of an instruction blogkising Acode instructiodn02 , WG3andcontrol codes

(using Acode instructiot01, WGCMDnto the waveform generatoontrol register

(see also the Acode examples in the following sections). Control code 5 is used to start
a shaped pulse, control code 7 is used for programmed decoupling, and control code 1
for starting shaped gradients. Termination of the execution of an instruction block is
achieved with control code 0, which causes the waveform generator to halt at the end
of the current pattern.

For programmed modulation, it is normally not desirable to wait for the end of the
pattern: in such a case the instruction block execution is aborted with control code 0x80
(RESET. If the instruction block contains #&_WAITHS instruction word, the

execution of an instruction block is halted until the dedicated high-speed line is set to
ON by the pulse programmer. This allows for an accurate coordination of waveform
generator events with events that are directly controlled by the pulse programmer.

Instruction blocks (i.e., the associated pattern) can be looped for a predefined number
of cycles (thdB_STOP instruction word contains an 8-bit loop count, allowing for up

to 255 loop cycles), or they can be looped infinitely, with interruption either at the end
of a pattern (loop cycle) or immediately, depending on whether code 0 is sent (“soft
stop”) or control code Ox8MRESET), see above. It is also possible to loop over
sequences of instruction blocks (in which case all but the last instruction block have bit
27 set in théB_START instruction).

16.3 Using Waveform Generators for Shaped Pulses

There is one statement per rf channel for performing a simple shaped pulse:

shaped_pulse(name,width,phase,rx1,rx2);

decshaped_pulse(name,width,phaser,rx1,rx2);
dec2shaped_pulse(name,width,phase,rx1,rx2);
dec3shaped_pulse(name,width,phase,rx1,rx2);

All these statements have the same set of five argunmants:is the base name
(without “.RF " extension) of a pulse shape file/immr/shapelib or
$vnmruser/shapelib ; the other arguments are exactly the same as for an ordinary
rgpulse statement (see al§ection 4.2, “How Do Pulses Work?,” on pagé.40

turns out that the four statements are actually macros, all of them calling the same
statemengenshaped_pulse  (the macros are defined immr/psg/macros.h ):

genshaped_pulse(name,width,phase,rx1,rx2,g1,g2,device);

The last argument is the devi€@BSch DECch DEC2ch, andDEC3ch for the four
statements above, see the footnote on page 40). The two additional argginants

g2 are additional delays surrounding the shaped pulse (but with the transmitter turned
on). Because they can be defined in waveform generator instruction block, both are set
to 0.0 in all four macro calls listed above (no statement currently uses these delays).

There are also statements for two and three simultaneous shaped pulses for the observe
and decoupler, or the observe and the two first decoupler channels, respectively:

simshaped_pulse(n1,n2,wl,w2,phl,ph2,rx1,rx2);
sim3shaped_pulse(n1,n2,n3,wl,w2,w3,ph1,ph2,ph3,rx1,rx2);

172 VNMR Pulse Sequences 01-999014-00 A0398



16.3 Using Waveform Generators for Shaped Pulses

Also these are macro calls to the following functions:

gensimshaped_pulse(n1,n2,wl,w2,phl,ph2,rx1,rx2,91,92,dev1,dev2);
gensim3shaped_pulse(n1,n2,n3,wl,w2,w3,phl,ph2,ph3,rx1,rx2, \
g1,92,devl,dev2,dev3);

With these two statements, it is possible to perform simultaneous shaped pudsgs on
combination of two or three rf channels. Note that with the presence of the
richannel  parameter, these “gen” functions should not longer be required.

Programming Shaped Pulses: An Example

Tolillustrate what has been explained in the previous sections, let's now take a practical
(simple) example.

The Pulse Sequence

We take thesh2pul pulse sequence, which is basically a simrg#ipul sequence with
the two rectangular pulses replaced by shaped pulses:

#include <standard.h>
pulsesequence()

{
char plpat[MAXSTR], pwpatMAXSTR];
getstr("plpat’,plpat);
getstr("pwpat”,pwpat);

status(A);
hsdelay(dl);

status(B);
shaped_pulse(plpat,pl,zero,rofl,rof2);
hsdelay(d2);

status(C);
shaped_pulse(pwpat,pw,oph,rofl,rof2);

}

The Shape Definition

We set both thplpat and thepwpat parameter tagauss' , which causes the file
/vnmr/shapelib/gauss.RF to be interpreted when typing. This file (the

“.RF” extension indicating that it contains a pulse shape definition) consists of several
columns, each line defining one pulse slice:

®* The phase angle of the slice in degrees; phases can be both positive or negative;
phases will be converted to positive values between 0 and <360 degrees (better: the
corresponding positive range of phase shift units) internally.

* The amplitude, in values between 0.0 and 1023.0 (the file interpreter reads
fractional numbers; therefore, shape files can use fractional numbers throughout,
but this is not a requirement). Note that these numbers correspond to real
amplitudes of 1 up to 1024. If this column is not specified, the amplitude defaults
to 1023.0 (1024). The values are rounded off internally, hence any positive
fractional number up to 1023.0 is allowed (because it may be delivered from a
shape calculation program).

® The relative slice duration, in values between 1.0 and 255.0; the default for this
column is 1.0.

® The gate settings: 1 turns on the transmitter gaxQ(N, 2 turns on the first spare
line, 4 turns on the second spare line. This defaults to 1.0 for pulses (transmitter

01-999014-00 A0398 VNMR Pulse Sequences 173



Chapter 16. Waveform Generators

on) and is normally omitted. The values for the gates can just be added in column
4, resulting in the possibilities shownimble 10

Table 10. Waveform generator gate control for pulse shapes

Value TXON Spare #1 Spare #2

0 OFF OFF OFF

1 ON OFF OFF

2 OFF ON OFF

3 ON ON OFF

4 OFF OFF ON

5 ON OFF ON

6 OFF ON ON

7 ON ON ON

® The gate field (value 0.0) can be used to generate a slice with zero output, to
compensate for the fact that amplitude 0.0 in reality is amplitude 1. For short (hard)
shaped pulses starting with a non-zero (internal) phase shift it may be desirable to
precede the shape with a slice with the phase of the first real slice, but with the gate
turned off.

The file shapelib/gauss.RF defines a Gaussian pulse with 256 slices:

#

# Gaussian Pulse: 256 points, 5-sigma

# This pulse is amplitude modulated and selectively excites

# a bandwidth (Hz) approximately equal to 2e+6/pulse_length
# (usec).

0.00000011.3651.000000

0.00000012.1891.000000

0.00000013.0661.000000

(120 lines deleted)

0.0000001016.0001.000000
0.0000001018.5141.000000
0.0000001020.4741.000000
0.0000001021.8771.000000
0.0000001022.7191.000000
0.0000001023.0001.000000
0.0000001022.7191.000000
0.0000001021.8771.000000
0.0000001020.4741.000000
0.0000001018.5141.000000
0.0000001016.0001.000000

(120 lines deleted)
0.00000013.9991.000000

0.00000013.0661.000000
0.00000012.1891.000000

174 VNMR Pulse Sequences 01-999014-00 A0398



16.3 Using Waveform Generators for Shaped Pulses

The Waveform Generator Data File

If both parameterplpat andpwpat in thesh2pul sequence are set'tmuss'
we get the following waveform generator data filegb=1024 andpw=256:

INSTRUCTION BLOCK:
AP address = 0x0c10, WG start address = 0000, 6 words

0x08feef00 IB_START: RAM start address = Oxfeef

0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0xb000004f IB_PATTB: Time count =80 (0.00000400 sec / 4.00 usec) TXON
0xe0000000 IB_SEQEND: End of instruction block

INSTRUCTION BLOCK:
AP address = 0x0c10, WG start address = 0x0006, 6 words

0x08feef00 IB_START: RAM start address = Oxfeef

0x20fff001 I1B_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0xb0000013 IB_PATTB: Time count = 20 (0.00000100 sec / 1.00 usec) TXON
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c10, WG start address = Oxfeef, 257 words

count amplitude phase gates
1 12 0.00 TXON
1 13 0.00 TXON
1 14 0.00 TXON

(120 lines deleted)

1 1017 0.00 TXON
1 1019 0.00 TXON
1 1021 0.00 TXON
1022 0.00 TXON
1023 0.00 TXON
1024 0.00 TXON
1023 0.00 TXON
1022 0.00 TXON
1021 0.00 TXON
1019 0.00 TXON
1 1017 0.00 TXON

PR PRR R RER

(120 lines deleted)

1 14 0.00 TXON
1 13 0.00 TXON
0 1 0.00

END OF FILE

Because we have used the same waveform twice, viegdtstruction blockgat
locations 0000 and 0006&3ferring to the same pattern bloskarting at location

Oxfeef ,ending before locatiodxfff0 . The pulse is triggered by the high-speed line
from the pulse programmer, hence the instrudBWAITHS. There are 256 slices
(actually 257, as we will see). For a pulse duration of 256 microseconds, this results in
a slice duration of 1 microsecond. Since each slice has a duration count of 1, the
duration time base for the first pulse is 1 microsecond (20 counts of 50 nhanoseconds
each).

01-999014-00 A0398 VNMR Pulse Sequences 175



Chapter 16. Waveform Generators

TheTXONbit is not only set in the pattern itself, but also in tBe PATTB instruction
word. The second pulse was selected four times longer; therefore, the duration time
base is 4 microseconds. Of course, the duration time base is rounded ofQo the
nanoseconds timing resolutiafthe waveform generator clock (100 nanoseconds on
UNITY spectrometers). For short pulses and pulses with a large number of slices or
total duration counts, the software may report round-off errors if they distort the pulse
length substantially.

In the pattern block, we see that the software automatically adds a slice with zero
amplitude (amplitude value TXONis not set). During all other slices, the transmitter

is gated on. This is the default for the case that only three fields are specified in the
shape definition file. It is the waveform generator that turns on the transmitter during
a shaped pulse; therefore, there is no need to gate the transmitter explicitly using
xmtron andxmtroff

Shaped Pulses in the Acode

The Acode, and the timing during the experiment, differs in two aspects between
UNITY and UNITYplusspectrometers (apart from inherent timing differences with
respect to the AP bus):

® On UNITYplus shaped pulses are terminated when the high-speed line goes
down. On UNITY, the waveform generator needs to be stopped using a “soft stop”
by sending a control code O (stop at the end of the pattern). Therefore, there is a 2-
word AP bus delay (4.3 microseconds) after shaped pulses on a UNITY; whereas
on a UNITYplus,there is no implicit post-pulse delay due to AP bus traffic.

® There is a propagation delay in the waveform generator relative to the pulse
programmer timing. On UNITplus, this propagation delay is 450 nanoseconds.
On UNITY, it is 1.5 microseconds (this is an approximation and varies slightly
from system to system). This delay needs to be taken care of, or else the pulse
programmer might abort the waveform generator or start some other event while
the shaped pulse is still executing. To correct for the delay, shaped pulses are
explicitly delayed by the expected waveform generator propagation delay.

Here is the Acode for the first of the above two pulses created on a UNITY
spectrometer:

323 317 211 102 WG3 AP addr 0x0c10, IB addr = 0x0000
326 320 214 101 WGCMD AP addr 0x0c10, WFG cmd = 0x05
329 323 217 16 SETPHAS90 CH1 zero

332 326 220 150 HighSpeedLINES (void)

335 329 223 150 HighSpeedLINES RXOFF

338 332 226 151 EVENT1_TWRD 10.000 usec

340 334 228 150 HighSpeedLINES RXOFF WFG1

343 337 231 151 EVENT1_TWRD 1.500 usec

345 339 233 152 EVENT2_TWRD 255 usec + 1.000 usec

348 342 236 150 HighSpeedLINES RXOFF

351 345 239 151 EVENT1_TWRD 10.000 usec

353 347 241 150 HighSpeedLINES (void)

356 350 244 101  WGCMD AP addr 0x0c10, WFG cmd = 00

TheWGa3nstruction (three AP bus words) sets the instruction block address, the
WGCMIbstruction (two AP bus words) sets the control register on the waveform
generator, see above: control wosd5 initiates the execution of the instruction
block, control word 0 terminates it.

176 VNMR Pulse Sequences 01-999014-00 A0398



16.4 Using Waveform Generators for Programmed Modulation

On a UNITYplus the propagation delay is shorter, and the terminating WGCMD
instruction is missing:

409 403 297 102 WG3 AP addr 0x0c10, IB addr = 0x0000
412 406 300 101 WGCMD AP addr 0x0c10, WFG cmd = 0x05
415 409 303 16 SETPHAS90 CH1 zero

418 412 306 150 HighSpeedLINES (void)

421 415 309 150 HighSpeedLINES RXOFF

424 418 312 150 HighSpeedLINES RXOFF

427 421 315 151 EVENT1_TWRD 10.000 usec

429 423 317 150 HighSpeedLINES RXOFF WFG1

432 426 320 151 EVENT1_TWRD 450 nsec

434 428 322 152 EVENT2_TWRD 255 usec + 1.000 usec

437 431 325 150 HighSpeedLINES RXOFF

440 434 328 151 EVENT1_TWRD 10.000 usec

442 436 330 150 HighSpeedLINES (void)

From the Acode, it can be concluded that it takes 5 AP bus words to start a shaped pulse
(causing hidden delays of 10.75 microseconds on UNITY spectrometers, and 5.75
microseconds on the UNITPIus), and on the UNITY there is a hidden delay of 4.3
microseconds incurring from two more AP bus waatter the shaped pulse.

Special Cases

To demonstrate the effect of delays that are executed as part of the instruction block, a
theshaped_pulse statement was replaced by

genshaped_pulse(plpat,pl,zero,rofl,rof2,0.1,0.2, TODEV);

This is, of course, a hypothetical example. It turns out thaglttendg2 delays in
genshaped_pulse (0.1 and 0.2 seconds in this case, respectively) are in fact built
into the instruction block and are not coded in the Acode:

INSTRUCTION BLOCK:
AP address = 0x0c10, WG start address = 0000, 9 words

0x08feef00 IB_START: RAM start address = Oxfeef

0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1

0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0x701e847f 1B_DELAYTB: Time count=2000000 (0.1000000sec/100000.0usec) TXON
0xb000004f IB_PATTB: Time count=80 (0.0000040 sec/4.00usec) TXON
0x50010000 IB_SCALE: loop count=1 TXON

0x703d08ff 1B_DELAYTB: Time count=4000000 (0.2000000sec/200000.0usec) TXON
0xe0000000 [IB_SEQEND: End of instruction block

From an Acode point-of-view, the duration of this shaped puisg #sgl + g2

(p1 +0.1 +0.2 inthis example). There is currently no code or pulse sequence that
uses these two additional delays (in all the macro caflertshaped_pulse and

similar statements, the delays andg2 are set to 0.0).

16.4 Using Waveform Generators for Programmed Modulation

Programmed modulation—whether for broadband decoupling or for spinlock
experiments—is nothing but a special kind of shaped pulse with the addition of infinite
looping (the looping is the main reason for calling it via specific statement, and not
with ashaped_pulse call). Apart from this, the requirements and priorities are
slightly different for programmed modulation; hence, the pattern definition differs
slightly from the definition of shaped pulses.

01-999014-00 A0398 VNMR Pulse Sequences 177



Chapter 16. Waveform Generators

Programming Pattern Decoupling and Spinlock Experiments

Software for programmed modulation using a waveform generator can be set up in
several ways.

Decoupler and Modulation Control

The simplest way to use a waveform generator is for programmed decoupling
controlled througtstatus  fields in the pulse sequence (Séaplicit Gating” on page
53). Using the waveform generator this way requires no special programming effort at
all—it works with any pulse sequence (as long as a waveform generator is available).

The primary control of the transmitter gates is done through the status-related
parameterdm dm2, anddma3. This has nothing to do with any kind of modulation. The
modulation mode depends on the parameters(decoupler modulation mode),

dmm2 anddmm3or the three decoupler channels: if these parameters are'set ia

the current status field, no modulation occurs. All other settings produce some kind of
phase modulation on the corresponding rf channel. This modulatindépendenof

the gate dm dm2, dm3) setting! Note that whenever pulses should be performed on a
channel, the corresponding modulation mode parameter must bécsetitothe

current status field; otherwise, the modulation is turned un asynchronously and
produces random phases on any pulses in that same status field.

There are two possibilities for modulating a decoupler (thraatgtus  fields): using

a “hardware modulator,” or using a waveform generator (if one is available). The
hardware modulator can be regarded as “software (a given modulation pattern) that is
“programmed” (wired) in hardware and cannot be changed (except by changing or
modifying the modulator hardware). The standard modulators only operate on the 90-
and 180-degree phase shift lines (some even just on 180-degree phase shifting), small-
angle phase shifting and amplitude modulation is excluded. On UNITY and earlier
systems, the following modulation modes are available through a hardware modulator
(for literature references, see the marvidMR Command and Parameter Reference

f! “fm-fm” or swept square-wave modulation

‘g’ GARP-1 decoupling (UNIT@lusonly)
(100 pulses with odd pulse angles and 180 degrees phase shifts)

'm' MLEV-16 decoupling (UNITYplusonly)
(based on 9018Q,-90, composite inversion pulses)

n' noise modulation
r square-wave modulation (UNITpfusonly)
% WALTZ-16 modulation
(based on 99180,-270, composite inversion pulses)

X' XY-32 modulation (UNITYplusonly)
(based on 9018Q,-90, composite inversion pulses)

On the UNITYplus, there is also a modé for selecting external (user-supplied)
hardware modulation.

Most of these methods (definitely ,'m' ,'w' ,and'x' )needto be calibrated (i.e.,

for a given decoupler strength, the length of the 90-degree pulse must be determined).
The modulator then needs to be triggered at the speed or frequency of the 90-degree
pulses. In practice, the modulation frequency (4 times the decoupler field strength, in
Hz) is entered directly using thienf, dmf2, ordmf3 parameter.

178 VNMR Pulse Sequences 01-999014-00 A0398



16.4 Using Waveform Generators for Programmed Modulation

Waveform Generator Control through the status Statement

For systems with waveform generator on a decoupler channel, the chataciera
dmm(or dmm2 ordmm3 field activates waveform generator-based modulation. Also
here, the modulation rate is defined throughdiimé (dmf2 , dmf3) parameter, but
unlike the hardware modulator (where thef frequency is generated as input to the
modulator), with the waveform generatimf is converted back into a 90-degree pulse
width, which is then used to determine the length of a duration unit in the waveform
generator instruction word.

A major advantage of the waveform generator is that it is freely programmable. Any
decoupling modulation can be programmed, including methods using small-angle
phase shifting, and methods with amplitude modulation (we might even think of using
shaped pulses for decoupling).

Settingdmnto'p’ does not define a modulation mode, but rather selects modulation
hardware (the waveform generator). In this case, the modulation mode is defined using
the string parameteiseq (ordseq2 , dseqg3 for the other decoupler channels). The
value of this parameter is the basename of a fitenimr/shapelib or
$vnmruser/shapelib (just the body of the name, withouDEC” extension).

Although this file is stored in the same directory as pulse shagbepélib/*.RF ),

it has a totally different format:

# WALTZ-16 Broadband Decoupling Sequence
270.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
90.0 180.0
180.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0
270.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0
90.0 0.0
180.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
#

270.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0
90.0 0.0
180.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
270.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
90.0 180.0
180.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0

01-999014-00 A0398 VNMR Pulse Sequences 179



Chapter 16. Waveform Generators

Different from pulse shapes, which normally are described as amplitude and phase
function in the time axis, modulation modes are described more often as a sequence of
pulses of a certain tip angle and a certain rf phase. The amplitude remains constant
throughout the modulation pattern in the vast majority of the case. For this reason, the
format of the modulation files.OEC ) in shapelib s different from the one for

shaped rf pulses, even though it also has up to four columns describing pulse length,
phase, amplitude and the transmitter gate setting:

® The first column describes thip angle in degreefositive number only).

® The second column defines the phase of the slice (equivalent to column 1 of a pulse
shape file).

® The third field describes the amplitude (equivalent to column 2 of a pulse shape
file) and defaults to 1023.0 (full amplitude on the linear modulator). As decoupler
modulation is usually constant, this column is normally omitted.

® The last field controls the waveform generator gate settings. If a waveform
generator is activated through status fields, there is an implicit gating function
(decon anddecoff ) activated through th&tatus statement, which overrides
any transmitter gate settings in the modulation pattern definition, but the gating for
the two spare lines (s@@ble 10 remains active

For translating the above pattern file into a waveform generator file, the software needs
one more parameter that translates the tip angle into duration counts. We need to
specify whether the tip angle in the pattern file is to be interpreted as multiples of 90
degrees, or whether the tip, angle is in multiples of a smaller anglerhe

parameter specifies the tip angle resolution. For WALTZ and MLEV-type modulation
dres should be set to 90, for GARP-type decoupling it is normally setto 1 in order to
get the most accurate tip angles (see also below).

Explicit Programming

Waveform generator-based modulation can also be turned on explicitly within the
pulse sequence. There are two classes of statements for this: one to switch on and off
the modulation, and the other that also handles the gating and runs for a given number
of cycles. The following statements are used to switch on the waveform generator-
based modulation:

obsprgon(name,pw90,pwres);

decprgon(name,pw90,pwres);

dec2prgon(name,pw90,pwres);

dec3prgon(name,pw90,pwres);

wherename is the base name (withouDEC” extension) of a pattern file in
$vnmruser/shapelib or /lvnmr/shapelib , pw90 is the length of a 90-degree

pulse (allowing the function to calculate the absolute duration of each pattern element),
andpwres is the tip-angle resolution, which is needed to determine the length of a
duration unit and the number of duration units per pattern element. These four
statements are actually macros that call a single C function:

prg_dec_on(name,pw90,pwres,device);

5The two transmitter gate signals are combined (ORed). If either of the two devices (the pulse
programmer or the waveform generator) turns the transmitter on, it will be on. In other words, gating
the transmitter on explicitly in the pulse sequence deactivates (overrides) control through the pattern
file. Of course, this does not apply to the two spare gates on the waveform generator.

180 VNMR Pulse Sequences 01-999014-00 A0398



16.4 Using Waveform Generators for Programmed Modulation

where thedevice argumentis the rf devic®©BSch DECch DEC2ch, andDEC3ch
for the four statements above, see the footnote on page 40). For switching the
modulation off again, there is another set of four statements:

obsprgoff();

decprgoff();

dec2prgoff();

dec3prgoff();

These statements are all macros that call a single C function:
prg_dec_off(2,device);

The2 in the first argument causes a hard abort (reset) in execution of the waveform
generator pattern; a 0 in lieu of the 2 would create a soft stop, allowing the waveform
generator to stop at the end of the paftern

Note that these functions do not turn on the transmitter gate, and the default transmitter
gating in the waveform generator patterofis In other words, unless the transmitter

is gated on explicitly in the pattern file (through an odd value in column four), the
transmitter has to be gated on explicitly in the pulse sequence using statement such as
xmtron andxmtroff , decon , anddecoff ; for example:

obsprgon("mlev17",1.0/dmf,dres);

xmtron();

delay(getval("mix"));

obsprgoff();

xmtroff();

The sequence of the statements may be relevant.ifitthen precedes the

obsprgon call, the rf is turned on unmodulated during the AP bus traffic to the
waveform generator (five AP bus words or 5.75 microseconds on a UplUEY10.75
microseconds on UNITY spectrometers). On the other hand, with the above coding,
there is a gap between any preceding time event (e.g., a pulse) and the start of the
modulation. Similar considerations apply to the end of the modulation on UNITY
spectrometers, where there is a 4.3 microseconds hidden delay (there is no implicit
delay behind the modulation on a UNIPYWs).Which solution is best depends on the
pulse sequence—no general recommendation can be given here.

The advantage of thebsprgon andobsprgoff mechanism is that the modulation

can be turned on at any point in a pulse sequence, and it can be left on while other
events (pulses, delays—anything that does not use the modulated channel) take place,
and it can be turned off at any point later in the sequence. There are cases, however,
like the TOCSY sequence, where we would just like to perform a mixing time with
spinlock on one channel, and there it would seem simpler if we could just activate the
waveform generator with a single command. In fact, such statements exist:
spinlock(name,pw90,pwres,phase,nloops);

decspinlock(name,pw90,pwres,phase,nloops);

dec2spinlock(name,pw90,pwres,phase,nloops);
dec3spinlock(name,pw90,pwres,phase,nloops);

Once more, these are all macros (as definé¢hinr/psg/macros.h ), calling a
single C function:

genspinlock(name,pw90,pwres,phase,nloops,device);

6 This is usually undesirable, because the modulation would then continue asynchronously up to the
end of the pattern (i.e., the pulse programmer woatdvait for the end of the modulation before
continuing with the next FIFO words).

01-999014-00 A0398 VNMR Pulse Sequences 181



Chapter 16. Waveform Generators

The first three arguments to these statements are the same alsspition and
related functions. In thghase argument, the basic 90-degree phase shift for the
spinlocking pulse train can be specified (often the spinlock pulses are subjected to
phase cycling), and in th@oops argument to the macros, the number of pattern loop
cycles is specifiedfloops must be arinteger, not a floating point number!). This is
not the parameter the spectroscopist is normally interested in. In most cases, the
relevant parameter is the spinlock time. This requires calculation of the possible
number of loop cycles in the pulse sequence, which is no real problem for a given
modulation pattern:

ncycles = (int)(getval("mix")/(64.667*pw90));
spinlock("mlev17",pw90,90.0,zero,ncycles);

It would not make sense to define the name of the decoupling pattern as a variable,
because the number of 90-degree pulse lengths per pattern depends on tHe pattern

Thespinlock  statements have some other peculiarities. Compared th#pegon

type of statement, the default gate setting in inverted so that, by default, the transmitter
gate is turned on instead of off. This gating does not happen through the pulse
programmer (usingmtron , decon, etc,), but it is done in the waveform generator

data file (see below) to allow for gate switchidgringthe modulation, as for instance
required with the “clean” spinlocking sequences that have delays between the elements
of each composite pulse. This seems correct and desirable, but it can create confusion.

As long as no gating occurs within the pattern, apinlock  statement can easily be
replaced by the following C construct using@sprgon type of function—this even
avoids calculating the number of loop cycles:

xmtron();

txphase(zero);

obsprgon("mlev17",pw90,90.0);

delay("getval("mix")");

obsprgoff();

xmtroff();

This is more than just equivalent—it would even allow replacing the delay with a
sequence of other events: performing pulses and delairsy the spinlock period,
without interrupting the modulation.

Now consider the case where somebody wanted to perform a “clean”-type of spinlock.
In this case themtron andxmtroff statements cannot be used, because this would
override any gating done by the shape (the transmitter would be continuously on). The
new construct will be:

txphase(zero);

obsprgon(“clean_mlev17”, pw90, 90.0);

delay(“getval(“mix™));
obsprgoff();

Now we need a pattern definition that includes the gating column. To specify a gating
value (column 4) we also need to specify the (default) amplitude. A programmer could
now save some work by specifying only the gating where the transmitter must be on
(because the transmitter gate is off by default):

7 Having the pattern name as a variable would require parsing the pattern to find out about the pattern
length, which of course would exceed the scope of normal pulse sequence programming (and
probably the capabilities of many pulse sequence programmers).

182 VNMR Pulse Sequences 01-999014-00 A0398



16.4 Using Waveform Generators for Programmed Modulation

# Clean MLEV-17

90.0 0.0 1023.0 1.0
90.0 270.0
180.0 270.0 10230 1.0
90.0 0.0
90.0 0.0 1023.0 1.0
90.0 0.0 1023.0 1.0
90.0 270.0
180.0 270.0 1023.0 1.0
90.0 0.0
90.0 0.0 1023.0 1.0

There is no real problem with this definition—as long as it is used together with
obsprgon ! Now suppose somebody wanted to use this same pattern definition for the
spinlock  statement. Suddenly the experiment would not work, because with
spinlock  the transmitter gate in on by default, and we are not explicitly gating the
transmitter off during the gaps! The conclusion is that if gating is ug#&dn a pattern,
specify it forall slices. This makes the pattern usable with both types of functions:
# Clean MLEV-17

90.0 00 10230 1.0

90.0 270.0 10230 0.0

180.0 2700 10230 1.0

900 0.0 10230 0.0

900 0.0 10230 1.0

900 0.0 10230 1.0

90.0 2700 10230 0.0

180.0 2700 10230 1.0

900 0.0 10230 0.0

900 0.0 10230 1.0

The file /lvnmr/psg/wg.c also defines a statemeagen2spinlock  that allows
simultaneous (asynchronous) spinlocking and decoupling on two channels; currently
no macro calls this undocumented statement. In general, it is as easy to use the
obsprgon type of statement to achieve the same thing; therefore, this will not be
further discussed here.

How Does Pattern Modulation Work Internally?

Let’s first have a look at the Acode generatedtayusbased waveform generator
modulation

Acode and Pattern File for Programmed Modulation

The following Acode is generated when using the waveform generator for modulated
(broadband) decoupling using the first decoupler channel on a UNITY spectrometer:

300 294 188 102 WG3 AP addr 0x0c18, 1B addr = 0x0000

303 297 191 101 WGCMD AP addr 0x0c18, WFG cmd = 0x07

306 300 194 150 HighSpeedLINES DECUP WFG2

309 303 197 150 HighSpeedLINES DECUP WFG2

312 306 200 151 EVENT1_TWRD 1000 msec

314 308 202 150 HighSpeedLINES WFG2

317 311 205 150 HighSpeedLINES (void)

320 314 208 101 WGCMD AP addr 0x0c18, WFG cmd = 0x80

There are three principal differences to the Acode produced for a shaped pulse:

01-999014-00 A0398 VNMR Pulse Sequences 183



Chapter 16. Waveform Generators

* The (decoupler) transmitter gate is turned on explicitly (overriding the waveform
generator’s transmitter gating).

* The waveform generator is started using control @x8& (for infinite looping).

® At the end of the modulation period the waveform generator is stopped using
control codedx80 (reset or abort), causing the modulation to halt immediately.

The Acode for a UNITYlusis very similar:

380 374 268 150 HighSpeedLINES DEC WFG2

383 377 271 102 WG3 AP addr 0x0c18, IB addr = 0x0000
386 380 274 101 WGCMD AP addr 0x0c18, WFG cmd =  0x07
389 383 277 150 HighSpeedLINES DEC WFG2

392 386 280 150 HighSpeedLINES DEC WFG2

395 389 283 151 EVENTL TWRD 1000 msec

397 391 285 150 HighSpeedLINES DEC WFG2

400 394 288 150 HighSpeedLINES WFG2

403 397 291 150 HighSpeedLINES (void)

The main difference is that on the UNIPWusthe waveform generator modulation is
stopped by resetting the fast status line, and no AP bus traffic is required to achieve
this. The Acode was created usimg="'ynn' , with adl of 1 second.

The Acode produced by tlebsprgon andobsprgoff ~ combined with the

spinlock  type of statements is identical, except that these statements do not turn on
the pulse programmer rf gate. For tiesprgon type of statement, this is normally
done through explicit gating in the pulse sequence usimgon , decon , etc., which
would make the Acode indistinguishable from the code above.

In the case ofpinlock and the related statements, the system dotasse finite

looping on the waveform generator. The waveform generator has only an 8-bit loop
counter, allowing for 255 loop cycles maximum. The number of loop cycles in spin
locking may be much larger than that. Instead, the waveform generator is started with
infinite looping. From the loop count, the total duration of the spinlock time is
calculated. In the Acode the system performs a delay of that length and then stops the
waveform generator (using control code 0x80 on a UNITY or by resetting the fast
status line on a UNITp¥lus).

184 VNMR Pulse Sequences 01-999014-00 A0398



16.4 Using Waveform Generators for Programmed Modulation

Let's see the waveform generator data (instruction block and pattern data) for
WALTZ-16 decoupling during a status field:

INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words

0x08ffcc00 IB_START: RAM start address = Oxffcc

0x20fff001 1B_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0xa000063f IB_PATTB: Time count = 1600 (0.00008000 sec / 80.00 usec)
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c18, WG start address = Oxffcc, 36 words

count amplitude phase gates

3 1024 180.00
4 1024 0.00
2 1024 180.00
3 1024 0.00
1 1024 180.00
2 1024 0.00
4 1024 180.00
2 1024 0.00
3 1024 180.00
3 1024 0.00
4 1024 180.00
2 1024 0.00
3 1024 180.00
1 1024 0.00
2 1024 180.00
4 1024 0.00
2 1024 180.00
3 1024 0.00
3 1024 0.00
4 1024 180.00
2 1024 0.00
3 1024 180.00
1 1024 0.00
2 1024 180.00
4 1024 0.00
2 1024 180.00
3 1024 0.00
3 1024 180.00
4 1024 0.00
2 1024 180.00
3 1024 0.00
1 1024 180.00
2 1024 0.00
4 1024 180.00
2 1024 0.00
3 1024 180.00
END OF FILE

In this case, the parametires was set to 90, and the duration count in each slice
corresponds to the tip angle divided by the resolution (90 degrees) in each slice. The
parametedmf (i.e., the inverse 90 degrees pulse length) was set to 12500; therefore,
the pattern time units is set to 80 microseconds biBtHeATTB word in the

instruction block.

The (infinite) looping is not specified in the instruction block. This is done through the
control code @x07 ) sent to the waveform generator at run time. The instruction and
data blocks generated bysprgon (decprgon , etc.), are identical to those

01-999014-00 A0398 VNMR Pulse Sequences 185



Chapter 16. Waveform Generators

generated bgtatus -based decoupling (assuming the same parameters and pattern
selection): the transmitter gate is off by default.

The waveform generator data are different forgppialock  statement and its
relatives. Here the transmitter is on by default—not through the pulse programmer
(because this would override transmitter gating from the waveform generator), but
through the waveform generator itself. The following data are for (decoupler based)
MLEV-16 spinlocking:

INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words

0x08ffbf00 IB_START: RAM start address = Oxffbf

0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0xa000063f IB_PATTB: Time count = 1600 (0.00008000 sec / 80.00 usec)
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c18, WG start address = Oxffbf, 49 words

count amplitude phase gates
1024  0.00 TXON
1024  90.00 TXON
1024  0.00 TXON
1024  0.00 TXON
1024  90.00 TXON
1024  0.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON
1024  0.00 TXON
1024  90.00 TXON
1024  0.00 TXON
1024  0.00 TXON
1024  90.00 TXON
0.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON
1024  0.00 TXON
1024  90.00 TXON
1024  0.00 TXON
1024  0.00 TXON
1024  90.00 TXON
1024  0.00 TXON
1024  0.00 TXON
1024  90.00 TXON
1024 0.00 TXON
1024 180.00 TXON
1024 270.00 TXON
1024 180.00 TXON

PNRPRNRPRRPNVNRREPNRPRPNRRPNNRREPENRPREPNRPRPNRRPNNRREPNRPRPNRRNRENER
=
o
o
Ny

186 VNMR Pulse Sequences 01-999014-00 A0398



16.4 Using Waveform Generators for Programmed Modulation

1 1024 180.00 TXON

2 1024 270.00 TXON

1 1024 180.00 TXON

1 1024 0.00 TXON

2 1024 90.00 TXON

1 1024 0.00 TXON
END OF FILE

The transmitter gate is switched on throughout the pattern, but not within the
instruction block (for pulses, the transmitter would also be on during eventual delays
in the instruction block). The parametienf was again set to 12500.

The Influence of the dres Parameter

The duration count in a modulation pattern should be proportional to the tip angle that

is specified in the first column of the pattern file. The number of counts per tip angle
depends on théres parameter that defines the tip angle resolution. For modulation
pattern like WALTZ-16 or MLEV-16, where all the pulses are in multiples of 90
degreesdres can be set to 90, which gives one count for a 90-degree pulse, two
counts for a 180-degree pulse, etc. (as shown in the above examples). For sequences
like MLEV-17 or GARP-1dres=90 would not work, because it only allows for tip
angles in multiples of 90 degrees: all pulses in a pattern should ideally be multiples of
the tip angle resolutiodres ; otherwise, they areunded to multiples afres in the

final pattern.

Two examples: The MLEV-17 modulation pattern ends with a 60 degrees pulse, all
other pulses are 90 or 180 degrees. In order to get an accurate reproduction of that
patterndres must be setto 30, 15, 7.5 or 3.75 (the last value only for the UNITY).

For reasons shown below, the preferred value 30. The GARP-1 modulation pattern
consists of 100 pulses with 23 different tip angles ranging from 26 to 268 degrees:

# GARP-1 Broadband Decoupling Sequence
31.0 0.0
55.0 180.0
258.0 0.0
268.0 180.0
69.0 0.0
62.0 180.0
85.0 0.0
92.0 180.0
135.0 0.0
256.0 180.0
66.0 0.0
46.0 180.0
26.0 0.0
73.0 180.0

The only way to get an accurate reproduction of such a pattern idresthl . This
produces the following instruction and data blocks for the waveform generator:

INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words

0x08ff7a00 IB_START: RAM start address = 0xff7a

0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count =1
0x40010000 IB_SCALE: loop count=1

0x80000000 IB_WAITHS: Wait for high-speed line trigger

0xa0000011 IB_PATTB: Time count = 18 (0.00000090 sec / 0.90 usec)
0xe0000000 IB_SEQEND: End of instruction block

01-999014-00 A0398 VNMR Pulse Sequences 187



Chapter 16. Waveform Generators

RF DATA BLOCK:
AP address = 0x0c18, WG start address = Oxff7a, 118 words

count amplitude phase gates

31 1024 0.00
55 1024 180.00
255 1024 0.00
3 1024 0.00
255 1024 180.00
13 1024 180.00
69 1024 0.00
62 1024 180.00
85 1024 0.00
92 1024 180.00
135 1024 0.00
255 1024 180.00
1 1024 180.00
66 1024 0.00
46 1024 180.00
26 1024 0.00
73 1024 180.00

The maximum duration count is 255. If a tip angle results in a greater duration count,
these counts are spread over several pattern words. In the above example, the
parametedmf was left at a value of 12500. This results in a duration unit of 900
nanoseconds, as can be seen from the instruction block above. The sméies the
parameter is set, the smaller a duration unit is obtained.

The minimum duration unit is 200 nanoseconds. Even high modulation rates (large
decoupling ranges) can be performed at a high tip-angle resolution (low values for
dres ). It seems that all modulations can be performed with the highest possible tip
angle resolution. The only price we seem to pay is that for large tip angles, additional
pattern words are required, but the result should be the same.

There is a possible drawback with small valuedras , however. The smaller the
duration units (which are proportionaldoes and inversely proportional tmf), the
larger a timing error we can get. With a duration unit of 0.5 microseconds and a timing
resolution of 0.1 microseconds (UNITY), the round-off error can be up to 10%, on a
UNITY pluswith 50-nanosecond timing resolution it can still be up to 5%. The
conclusion is that the smalledees is selected, the greater the overall timing error.

If the duration unit is rounded down by 10%, all pulses in the pattern are too short by
10%. The software checks on the timing error when constructing the instruction block,
and any time base (round-off) error above 2% is reported. Of course, we candealjust
(orthe pulse length, the second argument tafiielock andobsprgon functions),

but this just avoids the error and does not remove the error in the effective tip angle in
every single pulse in the pattérn

The conclusion is that the tip angle should be seleateldrge as the pattern permijts
and, unless a pattern like GARP-1 requires it, it is better not to work with the minimum
value indres and related parameters.

81n order to keep the modulation algorithm working accurately, we would have to adjust the power
to the new (executable) value dinf: a 5% error in the pulse length requires a power adjustment of
about 1 dB.

188 VNMR Pulse Sequences 01-999014-00 A0398



16.5 What If a Waveform Generator Is Not Available

How small can the tip-angle resolution be? It would not make sense to allow for tip
angle resolutions as small as 0.1 degree because such values would lead to extremely
small duration units, even at moderate modulation rates, and round-off errors would be
obtained very often. Also, the pattern file would be blown up excessively—a 270-
degree tip angle would result in 11 pattern words. In addition to that, a tip angle
resolution much below one degree does not make sense anyway, because a 90 degree
pulse is never calibrated with this accuracy. The software, therefore, prevents setting
dres and related parameters incorrectly, and the tip-angle resolutidrsingon
andspinlock  type functions in various places:

®* The parametetres (as well aglres2 , dres3 ) has a lower limit of 1 (degree).
This can be changed easily using the VNB&Rimit command.

® In /vnmr/psg/cps.c , values smaller than 1 in these parameters are reset to a
minimum of 1. This means, that for status-field controlled modulatires can't
be any smaller than 1.

®* Theobsprgon andspinlock families of statements limit the tip-angle
resolution to a minimum of 0.7 degrees/{inmr/psg/wg.c ). Altering this
would require changes to the pulse sequence overhead (i.e.psgijen to
change the precompiled libraries). Using this lower limit requires using a
parameter different frordres (this would be reset to 1, see above) or (assuming
modified parameter limits in VNMR) usinggtval(“dres") as third argument
to obsprgon / spinlock

16.5 What If a Waveform Generator Is Not Available

For decoupling, the main disadvantage in not having a waveform generator is that the
user is limited to the built-in, pre-programmed decoupling methods.

Programmed Decoupling

On a UNITYplus programmed decoupling includes GARP-1, WALTZ-16, MLEV-

16, XY-32 and others—a range that should cover all of today’s needs for broadband
decoupling. There are more limitations on UNITY and earlier spectrometers, where in
essence only WALTZ-16 is available for broadband decoupling. This can be an
experimental limitation, especially in cases where a large chemical shift range needs to
be decoupled, where GARP-1 permits using much lower power, therefore reducing the
sample heating. To some degree, itis possible to explicitly program other, synchronous
decoupling methods as explicit acquisition with pulses between the sampling points,
but for moire complex methods like GARP-1 this is rather complex, to say the least.

For single-broadband UNITY systems performing indirect detection, a waveform
generator on the observe channel can be a real benefit, in that it allows for continuous,
asynchronous broadband X decoupling. Without waveform generator the only
possibility is to explicitly program and acquisition loop with interleaved decoupling
pulses. On systems with an output board (63-word FIFO), this is limited to WALTZ-4
and also may suffer from power or duty-cycle problems, because for large proton
spectral windows a composite (9080,-270,) pulse may easily be longer than the
dwell time. On systems with an acquisition control board (1024-word FIFO), XY-32
can be used, which definitely outperforms WALTZ-4.

01-999014-00 A0398 VNMR Pulse Sequences 189



Chapter 16. Waveform Generators

For spinlocking experiments (modulation on the transmitter channel), only explicitly
coded modulation is possible. This is no real limitation, because even complex
modulation algorithms (up to several hundred pulses, depending on the pulse
programmer) can be implemented using software or hardware looping.

Shaped Pulses

With a slice width of down to 200 nanoseconds, the waveform generator is unique in
its capability to shape even short, hard pulses. The range of possibilities for systems
without waveform generators depends on the type of instrument:

UNITY and Earlier Spectrometers

Systems without a waveform generator do not have a linear amplitude modulator, so
that the only possibility for performing shaped pulses is through rf attenuators. Several
hardware conditions must be fulfilled before pulse shaping can be done successfully:

* Linear amplifiers are prerequisite, otherwise the power level cannot be regulated
well enough.

* The T/R switch is also required, otherwise (with crossed diodes) the pulse shapes
would be distorted dramatically at voltage levels below 0.5 volts $sextion 4.2,
“How Do Pulses Work?,” on page ¥0

® The standard 63 or 79 dB attenuator does not provide a power range that allows
shaping selective pulses (with excitation bandwidths below several hundred Hz).
An additional fast, switchable (PIN-diode-based) attenuator is required for the
channel on which pulse shaping should occur. Early systems did not have the ports
for additional (fine) attenuators. On these, the only way out would be to take the
decoupler attenuator and route it into the transmitter channel, in series with the
standard attenuator. This leaves the system without decoupler, or with a decoupler
with fixed attenuation. Systems with newer AP interface cards have ports for fine
attenuators (normally used for solids NMR experiments). These ports can also be
used (improperly) for an additional 63-dB attenuator, which then gives the power
range required for shaping even very selective pulses.

If these hardware conditions are fulfilled, thelude file shape_pulse.c ~ from
/vnmr/psg can be used. It contains a statement for performing Gauss- and Hermite-
type shaped pulses using attenuators. The limitations are that only built-in
(programmed) pulse shapes can be used, small-angle phase shifting is not provided,
and the minimum slice width is 10 microseconds (which precludes shaping hard
pulses). For more information, see the text of the includ® flleape definitions for
waveform generators cannot be used for attenuators, because attenuators are calibrated
in dB, whereas the amplitude modulator on the AM/PM transmitter board is linear.

UNITYplus

UNITY plususers are in a more favorable position. Both the amplitude and the phase
modulators are included with every rf channel and can be addressed via the AP bus,
even if no waveform generator is present. This permits using the shape definitions for

9More powerful functions have been submitted to the user library, allowing for free shape
programming through tables, including more pre-programmed pulse shapes (such as the BURP-type
of pulse shapes), or even including small angle phase shifting.

190 VNMR Pulse Sequences 01-999014-00 A0398



16.5 What If a Waveform Generator Is Not Available

waveform generators, basically allowing for any shapes, even those using small-angle
phase shifting. This has been realized in the following statements:
apshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2);

decapshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2);
dec2apshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2);

which are macros calling the following C function:
gen_apshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2,device);

The arguments are the same as for the statements and macros for waveform generators,
with the exception of twainusedohase table nametl( to t60 ) that must be supplied

with every call (for multiple calls of these functions, new names have to be supplied
with every call). These tables are used to internally store the amplitude and phase
vectors that are read out of the speci&hdard waveform generator shape file
(shapelib/*.RF ).

The C functiorgen_apshaped_pulse  decodes the shape file and stores the phase
and amplitude vectors in auto-incrementing tables. It then performs the shaped pulse
in a real-time loop. The minimum slice length is given by the time it takes to set the
power on the linear modulator and the small-angle phase shift via the AP bus (2.3 +
3.45 microseconds, 5.75 microseconds in total, plus a minimum delay of 0.2
microseconds, resulting in a minimum slice length of 5.95 microseconds). The central
part of this function is coded as follotfls

I* | Calculate
time spent for AP bus events within each slice |

+. */

aptime = POWER_DELAY + SAPS_DELAY;

if ( (plength - aptime) < MINDELAY)

{ text_error("apshaped_pulse: pulse too short or too many \
elements in shape");
abort(1);
}
I* +

| set 90 degrees phase, set phase step size |
+ */
txphase(phs);
stepsize(0.25,0BSch);
I* +
| gate receiver off, do rx1 delay |
+ *
revroff();
if (rx1 - aptime > 0.0)
delay(rx1-aptime);
I* +
| before turning on the transmitter and entering the |
| pulse loop preset phase and amplitude for the first |
| slice, to avoid a glitch at the start of the pulse |
+ */

10This isnotthe original coding. To keep the text understandable, low-level functions have been
replaced by their standard equivalents that are also used in pulse sequences. The coding shown here
is written specifically for the observe channel. The “real” function uses generalized, low-level
functions that work for all rf channels.

01-999014-00 A0398 VNMR Pulse Sequences 191



Chapter 16. Waveform Generators

pwrf(pwrtbl,OBSch);
xmtrphase(phstbl);
txphase(phs);
decr(v12);
I* +
| turn on transmitter, then in a soft loop execute one |
| slice, then set power and phase for the next slice |
| after the loop do the last slice, then switch rf off |
+ */
xmtron();
loop(v12, v13);
delay(plength-aptime);
pwrf(pwrtbl,OBSch);
xmtrphase(phstbl);
txphase(phs);
endloop(v13);
delay(plength);
xmtroff();
rlpwrf(4095.0, OBSch);
rixmtrphase(zero);
txphase(phs);
I* +
| perform rx2 delay, gate receiver back on again |
+ */
if (rx2 - aptime > 0.0)
delay(rx2-aptime);
revron();

In this codeplength is the slice length, calculated as pulse length divided by the
number of slices in the shape file. Slices with duration counts greater than 1 are
translated into multiple slices with a duration count of 1. The real-time vavidble
contains the number of loop cyclesvrtbl andphstbl are the two table names that

are given as arguments; they have been “filled” with the amplitude and table values
from the shape file. Note that the amplitude values from the table have to be multiplied
by 4 in order to get the proper amplitude range, because the waveform generator only
addresses the ten most significant bits (0 to 1023), whereas through the AP bus the full
range (12 bits, 0 to 4095) can be used.

As an example, if we take the 256-step gaussian pulse that was discussed previously in
this chapter, we obtain a rather impressive piece of Acode from this single function:

399 393 287 150 HighSpeedLINES (void)

402 396 290 39 ASSIGNFUNC zero vi2
405 399 293 31 MULtFUNC three three v13
409 403 297 31 MULtFUNC vl3three v13
413 407 301 31 MULtFUNC v13 three v13
417 411 305 31 MULtFUNC vi3three v13
421 415 309 29 ADDFUNC vl2 vi13 vi2
425 419 313 32 DIVFUNC v13 three v13
429 423 317 32 DIVFUNC v13 three v13
433 427 321 32 DIVFUNC v13 three v13
437 431 325 29 ADDFUNC vi2 vi13 vi2
441 435 329 32 DIVFUNC vi3 three v13
445 439 333 29 ADDFUNC vl2 vi13 vi2
449 443 337 32 DIVFUNC v13 three v13
453 447 341 29 ADDFUNC vi2 vi3 vi2
457 451 345 16 SETPHAS90 CH1 oph
460 454 348 68 PHASESTEP CH1 1 units (0.25 degrees)
463 457 351 150 HighSpeedLINES RXOFF
466 460 354 150 HighSpeedLINES RXOFF
469 463 357 151 EVENT1_TWRD 4.250 usec
471 465 359 105 TABLE 360 size 256, autoinc 1, divn_ret 1, ptr O

192 VNMR Pulse Sequences 01-999014-00 A0398



16.5 What If a Waveform Generator Is Not Available

45 49 52 56 60 64 69 73
78 84 89 95 102 108 115 123
131 139 148 157 166 176 187 198
210 222 235 249 263 277 293 309
326 343 362 381 401 421 443 465
488 512 537 563 590 617 646 676
706 738 770 804 838 874 910 948
986 1026 1066 1108 1150 1193 1238 1283
1329 1377 1425 1474 1523 1574 1626 1678
1731 1784 1838 1893 1949 2004 2061 2118
2175 2232 2290 2348 2406 2464 2523 2581
2639 2697 2754 2812 2869 2925 2981 3036
3091 3145 3198 3250 3302 3352 3401 3449
3496 3541 3585 3628 3669 3708 3746 3783
3817 3850 3880 3909 3936 3961 3984 4005
4024 4040 4055 4067 4077 4085 4091 4094
4095 4094 4091 4085 4077 4067 4055 4040
4024 4005 3984 3961 3936 3909 3880 3850
3817 3783 3746 3708 3669 3628 3585 3541
3496 3449 3401 3352 3302 3250 3198 3145
3091 3036 2981 2925 2869 2812 2754 2697
2639 2581 2523 2464 2406 2348 2290 2232
2175 2118 2061 2004 1949 1893 1838 1784
1731 1678 1626 1574 1523 1474 1425 1377
1329 1283 1238 1193 1150 1108 1066 1026
986 948 910 874 838 804 770 738
706 676 646 617 590 563 537 512
488 465 443 421 401 381 362 343
326 309 293 277 263 249 235 222
210 198 187 176 166 157 148 139
131 123 115 108 102 95 89 84
78 73 69 64 60 56 52 49
732 726 620 106 TASSIGN table 360 tbirt
735 729 623 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes
max 4095, offset 0, value tblrt
105 TABLE 630 size 256, autoinc 1, divn_ret 1, ptr O
0

741 735

<]

N

©
o

[eNeoNeoNeoNoNoNeoNoNoNoNoNoNoNoNolNoNoNolNoNoNolNoNoNolNoNoNoNoNo)
[eNeNeNeoNoNeoNeoNoNeoNoNoNoNoNoNoNoloNolNoNoNoNoloNolNoNoNoNolNo)
[eNeoNeoNeoNeoNoNeoNoNoNeoNoNoNeoNoNoNoNoNoNeoNoNoNeoNoNoNeoNoNeNo]

[eNeoNeNeoNoNeoNeoNoNoNoNoNoNoNoNolNoNoNolNoNoNolNoloNolNoNoNoNolNo)
[eNeoNeoNeoNeoNoNeoNoNoNoNoNoNoNoNoNoNoNolNoNoNoloNoNolNoNoNoNoNol
[eNeoNeoNeoNoNeoNeoNoNoNoNoNoNoNoNolNoNoNolNoNoNolNoNoNolNoNoNoNolNo)
[eNeNeNeNoNeoNeNoNeoNoNoNoNoNoNoNoloNolNoNoNoNoloNolNoNoNoNo o)
[eNeoNeoNeoNeoNoNeoNoNoNoNoNoNeoNoNoNoNoNoNeoNoNoNoNoNoNeoNoNoelNo]

01-999014-00 A0398 VNMR Pulse Sequences 193



Chapter 16. Waveform Generators

0 00 O0OOOTOTP OO

0 00 O0OO0OOOTP O

0 00 O0OOOTUOTP O
1002 996 890 106 TASSIGN table 630 tbirt

1005 999 893 65 SETPHASE CH1f tbirt

1008 1002 896 16 SETPHAS90 CH1 oph

1011 1005 899 28 DECRFUNC v12

1013 1007 901 150 HighSpeedLINES RXOFF TXON

1016 1010 904 39 ASSIGNFUNC zero v13

1019 1013 907 42 IFMInusFUNC v12 one Offset= 937

1023 1017 911 151 EVENT1_TWRD 44.250 usec

1025 1019 913 106 TASSIGN table 360 tbirt

1028 1022 916 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes
max 4095, offset 0, value tbirt

1034 1028 922 106 TASSIGN table 630 tbirt

1037 1031 925 65 SETPHASE CHA1f thirt

1040 1034 928 16 SETPHAS90 CH1 oph

1043 1037 931 27 INCRFUNC v13

1045 1039 933 42 IFMInusFUNC  v13 v12 Offset= 911

1049 1043 937 151 EVENT1_TWRD 50.000 usec

1051 1045 939 150 HighSpeedLINES RXOFF

1054 1048 942 65 SETPHASE CH1f zero

1057 1051 945 16 SETPHAS90 CH1 oph

1060 1054 948 151 EVENT1_TWRD 4.250 usec

1062 1056 950 150 HighSpeedLINES (void)

The purpose of the real-time math section at the beginning (not shown in the C code
above) is to store the number of slices in a real-time variable without urging|

(see als6New Real-Time Numeric Constants” on page.9he most prominent

feature in the following section are the two tables containing all 256 amplitude and
phase values of that pulse, taking up a full Kbyte (two times 256 16-bit words) of
Acode space. Of course the second table could, in theory, be reduced to a single
constantero , but the program cannot “know” that this shape file contains no phase
changes.

Apart from the amount of Acode that is necessary to perform such a pulse through
Acode, and some limitations with respect to the modulation rate, everything seems to
be fine, andipshaped_pulse in fact is a reasonable replacement for a waveform
generator for many experiments, in particular, selective excitation. There are, however,
a few fundamental differences and limitations to this solution. Some of them lie in the
way the waveform generator works; others are a consequence of the above coding and
of the way how phase shifting works.

One problem lies in small-angle phase shifting. Any internal phase shifting on a
waveform generator is performed top ofany current quadrature and small-angle
phase shifts. This cannot be emulated in software. The internal phase shifting in
gen_apshaped_pulse is set viaxmtrphase or equivalent statements, with work

in an absolute frame. They even reset any existing quadrature (90-degree) phase shift!
The latter is added in again after ttmtrphase call (gen_apshaped_pulse

therefore works properly on top of any quadrature phase shift), but this cannot be done
for the small-angle phase shifting. Small-angle phase shift coaddition is not provided,
and hencgen_apshaped_pulse  does not work properly on top of small angle

phase shifting.

The other problem lies in the fact that quadrature phase shift needsdediablished
after eachxmtrphase or equivalent call. The statemerphase (or its equivalents
for the current channel) is called once for each slice, which implies that

194 VNMR Pulse Sequences 01-999014-00 A0398



16.6 Using a Waveform Generator for Shaping Gradient Pulses

autoincrementing tables cannot be used as phase variabfeshéped_pulse  or
equivalent macros.

Over all, what are the limitations of thpshaped_pulse approach?

® The minimum slice length is 5.95 microseconds, compared to 0.2 microseconds
with the waveform generator. Real short hard pulses cannot be shaped;

® Phase and amplitude changes don’t occur simultaneously. The phase and the
amplitude profile of the pulse are shifted against each other by 3.45 microseconds;

® Slices with the transmitter gate switched off are simply skipped;

® apshaped_pulse and related functions don’t work as expected on top of small
angle phase shifting;

®* The phase variable cannot be an autoincrementing table;

® Simultaneous shaped pulses are not possible;

® apshaped_pulse generates lots of Acode, which may possibly limit its use for
multidimensional (3D, 4D) experiments;

* Even though the Acode size may theoretically allow for a single shape of up to
about 4000 slices (see algecode Size Limitations, Acode Buffering” on page
83), such long shapes will most likely lead to FIFO underflow. On a UNITY or
UNITY plussystem, the FIFO is only filled at a rate of below one word per 20
psedl, which may in many cases be the real rate-limiting step.

Neverthelessapshaped _pulse permits performing most selective excitation
experiments (even demanding ones like those using shifted laminar*pols&S
pulsesd) perfectly without a waveform generator, and some of the inherent limitations
can be bypassed by programming measures.

16.6 Using a Waveform Generator for Shaping Gradient Pulses

The waveform generator was first designed for shaping field gradients and rf pulses in
imaging experiments. Only later it was adapted for high-resolution machines. By the
addition on one component (the amplitude multiplier), a UNIIl¥ waveform

generator can be converted for shaping field gradients (of course, the AP address has
to be changed by reconfiguring its jumper settings).

The gradient waveform generator works along the same principles as an rf waveform
generator, except that it controls the amplitude of a single field gradient instead of
phase and amplitude of an rf signal and rf gates. Therefore, a gradient pattern word has
a totally different layout, as shown Trable 11

Bits 0 to 7 are again the duration count (same as for the rf pattern), bits 8 to 23 form a
16-bit field gradient amplitude value (-32768 to 32767), and the bits 24 to 31 are
unused (field gradients are dc by nature, so therephase parametef’). Pulsed

field gradients may not only be scaled in the time scale, often (mostly, in imaging

1 This is under optimum conditions, without lots of Acode overhead from soft looping or
table access, etc. (both are used indpshaped_pulse  function). The actual transfer rate
for theapshaped_pulse function has not been determined.

125 |, PattJ. Magn. Resan 96, 94 (1992).

135 H. Smallcombe]. Am. Chem. Sot15, 4776 (1993).

14|nstead, the amplitude is signed (it can be positive or negative), but the rf amplitude is measured
and regulated in magnitude only.

01-999014-00 A0398 VNMR Pulse Sequences 195



Chapter 16. Waveform Generators

Table 11. Comparison of waveform generator pattern words

Type 31‘30 29 28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18 17‘16‘15‘14‘13‘12‘11‘10‘9‘8 7‘6‘5‘4‘3‘2‘ 1‘0
rf SP | T phase amplitude duration
Gradient ‘ ’ ‘ ‘ ‘ ‘ amplitude duration

experiments) gradients are scaled in their amplitude. For an imaging experiment, a
spatial dimension can be encoded by stepping a gradient through an array of (positive
and negative) values.

With the rf definition of a waveform generator, we would have to define as many
shapes as there are amplitude values. To avoid this, field gradient shapes are made
generic in two ways: they can be scaled in duration (the same way as rf shapes and
pattern) and in amplitude. The amplitude value in the pattern is not the final one. The
gradient waveform generator has a built-in multiplier that multiplies the amplitude
value in every pattern word with a scalar value inlBhé&SCALE instruction word of

the corresponding instruction block (see dls@veform Generator Instruction

Words” on page 169

Most imaging experiments use at least one stepped gradient for spatial encoding.
Often, there are 32, 64, 128, or 256 different gradient increments. This means that in
the pattern file, there are that many instruction blocks pointing to the same data
(pattern) block, each of them with a different scaling factor inBh8CALE

instruction word.

In terms of basic data handling, the gradient waveform generator is treated the same
way as its rf equivalent. Here is a (hypothetical) data file for a “hsine”-shaped gradient
without amplitude scaling:

INSTRUCTION BLOCK: Z GRADIENT
AP address = 0x0c30, WG start address = 0000, 5 words

0x08ff7100 IB_START: RAM start address = Oxff71

0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count =1
0x40010001 IB_SCALE: loop count = 1, amplitude scale = 1

0xa000b88b IB_PATTB: Time count = 47244 (0.00236220 sec / 2362.20 usec)
0xe0000000 IB_SEQEND: End of instruction block

DATA BLOCK: Z GRADIENT
AP address = 0x0c30, WG start address = Oxff71, 127 words

count amplitude

1 810
1 1620
1 2429

(57 lines deleted)

32704
32744
32764
32764
32744
32704

PR RPRPRR

(57 lines deleted)

196 VNMR Pulse Sequences 01-999014-00 A0398



16.6 Using a Waveform Generator for Shaping Gradient Pulses

1 2429
1 1620
1 810
1 0

END OF FILE

The gradient shape definition files are also storeshipelib , but with the extension
“.GRD". Their format is simpler than the format for rf shapes and modulation pattern.
The two columns in the file contain the gradient amplitude and the duration count
(usually one count per slice):

#
# half sine for GRADIENTS
#

810 1.0
1620 1.0
2429 1.0

(57 lines deleted)
32704 1.0
32744 1.0
32764 1.0
32764 1.0
32744 1.0
32704 1.0

(57 lines deleted)
2429 1.0
1620 1.0
810 1.0

0 1.0

01-999014-00 A0398 VNMR Pulse Sequences 197



Chapter 16. Waveform Generators

198 VNMR Pulse Sequences 01-999014-00 A0398



chapter 17. Pulsed Field Gradients

The most prominent difference between pulsed field gradients (PFG) and non-PFG
pulse sequences is the addition of statements that generate the pulsed field gradients.
In certain PFG techniques (like coherence pathway selection and multiple-quantum
filtering using pulsed field gradients), little or no phase cycling is used. Some PFG
sequences use pulses with constant phase only and may therefore look simpler than
their non-PFG equivalents. Where non-PFG pulse sequences eliminate artifacts and
unwanted signals by phase cycling (e.g., subtraction), PFG sequences dephase
unwanted coherences (i.e., make them non-observable, PFG experiments are often less
subject to spectral artifacts than their non-PFG equivalents).

The PFG accessory involves a dc and audio frequency power amplifier with linear
amplitude control through the AP bus, connected to a special probe with a Z gradient
coil. The field gradient coil is shielded. While generating a strong Z field gradient
inside (at the sample), an external compensating field (with opposite sign) is generated,
such that the total field outside the gradient coil is greatly diminished. This helps
reduce eddy currents in the rest of the probe body and in the metal walls of the magnet
dewar (although eddy currents can'’t be totally avoided).

17.1 Pulse Sequence Statements for PFG Gradient Control

The statements for gradient control in typical PFG experiments are simple. They reflect
the straightforward, scalar nature of a (linear) field gradient. A single parameter
determines the amplitude of the gradient, which can have values between -32768.0 and
32767.0 (the gradient amplifier uses a 16-bit DAC, negative values are permitted and
usually required in most PFG experiments).

What also simplifies programming pulsed field gradients is the fact that the gradient
amplifier is constructed practically noise-free; therefore, there is no need for blanking
it during off-intervals. The amplifier can be put into “standby” mode by setting the
VNMR parametepfgon to'nnn' , while settingpfgon to'nny' turns on the (2)
gradient amplifier. There is also no fast line (gating) involved with gradient control.
Typical gradient pulses are on the order of milliseconds; therefore, it is more than
sufficient to set the gradient amplitude with the AP bus. Even gradient shaping can be
done this way (seBection 17.2, “Shaping Pulsed Field Gradients,” on pagke 202

The most basic statement to set the gradient amplitudeaitient  1:

rgradient(gid,amplitude);
For PFG experiments, the first argumegitl(, the gradient identifier) i&' or'z' ,

the second argumerdriplitude ) is a number betwee32768.0 and32767.0 (a
floating point number of type double).

1There is also a statemergradient  that allows defining the amplitude from real-time variables.
Typical PFG sequences use a few, predefined gradient levels that do not vary within the sequence or
from transient to transient; therefore, usiigradient  would be an unnecessary complication. Up

to now,vgradient  has only been used in imaging sequences (se€lsgter 21,
“(Micro)lmaging Experiments,” on page 239

01-999014-00 A0398 VNMR Pulse Sequences 199



Chapter 17. Pulsed Field Gradients

A typical pulse sequence construct for a gradient pulse of lgagtland amplitude
gzllvl using thegradient  function could be written as follows:
rgradient('Z',getval("gz1Ivl"));

delay(getval("gz1"));

rgradient('Z',0.0);

The higher-level statemengradpulse  allows reducing these lines to a single call:

zgradpulse(amplitude,duration);

Using this statement, the above three lines for a gradient pulse of dgjtati@md
amplitudegzilvl would be written as

zgradpulse(getval("gz1Ivl"),getval("gtl"));

Although this statement has the simplicity of the statements for rf pulses (that use
gating through fast lines), one should still not forget the “underlying three lines” (i.e.,
that there is AP bus traffic before and after the actual gradient pulse, taking up a finite
time). While the time spent in AP bus traffic is negligible compared to the duration of
the gradient pulse itself, it is long enough to cause considerable dephasing for large
chemical shift ranges. It is, therefore, strongly recommended to compensate for this
time in the pulse sequence, in particular during a refocusing interval:
rgpulse(pw,tl,rof1,0.0);

delay(tau-rofl);

rgpulse(pw,tl,rof1,0.0);

zgradpulse(getval(“gz1ivl”), gtl);

delay(tau-gt1-2.0*GRADIENT_DELAY-rofl);

rgpulse(pw,tl,rof1,0.0);

Up to now we have taken gradient pulses as ideal, rectangular pulses, which obviously
was a simplification because any gradient change is slowed down by eddy currents
(this applies to switching both on and off). In first approximation, the time constant of
the decay of these eddy currents is given by the geometry and the construction of the
gradient coil and its surroundings and should not depend on the gradient strength.
Corrective delays have often been implemented in pulse sequences using pulsed field
gradients to compensate for gradient pulse imperfections like the finite slew rate. Such
corrections (in addition to eddy current compensation) are most necessary in imaging
experiments, where eddy currents are a much bigger problem than for high-resolution
PFG experiments (see al€hapter 21, “(Micro)imaging Experiments,” on page 39

The first Varian PFG sequences were written with microimaging experiment concepts
in mind. A typical gradient pulse was programmed as follows:

rgradient('Z',gz1Ivl);

delay(gzl+grise);

rgradient('Z',0.0);

delay(grise);

delay(gstab);

This generates the following timing scheme (times not shown proportionally):

\grise | length grise | gstab

200 VNMR Pulse Sequences 01-999014-00 A0398



17.1 Pulse Sequence Statements for PFG Gradient Control

grise is supposed to be the time intervals before and after the pulse that are affected
by the eddy currents (delayed gradient buildup, delayed gradient decaggtahd is

the time required to reestablish full homogeneity after a gradient pulse. It turns out that
after a typical gradient pulse of a few milliseconds, it takes about 50 microseconds until
the system has recovered from the gradient, such that there are no observable phase
errors (to regain full amplitude may take slightly longer). It is certainly not a good idea

to have a gradient pulse followed immediately by an rf pulse (or data acquisition), but
as long as some delay (of around 50 microseconds) follows the gradient pulse, there
should be no need for an additional dejatab .

It can be assumed that eddy currents affect both the gradient buildup and gradient turn-
off times the same way (i.e., what we lose at the beginning of the gradient pulse we
regain at the end of the pulse). The gradient pulse is not quite rectangular (neither is
any pulsel!). All that counts is therea(amplitude times duration) of the gradient pulse
because that determines the amount of dephasing achieved. To avoid transversal
relaxation and spin diffusion, it is desirable to have short gradients. On the other hand,
very strong gradients require strong amplifiers that produce lots of noise and, therefore,
affect the overall homogeneity.

With PFG probes, the eddy current time constants are definitely below 10
microseconds. Even if the time constants for turning on and off the gradient pulse were
slightly different, that difference would be negligible, because their magnitude is only
fractions of a percent of the total pulse duration (typically a few milliseconds). Under
this assumption, it is certainlyrongto compensate for eddy current effects using a
finite delaygrise , as this prolongs the gradient pulse.

Most PFG pulse sequences use a gradient pulse to refocus magnetization (coherence)
that was dephased by a preceding pulse. This can only work if the two gradient pulses
have very accurate and well-defined gradient amgése  in the above scheme would
distort the dephasing ratio between two gradient pulses with different areas, because

(gtl >gzllvl );t((gtl Hgrise ) xgzllvl )
(gt2 xgz2lvl )" ((gt2 +grise )xgz2lvl )

Still, many spectroscopists are usigigge . By intuition, you might think that these
delays “take care of eddy currents.” In fact, effects can be seen in many experiments
where below certain values fgrise (typically 10, sometimes more) some pulse
sequences would simply not work properly. What has happened in those cases was that
the gradients may have been slightly out of balance due to the addijoseof to

their lengths (if they had different lengths or amplitudes) but by an amount that is not
noticeable yet. What made the experiments work is that the sgead (in the

above scheme) acted as gradient recovery delay.

In many pulse sequences, an rf pulse follows a gradient pulse, and for these cases we
need to insert a recovery delay; otherwise, the rf pulse generates phase errors. This is
most critical in multiple-quantum filtering experiments, where phase or amplitude
distortions after a gradient pulse can seriously hamper the performance of the
sequence. For most sequences a recovery delay of 10 to 20 microseconds is adequate
and sufficient. For multiple-quantum filtering experiments (like gradient MQCOSY or
E.COSY), the recovery time should be adjusted to 50 to 60 microseconds.

01-999014-00 A0398 VNMR Pulse Sequences 201



Chapter 17. Pulsed Field Gradients

In conclusiongrise delays are not recommended (as shown in the scheme above),
but if an rf pulse follows a gradient pulse, implementing a gradient recovery delay is
strongly recommendedhis delay can be made part ofrgpulse call:

zgradpulse(getval(“gz1ivl”),getval(“gtl”));
rgpulse(pw,vl,gstab,0.0);

17.2 Shaping Pulsed Field Gradients

202

It has been suggested that using trapezoidal gradients (or gradients with other shapes)
would allow minimizing eddy current effects. Because PFG probes use actively
shielded gradient coils, eddy current effects are minimized; therefore, it was found that
it is not necessary to use shaped gradients. Also, in order to minimize losses due to
transverse relaxation and spin diffusion, it is desirable to use short, strong gradient
pulses. A shaped gradient by definition has a lower duty cycle and is, therefore, longer
than a rectangular gradient with the same “area.” Thus, for most liquids applications,
it is undesirable to use shaped gradients.

Still, there may be situations where shaped gradient pulses have advantages. For
example, in diffusion experiments with very high gradient strengths, a gradient coll
with high-inductive load may cause transition problems to the gradient amplifier when
turning on the gradient. A trapezoidal gradient may alleviate such problems.

How can gradients be shaped? For imaging, a gradient control unit with waveform
generator provides for an easy access to shaped gradients, but the PFG accessory does
not include a waveform generator. Therefore, gradients have to be shaped through the
AP bus, similar to the approach taken in #pshaped_pulse  function (seeSection

16.5, “What If a Waveform Generator Is Not Available,” on page.189

A function for creating a (trapezoidal) shaped gradient is shown below:

rampgrad(amp, length, ramp)
double amp, length, ramp;
{
inti, steps;
double iramp, initval, incr_val;
if (length >= MINDELAY)
{
if (ramp > length)
{
fprintf(stdout,"ramp parameter larger than \
gradient delay\n");
abort(1);
}
steps = (int) (amp / 1000.0);
if ((double) steps * GRADIENT_DELAY > ramp)
steps = (int) (ramp / GRADIENT_DELAY);
if (steps > 1)

incr_val = amp / steps;
initval = incr_val;
iramp = ramp / (double) steps - GRADIENT_DELAY;
for (i=0; i<steps; i++)
{
rgradient('Z',initval);
delay(iramp);

VNMR Pulse Sequences 01-999014-00 A0398



17.2 Shaping Pulsed Field Gradients

initval += incr_val;
}
rgradient('Z',amp);
if (ramp-(double)steps*(iramp + GRADIENT_DELAY) > MINDELAY)
delay(ramp - (double) steps * (iramp + GRADIENT_DELAY));
}
else
{
rgradient('Z',amp);
if (ramp - GRADIENT_DELAY >= 2e-7)
delay(ramp - GRADIENT_DELAY);
}
if (length - ramp >= MINDELAY) delay(length - ramp);
if (steps > 1)

for (i=0; i<steps; i++)
{
rgradient('Z',initval);
delay(iramp);
initval -= incr_val;
}
rgradient('Z',0.0);
if (ramp - (double)steps*(iramp + GRADIENT_DELAY) >= \
GRADIENT_DELAY)
delay(ramp - (double)steps * (iramp + GRADIENT_DELAY));
}
else
{
rgradient('Z',0.0);
if (ramp - GRADIENT_DELAY >= MINDELAY)
delay(ramp - GRADIENT_DELAY);
}
}
}

This function creates a shape with a linear ramp at the beginning and at the end of the
gradient pulse. The amplitude is changed in steps of 1000 ADC units or 1/32 of the
maximum amplitude (or in bigger steps if the ramp duration isn’t long enough). The
shape is calculated such that the gradient “area” is the same as for a rectangular
gradient of the same specified length:

ramp ramp
‘—>I "_.l

e

Obviously, when the specified length is less than the duration of one ramp (specified
in the third argument), this could not be maintained; therefore, an error message is
produced.

01-999014-00 A0398 VNMR Pulse Sequences 203



Chapter 17. Pulsed Field Gradients

17.3 PFG Experiments Using Homospoil Pulses

204

Spectroscopists who don't have access to a PFG accessory might ask whether it is
possible to perform PFG experiments using the standard gradient (shim) coils. There
are several problems with this approach:

® The achievable gradient strength is very limited. This would lead to very long
gradient pulses (probably 10 to 100 milliseconds) causing losses due to transverse
relaxations and spin diffusion.

® The shim coils are not shielded; therefore, the recovery time from a shim coil
gradient pulse is several milliseconds. The gradient recovery delays would further
increase the losses.

® There are no user-accessible functions that allow setting shim DACs from within
a pulse sequence (although certainly such a function could be created).

® Even if a user-accessible function were created, its use would still be very
unhandy. At least for one of the polarities, the achievable amplitude may be
strongly limited if the standard gradient amplitude is far off from zero.

Of course, we can decide to use the homospoil pulse to avoid the above problems. The

homospoil pulse can be triggered with existing statements in a pulse sequence (see

“Delays With Homospoil Pulse” on page)3But the amplitude for the homospoill

pulse is not under software control. In particular, the sign of the homospoil pulse

amplitude cannot be altered, which excludes a large number of PFG experiments.

Overall, it would certainly be possible to perform a limited range of (simple) PFG
experiments using homospoil pulses, but there are rather serious limitations, especially
for larger molecules and other samples with short transverse relaxation times. This

method will therefore not be discussed any further here.

VNMR Pulse Sequences 01-999014-00 A0398



chapter 18. Acquiring Data

A prominent feature in most VNMR pulse sequences is the absence of code dealing
with data acquisition. Of course, there is a statement that does data acquisition:

acquire(points,dwell_time);

wherepoints is the number of data points to be acquireddwell_time is the

time interval between the sampling trigger pulses, or the time that is apparently taken
to acquire a complex data poinBecause the receiver and ADC acquire data in
complex points (real + imaginaryppints  (the number of values measured) must be

a multiple of two? At the same time, thewell_time  is equal to the inverse spectral
window and determines the largest frequency that can be measured. Higher frequencies
are folded in (this is also called “aliasing”).

Larger spectral windows require shorter dwell times. With a 0.2-microsecond
minimum time event, the maximum spectral window which the pulse programmers can
possibly handle is 5 MHz

Still, most pulse sequences end with the last pulse. How then is the acquisition done?

18.1 Implicit Acquisition

One thing thaticquire  does (apart from coding the specified number of sampling
intervals) is to increment a global variakalegtriggers  that initially (before calling

the functionpulsesequence ) is setto zero. If a pulse sequence does not contain the
acquire statement (i.e., if there was no explicit acquisition,Sssion 18.2,

“Explicit Acquisition,” on page 208 acqtriggers  still is set to zero after the call to
pulsesequence , and the software automatically completes the sequence with an
implicit acquisition.

The following code segments are found in the funati@atePS from within the
modulepsg/cps.c

acqtriggers = 0;

pulsesequence(); /* generate Acodes from USER pulse sequence */

testdacquire(); [* if no acquisition done yet, do it */
write_Acodes(); [* write out generated Ic, auto & instructions */
return;

1Theacquire statement is codingoints/2  periods (with a duration as specified by the second
argument), each starting with an ADC trigger pulse.

2f using the Output board (63-word FIFO), points must be 2 or a multiple of 64.

3There is no need for “off” times in-between sampling intervals. Every time event can trigger a
complex data point if the CTC bit (the “command to convert” or acquisition trigger) is set to high:
unlike normal fast lines, the CTC is electronically reformed into a very short trigger pulse at the very
beginning of each sampling interval (see ddwapter 9, “Pulse Programmers,” on pagge 85

01-999014-00 A0398 VNMR Pulse Sequences 205



Chapter 18. Acquiring Data

Functiontest4acquire is found inpsg/hwlooping.c  ; and starts with the lines:
if (acqtriggers == 0) /* No data acquisition yet? */
if (nf > 1.0)
{
text_error("Number of FIDs (nf) Not Equal to One\n");
abort(0);
}
if (ap_interface < 4)
HSgate(rcvr_hs_bit,FALSE); [* turn receiver On */
else
SetRFChanAttr(RF_Channel[OBSch],SET_RCVRGATE,ON,0);
for (i = 1; i <= NUMch; i++) [* zero HS phaseshifts */

SetRFChanAttr(RF_Channel[i], SET_RTPHASE90,zero,0);
acqdelay = alfa + (1.0 / (beta * fb) );
G_Delay(DELAY_TIME,acqdelay,0); [* alfa delay */
acquire(np,1.0/sw); [* acquire data */

From these lines of code, we can extract the following information on the implicit
acquisition:

* Implicit acquisition doesot work for multi-FID experimentsnf > 1 ), such as
multiecho imaging experiments (s€éapter 21, “(Micro)Imaging Experiments,”
on page 23pPor sequences like COCONOESY (combined COSY—NOESY), i.e.,
sequences that acquire more than onewitbin the pulse sequence.

® The receiver is gated on as part of the implicit acquisition. It should be harmless if
this is forgotten within the pulse sequence.

® The quadrature phase of all transmitters is reset to zero before acquiring data. In
combination with receiver phase cycling, this avoids coherent signal buildup in
case of an rf leakage, which could produce a large, narrow peak (“glitch”) in the
center of the spectrum (with signal averaging this can only hurt in the case of the
observe transmitter itself, or with decoupler transmitters operating at the frequency
of the observe transmitter).

® The acquisition is preceded by a dedéfa+(1.0/(beta*fh)) . Thus, the
alfa and the filter group delays allow for a proper timing of the first data point
(see“Considerations for the Delays Following the Last Pulse” on pajje 50

* The number of points (values) acquired, and the dwell time used in the implicit
acquisition are given by the two parametepsand sw (these C variables have the
same name as the VNMR parameter from which they are initialized).

After the conditional branch for the implicit acquisition, the function (i.e., also for the
case of an explicit acquisitiotgst4acquire resets any PFG or imaging gradient,
adds the instruction for the housekeeping delay $se@on 18.5, “Housekeeping
Delays,” on page 214and finally adds the code to jump back to the NSC (next scan)
instruction in the Acode (sé€&he Instruction Section” on page )79

The implicit acquisition throughcquire is performed as a hardloop with a certain

number of delays and with the CTC (command to convert) set to high. The number of
dwell times per hardloop depends on the parameter and hardware configuration. With
the pulse sequence controller board (2048 word loop FIFO), up to 1024 or 2048 dwell
times can be coded per hardloop (depending on whether single- or double precision

206 VNMR Pulse Sequences 01-999014-00 A0398



18.1 Implicit Acquisition

time words are used). With a maximum of 32767 loop cycles, this allows for up to 64
or 128 million data points to be acquired, or half as much using the acquisition
controller board (1024 word loop FIFO). From a parameter point of wigws limited

to multiples of 64. Residual dwell times are performed after the har8l@psystems
with an output board (63-word FIFO), the acquisition is performed as hardloop with 16
or 3zgwell times (64 data points) per loop cycle, allowing for up to 1 or 2 million data
points’.

The number of points has limitations other than those imposed by the looping
capability of the pulse programmer. Primarily, the standard memory size on the HAL
board limits the number of points. With the standard 2-Mbyte HAL memory, up to
1,048,576 data points can be added in single precision (16-bit) acquisitions or up to
524,288 points in double precision (32-bit) acquisitions. It is possible to expand the
RAM on the HAL board: the MC-68000 CPU address space is 24 bits, or up to 16
Mbytes (some of the address space is used up by the acquisition CPU, ROM, and status
registers), theoretically allowing for up to 4 or 8 million data points.

The STM board (se€hapter 7, “Digital Components,” on page @ses a 24-bit

counter to count the number of data points added up per transient. That number is
compared with the number stored in the first long war@-&np ) in the LC structure

of the Acode (se&ection 8.2, “Looking at Acode,” on page)off these numbers don't
match, an error messagautmber of points acquired not equal to np "is

produced. The STM counter can handle up to 16,777,216 points. This number is higher
than those imposed by the memory and address space limitations—the STM board is
not a limiting factor for the number of points.

The standard ADC for liquids NMR can handle data rates of up to 200,000 points per
second (spectral windows of up to 100,000 Hz). The STM board can safely handle such
data rate$ For larger spectral windows, a wideline receiver has to be used. The two
wideline receiver/ADC models available can sample data at rates of up to 2 and 5 MHz
(corresponding to 4 or 10 million values per second), much more than the STM board
can possibly handle. Therefore, these boards are equipped with a fast on-board buffer
memory, into which the data are acquired and from which the data are piped into the
STM board (2-MHz digitizer) or transferred onto the HAL board (5-MHz digitizer).

The latest wideband (12-bit) ADC board allows for spectral windows of up to 5 MHz
(as much as the pulse programmer can handle) and is equipped with 512 Kbyte of
buffer memory, resulting in a maximum of 131,072 data pbiffise older wideline

ADC board allowed for spectral windows of up to 2 MHz and was equipped with 64
Kbyte of buffer memory, allowing a maximum of 16,384 points (8192 complex) only.

4There is no technical reason whp could not be any multiple of two (even values below 64 should
be permissible), but this has not been tested out. At the very least this would require changing the
parameter limits fonp.

SWith this configuration, all points must be acquired within the hardloop (no extra dwell times
following the loop); therefore, the number of points acquirgd (ustbe a multiple of 64.

6 There is also a FIFO buffer between the ADC and the adder on the STM board.
" This board has on-board STM functionality.

01-999014-00 A0398 VNMR Pulse Sequences 207



Chapter 18. Acquiring Data

18.2 Explicit Acquisition

In some cases, it is nhecessary to code the acquisition explicitly because implicit
acquisition lacks the desired functionality. These cases fall into three categories:

® Sequences where a pulse or other event should follow the acquisition, such as in
the flipback experiment used sometimes in solids NMR, to recollect residual (spin-
locked) proton magnetization after the acquisition time (“forced relaxation”).

® Sequences that acquire multiple FIDs within the pulse sequefred ( ).

® Sequences that require performing pulses or other events in-between the
acquisition of single data poiﬁtesingle-point acquisition), as used in sequences
with explicit (synchronous) decoupling (see also the second exantpteiion
14.3, “Hardware Loops,” on page 150r for sequences with so-called multipulse
line narrowing (see also the first example in the same section).

Typically, single-point acquisitions are coded using a hardloop, such as the following:

initval(np/2.0,v14);

starthardloop(v14);
acquire(2.0,1.0/sw <length of other events in dwell time>);
<additional events>

endhardloop();

Because two data points are acquired per loop cycle, the number of loop cycles is equal
to half the number of data points. To obtain properly scaled and referenced spectra, it
is essential that the time specified in Buire  statement, plus all the other events

in the same dwell time (including hidden delays!), makexactlythe expected dwell

time, 1/sw . In experiments with multipulse line narrowing, this is not so relevant
because the scaling in these spectra is distorted anyway due to chemical shift scaling.

Of course, itis possible to acquire more data points per hardloop, for example, to allow
changing the phase of the pulses between the data points:
initval(np/8.0, v14);
starthardloop(v14);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,vl,rofl,rofl);
delay((1.0/sw-2.0*rof1-pw)/2.0);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v2,rofl,rofl);
delay((1.0/sw-2.0*rof1-pw)/2.0);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v3,rofl,rofl);
delay((1.0/sw-2.0*rof1-pw)/2.0);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v4,rofl,rofl);
delay((1.0/sw-2.0*rof1-pw)/2.0);
endhardloop();

The number of time events in a hardloop must not exceed the loop FIFO size of the
pulse programmer (otherwise FIFO errors would result at execution time). This also
limits the number of points percquire  statement within a hardloop. Because nested
hardloops are not possiblxquire in a hardloop codes a linear sequence of FIFO
words and, in the best case, the number of points that can be collected in a single
acquire statement within a hardloop is equal to the size of the loop FIFO for single

81n practice, this means in-between acquirpags of data points.

208 VNMR Pulse Sequences 01-999014-00 A0398



18.3 Multi-FID Sequences

precision timer words, or half that for double precision timer words. Only the second
condition is checked at runtime (and aborts goeeommand with an error message if
necessary). This is a rather loose test, because there are usually additional time events
within the hardloop; otherwise, the entire FID could be collected in a saxgleire

statement without an explicit hardloop (see @sapter 9, “Pulse Programmers,” on
page 8&andSection 14.3, “Hardware Loops,” on page 150

With this type of explicit acquisition (and irrespective of parameter linmits)s

limited to multiples of the number of points acquired per hardloop, unless special
provisions are taken in the pulse sequence to acquire any remaining points in separate
acquire statements outside the hardloop. With explicit acquisition, the user must
ensure that the correat) number of points is acquired with every transient. A
mismatch in the number of points acquired leads to the error mesaegeet of

points acquired not equal to np "

An explicit acquisition can also be made part of a conditional part of the pulse
sequence, as in the example of the following fragment of a proton flipback sequence:

rgpulse(pw,oph,rofl,0.0);

decphase(zero);

status(C);

if (dm[C] =="y’)

{
txphase(zero);
delay(alfa+1.0/(beta*fb));
acquire(np,1.0/getval(“sw”));
decrgpulse(pw,three,0.0,0.0);
status(A);

}

}

In explicit acquisition, the user’s responsibility is to ensure proper timing for the first
data point and to avoid center glitches through rf leakage by resetting the relevant
transmitter phases to zero (see d@swtion 18.1, “Implicit Acquisition,” on page 2D5

18.3 Multi-FID Sequences

VNMR has the ability to handle data with multiple FIDs per FID file trace (i.e., data
from experiments where more than one FID was collected in a single pulse sequence
transient). In such a case, all FIDs must be collected using explicit acquisition, as in the
following (partial) example of a combined COSY and NOESY pulse sequence:

status(A);
hsdelay(d1);
status(B);
rgpulse(pw,v1,rofl,0.0);
delay(d2-rof1-4.0*pw/3.1416);
rgpulse(pw,v2,rofl,rof2);
status(C);
txphase(zero);
delay(alfa+1.0/(beta*fb));
acquire(np,1.0/sw);
hsdelay(mix-rof2-(alfa+1.0/(beta*fb))-(np/2.0)*1.0/sw-rofl);
rgpulse(pw,v3,rofl,rof2);
status(D);

01-999014-00 A0398 VNMR Pulse Sequences 209



Chapter 18. Acquiring Data

txphase(zero);
delay(alfa+1.0/(beta*fb));
acquire(np,1.0/sw);

}

Of course, proper timing of the first data point must be ensuredl fBIDs that are
acquired, to avoid phasing and baseline problems throughout the experiment. Note that
the restrictions in the number of points that were discussed in the previous section
apply to thesum(np*nf ) of all FIDs acquired in a pulse sequence, not just taghe
parameter itself, i.e., failure to acquire FIDs per transient results in the (slightly
misleading) error messageumber of points acquired not equal to np "

Other examples of multi-FID acquisitions are discusséthimpter 21,

“(Micro)lmaging Experiments,” on page 239

18.4 Receiver Phase Shifting

There are no fast lines from the pulse programmer that transmit the observe phase into
some hardware, so how is receiver phase shifting done? How about small-angle
receiver phase shifting? How are NMR signals detected?

Detection of NMR signals

All signals are measured relative to the reference frequency, which is constructed from
the local oscillator (L.O.) and the intermediate frequency (I.F.), both of which are
usually fixed in phase and frequency during an experiment.

As shown inFigure 22 the UNITYplususes an I.F. of 10.5 MHz (i.e., the local
oscillator is 10.5 MHz above the observe frequency). The signal from the probe is first
amplified in thepreamplifier (54 dB gain) and then passed through a first switchable

L.O. (Obs. + L.F.)

fixed
preamplifier  gain adjustment gain adjustment  amplification
Obs. +3 variable I.LF. (10.5 MHz) +5 variable
from probe > | attenuator attenuator
mixer
dc offset adj.
42 MHz mixer programmable
3 1.5 MHz L.P. filter o IS
. » » ————
10.5 MHz © | L.P.filter | 200 Hz - ® 2
51.2 MHz
00
I.F. (10.5 MHz) +5
phase splitter ( 2)
generator
90’ dc offset adj.
programmable Pl
10.5 MHz & [15MHz L.P. filter 3 8
) - ° ,.c
o L.P. filter 200 Hz - 9P 2
mixer 51.2 MHz E
quadrature
phase adj. channel balance adj.

Figure 22. Detection of NMR signals

210 VNMR Pulse Sequences 01-999014-00 A0398



18.4 Receiver Phase Shifting

attenuator (6 and 12 dB, allowing for O to 18 dB attenuation, in steps of 6 dB). After
that itis mixed with the local oscillator frequency in a double balamaigdr , resulting

in a 10.5 MHz signal that is modulated with the observed signals (i.e., the difference
between the transmitter frequency and the observed signals). All parts behind that first
mixer operate at constant frequency, which simplifies the design of the réceiver

After the mixer, the signal passesanplification and gain regulation ~ stageFigure

22 simplifies this. The UNITYlusreceiver contains three successive amplification
stages (14 dB amplification each), each of which is preceded by switchable attenuators
(14 dB each, one of them 2 + 4 + 8 dB) that allow setting the gain in steps of 2 dB
between 0 and 42 di8. In total, the UNITYpluspreamplifier and receiver provide for

a gain of 96 dB (54 + 3x14 dB) and a variable attenuation of up to 0 dB

The amplified signald+ 10.5 MHz) is then split into two identical components that
are fed into a pair of mixers. In these (double-balaneéd)s , the signals are then
mixed with two 10.5 MHz |.F. components that are phase-shifted by 90 degrees against
each other (they are both generated from a single, fixed 42 MHz frequency using a
phase generator and frequency divider). The output from these mixers are two audio
signal components that are phase-shifted against each other by 90 degrees,
corresponding to theeal and imaginary components  of the audio signal.

After passing a pair of fixed filters, the two signals are then amplified tg_10 V
maximunt? and finally fed into a pair qfrogrammable audio filters ~ (8-pole quasi-
elliptical filters) that remove noise outside the spectral window (which otherwise
would be folded into the observed spectral window).

These two audio signals are finally fed into &@C (not shown irFigure 23, digitized

and added to the current FID through the sum-to-memory (STM) board (see also
Chapter 7, “Digital Components,” on page.@Because the transmitter frequency is
located at the center of the observed spectral window, we need to detect both positive
and negative frequencies. Sampling real and the imaginary signal components allows
us to determine the sense of rotation of every signal component, and hence distinguish
between positive and negative signal components. This is caibetfature

detection-3

For liquids experiments (standard spectral windows of up to 100 kHz), UNITY and
earlier systems used a similar scheme in their receivers, but mixed the 10.5 MHz signal
(after the L.O. mixer) first with 10.0 MHz, resulting in a signal at 500 kHz. Mixing with

a 500 kHz reference frequency then generated the audio signal. Reducing the number

9Wideband amplifiers—and rf devices in general—are much more demanding in their construction,
and the receiver is certainly one of the most critical parts in the spectrometer.

101t turns out that the “gain” in reality is controlling attenuators! We still call it gain, as the parameter
runs “backwards” (to make it look like a gain parameter): 0 dB gain means maximum (18 + 14 + 14
+ 8 + 4 + 2 dB) attenuation, 60 dB gain means no attenuation.

11The overall gain of the receiver chain can be varied between 36 and 96 dB.

12Any dc offset in the audio signals can be corrected at these amplifiers, and the gain of one of the
amplifiers can be adjusted, allowing to accurately balance the two channels. Also, the relative phase
shift of the two channels can be fine-adjusted down to fractions of a degree at the 42/10.5 MHz phase
generator.

13Errors in the relative phase of the two components, as well as any channel imbalance can lead to
imperfect quadrature detection, resulting in quadrature (“mirror”) images of all signals (partial
folding of the signals around the center of the spectrum). If one of the two channels has zero
amplitude, no quadrature detection is obtained, and the Fourier transform produces all signals both
as positive and negative frequencies.

01-999014-00 A0398 VNMR Pulse Sequences 211



Chapter 18. Acquiring Data

of mixing stages in the UNITMus has improved performance, and the better
distribution of amplification and gain attenuation at the receiver input has increased the
dynamic range by avoiding overload with strong samples at intermediate'fevels.

Quadrature Receiver Phase Shifts

Although dc offsets and the channel balance can be adjusted, there will always be slight
differences between the two signal components. This can be observed in single-
transient (or constant phase) spectra where often quadrature images and a center glitch
can be observed. Cycling the receiver through all four quadrature phases eliminates
such artifacts, because both signal components have then passed through the two
receiver and ADC channels (90-degree phase shifting), and dc offsets are cancelled out
through phase alternation (180-degree phase shifting).

In most pulse sequences, the phase of the observed FID, as well as the phase of the
receiver is therefore altered through phase cycles such as 0, 90, 180, 270, or 0, 180, 90,
270, or the like—the first example providing for fast quadrature image suppression, the
second example offering faster dc offset (center glitch) canceftition

To better understand how receiver phase shifting works, let's look at a particular signal
vector and its real and imaginary signal components at a particular point in time within
the FID, during four successive transients with the phases 0, 90, 180 and 270 degrees.

real real real real
1 1

' | | [
. | |
————M—-imag -—— -imag - - ~—- - - - imag -N———-imag
I {__:_' 71 I
! I | & I

o° aq° 180° 270°

If we added these four signals as shown, we would obtain exactly zero!

Proper signal addition (averaging) is easy to obtain. We simply need to properly route
the two signal components before we add them to the real and imaginary parts of the
stored FID. As shown iffable 12to change the receiver phase, we should tell the STM
board how to combine the stored FID with the incoming data: 90-degree receiver phase
shifting is simple math and signal routing.

This is done implicitly witlSETICM (set input card mode) instruction in the Acode,
which tells the acquisition CPU to read thgh register from th&.C structure and to
transfer the observe phase information to the appropriate status register on the STM
board. Such an instruction is placed ahead ofitsteacquisition instruction (be it

implicit or explicit) or ahead of the first hardloop that containaequire  statement.

14such overload could drive amplifiers in the receiver into saturation. At these levers they become
non-linear, typically leading to intermodulation distortions in the spectrum (non-linear devices act as
mixers), and typically adding mixing products of dominant NMR signals to the spectrum (ghost peaks
at the distance of strong signals). This becomes most evident if more than one strong signal is present
in the spectrum.

15Under normal circumstances, these artifacts should be below 0.5% of the main signals.

16Many sequences only do a partial receiver phase cycle (quad image suppression theo®®
phase shifts), mainly in experiments where a residual solvent (water) signal would cover eventual
center glitches (from dc offsets) anyway.

212 VNMR Pulse Sequences 01-999014-00 A0398



18.4 Receiver Phase Shifting

Table 12. Dealing with real and imaginary signal components

Signal phase | Signal component Operation
o° add to real part
OO
aq° add to imaginary part
® o° subtract from imaginary paft
9
ac° add to real part
o° subtract from real part
180°
oy subtract from imaginary paft
o° add to imaginary part
27¢
o subtract from real part

Note that because tf&ETICMinstruction is placed implicitly and automatically with
the firstacquire  statement only, it ismpossibleio change the “receiver phase” after
the first acquire  (oph can, of course, be changed, but this would have no effect on
the way the signals are co-added. In other words, all data points within an FID are
acquired with the same “receiver phase.” Even in multi-FID experimentsSseigon
18.3, “Multi-FID Sequences,” on page 30all FIDs are acquired with tleame
receiver phase

Small Angle Receiver Phase Shifting

As the receiver phase can be shifted in increments of 90 degrees through mathematical
operations, one could certainly imagine a more complex STM board that shifts the
incoming data byny phase angle, using the following formula set:

R; = r;cosO +i;sin@

I; = i,c080—r,;sin®

Unfortunately, the STM board does not provide such a functionality, hence proper
small-angle receiver phase shifting is not possible. There are, however, a few possible
workarounds for this problem:

¢ |f all transients should be shifted by s@mesmall angle phase (apart from
guadrature phase shifts), the above transformation can be performed after the
acquisition on the final FID file on the disk, either through an external protfram
or from within VNMR by going through an ASCII filev(itefid command),
using a macro to reforming these data and creating a modified ASCI| file, which
can the be used to re-build a phase-shifted binary FID usingatkefid
command.

® On systems with older (type a or b) rf generation on the observe channel (some
VXR and earlier systems only), tbhaseshift ~ statement not only shifts the
transmitter phase, but it changes the phase of the entire reference frame by shifting

ac program with this functionality is supplied as part of the user library.

01-999014-00 A0398 VNMR Pulse Sequences 213



Chapter 18. Acquiring Data

It tu

the phase of the local oscillator using the so-called “phase-pulse techHigses

the section “Pulse Sequence Statements: Spectrometer Control” in the manual
VNMR User Programming)n fact, there are a few systems that can do small-
angle receiver phase shifting! This technique may not work with newer rf
generation types, because not all decades in the PTS frequency synthesizer switch
frequencies in a phase-coherent way. In factptaseshift ~ statement is
programmed to only work through the offset synthesizer used in older systems.

Instead of shifting the receiver phase by a small angle, it is of course possible (and
almost equivalent) tehift the phase of all pulséat least those on the observe
channel) by the same amount (using th&rphase statement), but the other
direction Note that it is still advisable to do some quadrature receiver phase
shifting to compensate for an eventual channel imbalance, quadrature phase error,
or dc offset. It is a bad idea to keep the receiver phase constant for all scans while
just shifting the phase of all pulses instead.

rns out that from all pulse sequences and experiments, there are only a few rare

examples that require small-angle receiver phase shifting at all, and for those, the
solutions presented above are totally sufficient.

18.5 Housekeeping Delays

Before jumping back to the beginning of the pulse sequence, every pulse sequence
performs an instruction 9HpuseKEEPing ), which introduces an extra delay for a
variety of clean-up tasks that need to be performed before the next scan can be started:

After every transient, thet counter is incremented and compared with(to

check whether the experiment is finished). Further, a check is made whetzer an
(stop acquisition) signal has been received, and the number count from the STM
board is checked to ensure the proper number of data points was acquired. The
duration of this delay has changed over the different instrument and software
generations: it currently is around 14 milliseconds. The only way to avoid this
delay is to program a multi-FID pulse sequence esion 18.3, “Multi-FID
Sequences,” on page 909

After the first FID that acquires real data, the first 256 points of the FID are
checked for ADC overflow, in cases where a fixed gain was used. For this task, the
housekeeping delay is lengthenedmilliseconds. Autogaingain='n" )

totally disrupts the timing after the first transient.

Additional small delays occur at the beginning of the first “real” transient (i.e.,
after the steady-state transients) as well as with the start-up of every increment.
The start-up delay is used to set up all the hardware (se&algmn 8.2, “Looking

at Acode,” on page 9

If a diagnostics terminal is connected to the acquisition CPU and the bootup
selector switch is set to a non-zero position (even if just the switch setting is the
case), long housekeeping delays (around 0.2 seconds or more) occur, because the
information for the diagnostics terminal needs to be prepared and sent. This was
discussed irsection 13.2, “Diagnostics and Error Output,” on page 146

18This m

ethod temporarily (for a few microseconds) changes the offset on the (observe) channel,

which causes the reference frame to change its orientation.

214

VNMR Pulse Sequences 01-999014-00 A0398



chapter 19. Multidimensional Experiments

It cannot be the purpose of this manual to explain the mechanistibsNfIR
experiments; only programming issues will be discussed here. Also, apart from the
names of the parameters that are used, all indirect dimensjamst¢tt,.; in nD
experiments, whenecurrently is up to 4) are treated the same way; therefore, only the
2D case will really be discussed here. The following tables should allow transferring
the information in this chapter to higher dimensionsDrexperiments (all the
parameters in the 2D column will be discussed in detail below):

Table 13. VNMR acquisition parameters used fid experiments

Parameter description 2D 3D 4D
Number oftn increments ni ni2 ni3
Spectral width irfn swl sw2 sw3
fn coherence selection mode paramégtional) phase phase2 |phase3
Flag forfn axial peak displaceme(roposed/optional) fad fad2 fad3
Flag for inverting folded peaks fn (proposed/optional) 1180 f2180 3180

Table 14. Variables used inD pulse sequences

Variable description 2D 3D 4D
Evolution delay gouble ) d2 d3 d4
Spectral width irfn (double ) swl sw2 sw3
Real-time index for evolution im (codeint ) id2 id3 id4

fn coherence selection modatéger ) phasel phase2 [phase3
Evolution time increment itn (double ) inc2D inc3D inc4D

19.1 Indirect Time Domain Incrementation

One of the prominent features of VNMI® pulse sequences is the absence of any
explicit coding for the looping and the evolution delay incrementation. Similarly, any
arrayed experiment does not complicate the pulse sequengetstisequence()

function is simply called once per array element. In the casb ekperiments, we
don't even define an array. The presence ofithandsw1 parameters alone causes the
pulse sequence software to set up an implicit array aflements on the paramete.

That array immotshown in VNMR, but thearraydim  parameter does reflect the extra
dimension in that it multiplies the number of traces from explicit arraysnivithi2
andni3 .

01-999014-00 A0398 VNMR Pulse Sequences 215



Chapter 19. Multidimensional Experiments

Note that the implicit array is startingith the current value of2 (d3, d4)!, the array
increment isl/swl (Lsw2 , 1/sw3 ):

d2impiicie =02, d2+1/swil, ... d2+(ni-1)/swl
d3,‘mp/,'c,'[ =d3, d3+1/sw2, ... d3+(ni2-1)/sw2
d4implicit =d4, d4+1/sw3, ... d4+(ni3-1)/sw3

For a basieD experiment, all we need to do in terms of defining the sequence of pulse
sequence events is, to include the evolution dedayfgr 2D, d2 andds for 3D, etc.).
Some sequences will use a refocusing pulse in the middle of an evolution time, which
can be easily achieved with a construct like

delay(d2/2,0 - rofl);

rgpulse(2.0*pw90,v1,rof1,0.0);

delay(d2/2.0);

Other sequences might use what is sometimes called a “fixed evolution time”, with a
pulse that moves within that fixed delay. Also this can be realized easily:
pulse(pw90,v1,rof1,0.0);

delay(d2-rofl);

pulse(2.0*pw90,v2,rof1,0.0);

delay(tau-d2-rofl);

pulse(pw90,v3,rof1,0.0);

In order to obtain flat baselines in phase-sensitive experiments, it is furthermore
important to not only compensate for any delays around the adjacent pulses but also
for the precession during these pulses. The correction tee0ipw90/3.14159  per

90 degrees pulse of lengitv90 adjacent to the evolution time. Hence, for pulse
sequences like COSY or NOESY the evolution period should be coded as follows:
pulse(pw90,v1,rof1,0.0);

if (d2 - 4.0*pw90/3.14159 - rofl > 0.0)

delay(d2-4.0*pw90/3.14159-rof1);
pulse(pw90,v2,rof1,0.0);

Theif statement serves to suppress the error message from the fact that for the first
increment the calculated delay is negative. This construct actually implies that the
spacing between the first two increments is not the same as between all the other
increments: all traces except for the first one (where theoretically the two pulses would
have to overlap) are measured correctly, and this means that there will be a (minor)
error in the first data point in the indirect dimension. Fortunately, this error can easily
be corrected either by applying a dc offset correction after the Fourier transformation,
or by reconstructing the first data point using linear prediction.

No correction for spin precession is required for TOCSY-type spin locking, and for
ROESY spinlocks it seems easier to use an empirical correction term that is adjusted
experimentally (such that no first order phase correction is required in the indirect
dimension).

1This is a useful feature because it allows (re-) acquaimpart of amD experiment with little

effort, but it also is dangerous in tli#t (d3, d4) can inadvertently be set to some (possibly large)
non-zero value, which can have serious consequences for the result of the experiment (like causing
strong first-order phase shifts or the observation of noise only). Therefore, as of VNMR 5.1, itis a
good idea to have thgo macro issue a warning#iD experiments are started with non-zero evolution
delays.

216 VNMR Pulse Sequences 01-999014-00 A0398



19.2 nD Quadrature Detection

19.2 nD Quadrature Detection

This is not the place for an exhaustive discussion of methods for achieving quadrature
detection imD experiments; however, the most important methods will be presented
here as a guideline for the implementation of new pulse sequences.

Absolute Value nD Experiments

F1 quadrature in 2D experiments is achieved by either co-adding two data sets with the
“phase-relevant” pulses prior to the evolution period shifted by 90 degrees, or by
independently incrementing (or decremenfirtpe phase of these pulses (mostly just
one pulse) in steps of 90 degrees. The first method only requires half the number of
scans and is completely sufficient. This is a major cancellation step (the N+P-type
spectrum is added or subtracted from the N-P type spectrum, resulting in either an N-
or a P-type 2D spectrum. In other words, half the 2D spectrum—the anti-diagonal and
the associated crosspeaks in homonuclear correlation spectra—is cancelled in this
step) and should be one of the faster steps in the overall phase cycling. Certainly it is
advisable to perform this stéeforeCYCLOPS?

One peculiar aspect of this type of absolute-vadexperiment is that when we do

the f, coherence selection, we seem not to accumulate signal-to-noise ratio (as at that
point we are in fact cancelling half the signal). This is most obvious when the phase-
cycling (or the cancellation efficiency) is checked in a 1D array using

ni=1 nt=1,2,4,8,16,32

where we expect a 2signal-to-noise improvement with every step. For example, if this
is a simple double-quantum filtered COSY experiment where we first do a four-step
double-quantum coherence selectior4 ), followed by a two-step, fquadrature
selection phase cyclet€s ), followed by a four-step CYCLOPS phase cyaieg2 ),

we would observe relative signal-to-noise ratios of2, ,2[2, *2,4inthe 1D trace,
instead of 1,/2 ,2,/2 *2,4,/2 *4 (as for standard 1D experiments). This at the same
time is an easy test that indicates the minimum number of transients per increment for
achieving quadrature detection 'hr‘*.f

Phase-Sensitive nD Experiments: States/Haberkorn/Ruben

The above method does not allow phasingbespectrum, because the real and
imaginary parts of the spectrum are not separated in the indirect frequency domain;
hence, the display in absolute-value mode. Various methods have been proposed and
used to separate the real and imaginary (i.e., absorption and dispersion) paBs of a
spectrum. The most “natural” method on Varian instruments seems to be the technique
proposed by States et3lalso called “hypercomplex” mode, which involves acquiring

2The sign of the phase incrementation determines whether P- or N-type spectra are obtained. Both
can be processed by VNMR such as to give a “normal” presentation (usifgype’ argument

to theft2d command to obtain “normal” orientation for P-type spectra.

3 As the short-term fluctuations in an instrument (or its environment) are usually smaller than the
long-term variations, it is advisable to perform the major cancellation steps (line multiple quantum
filtering, f; quadrature) before performing steps like CYCLOPS for cleaning up minor artifacts.
4Note that for multiple-quantum-filtered experiments, the evolution delayf¢r 2D) must be set to
anon-zero value in order to see a double-quantum-filtered signal in the 1D tratwa&tfdmet to reset

that delay to 0 before starting the real experiment!

5D.J. States, R.A. Haberkorn & D.J. RubéniMagn. Resori8, 286 (1982).

01-999014-00 A0398 VNMR Pulse Sequences 217



Chapter 19. Multidimensional Experiments

two separate data sets where in the second data set the phase of the (phase-relevant)
pulses prior to the evolution time is incremented by 90 degrees compared to the first
set. In VNMR we define an array using a parametesse , which is set to the values

1 and 2 phase=1,2 ). This parameter is available within pulse sequences in the integer
variablephase1 (note the difference in the namé&sin the pulse sequence, we then

can use a simple construct such as

if (phasel == 2) incr(v1);

wherev1 is the phase of the first pul§eThis method of achieving fguadrature gives

the maximum in processing flexibility. It falls in line with the simultaneous sampling

in f,, and, compared to TPPI, it usually gives better baseline flatness. There is also a
disadvantage in that any axial peaks (artifacts that often cannot be avoided, in particular
with biomolecular NMR spectra) show up in the center of the spectrum, whereas with
TPPI (see below) they are moved to the edge of the spectrum. This can be fixed,
however, by combining the hypercomplex method with FADd&xial peak

displacement, described below).

Note that theohase array is performedteforeincrementingi2 (i.e., theimplicit array

is array='d2,phase' ), which is in line with the requirement that scans or data that
are to be subtracted from each other for cancellation should be measured as close to
each other in time as possible, to make the experiment less susceptible to
environmental variations and give better cancellation. The same holds true for 3D and
4D experiments, where thmplicit arrays usually are

array='d2,d3,phase,phase2’ (for 3D), or
array='d2,d3,d4,phase,phase2,phase3' (for 4D).

We could argue that this method requires twice (3D) and four times (4D) as long to
make the first complete plane available for viewing, but this method will definitely give
better cancellation than

array='d3,phase2,d2,phase’ (for 3D), or
array='d4,phase3,d3,phase2,d2,phase' (for 4D).

But of course itis entirely possible to set up such arrays explicitly from within VNMR.
For example, fo8D experiments:

array(‘'d2',ni,0,1/sw1)

array('d3',ni2,0,1/sw2)

ni=0 ni2=0

array='d3,phase2,d2,phase’

The real problem with this method (apart from giving bad cancellation efficiency) is,

that such dataannotbe processed using VNMR (unless we write extra software to
rearrange the FIDs).

61n earlier VNMR releases this parameter had to be fetched from the parameter table using constructs
such asnt phasel = (int)(getval(“phase”) + 0.5) ;

”Note that early releases of VNMR also incremented the receiver phase. This results in data sets that
require using a different selection of coefficient arguments witvftRd command, like
wft2d(1,0,0,0,0,0,0,-1) (i.e., typically the last two arguments need to be exchanged
compared with the current “standard”). This early mode also had the disadvantage that the second
data set was 90 degrees out of phasg @ofmpared to the first set.

218 VNMR Pulse Sequences 01-999014-00 A0398



19.2 nD Quadrature Detection

Axial Peak Displacement (FAD)

It turns out that there is a trick to move the axial artifacts in hypercompilegpectra

to the edge of the spectrum by inverting the phase of the (phase-relevant) pulses prior
to the evolution time and the receiver phase with every even time increment, both for
phase=1 andphase=2 . In the vast majority of the cases this method will be used by
default for hypercomplex experiments, but sometimes is may be desirable to have this
extra phase inversion under flag control. For these cases we would propose the flag
namedadl (orfad ), fad2 , andfad3 . If we disregard the flag control, the pulse
sequence construct for a hypercomplex experiments will be a bit more complex than
the one shown in the previous section:

if (phasel == 1) || (phasel == 2))

{
dbl(id2,v13);
add(v1,vi3,vl);
add(oph,v13,oph);
if (phasel == 2) incr(v1);
}

wherev1 is the phase of the (phase-relevant) pulse(s) prior to the evolution time, and
id2 isa real—tim%variable that contains the number of evolution time increments
(0,1,2, ...,ni-1 )"

Phase-Sensitive nD Experiments: TPPI

On instruments with sequential sampling, quadrature detection is achieved by the
receiver phase with every data point. An equivalent method can be appi@d to
spectroscopy by continuously incrementing the phase of the (phase-relevant) pulses
prior to the evolution time by 90 degrees with every increment. This is also GaHEd
methogortime proportional phase incrementatidiThis separated the absorption and
dispersion parts of the spectrum in a single data set, but it requires acquiring twice the
spectral window and twice the number of increments in the indirect dimension to
achieve the same digital and spectral resolution. The transformed spectrum then
consists of two parts: one with the absorption lines and one with the dispersive
contribution, separated by the axial peak (artifa&®ecause TPPI leads to a single
data set, the processing seems somewhat simpler, but it apparently is more difficult to
achieve good baseline flatness.

8n earlier VNMR releases, the “increment counid? did not exist and constructs like the
following were used instead:

int t1_counter =(int)(d2 * getval(“sw1") + 0.1);

(--)
if ((phasel == 1)||(phasel == 2))
{

initval((double)(2*(t1_counter%?2)), v13);
add(v1,v13,vl);
add(oph,v13,oph);
if (phasel == 2) incr(v1);
}

9D. Marion & K. Withrich, BiochemBiophys. Res. Commutil3 967 (1983).

10The VNMR support for processing TPPI spectra is somewhat limited, in that it is not possible to
discard the dispersion part of the spectrum, which means that the entire data matrix must be carried
along. This can be a problem, especially with 3D processing where the transformed data matrix may
require as much as four times the disk space compared to the hypercomplex method in which the
imaginary parts of the spectrum can be discarded.

01-999014-00 A0398 VNMR Pulse Sequences 219



Chapter 19. Multidimensional Experiments

The VNMR convention is that TPPI is done wtiase (phase2 , phase3 ) set to 3,
rather than 1 and 2. In the pulse sequence, we can use a simple construct like

if (phasel == 3) add(v1,id2,v1);

wherevl is the phase of the (phase-relevant) pulse(s) prior to the evolution time, and
id2 is a real-time variable that contains the number of evolution time increments
©,1,2,..,n1 )L

The main advantage of the TPPI method is that only four coefficients are required for
theftad command (which accepts up3a coefficients). If we want to measure a
genuine array of phase-sensitive 2D spectra (e.g.: an array of mixing times with
NOESY or TOCSY) using the hypercomplex method, we would end up with a double
array. This would lead to a long and complex set of coefficients fdtatie command,

and the number of array elements for the “genuine” array (@ig), would be limited

to 4. With TPPI, up to 8 array elements (e.g., 8 different mixing times) can be
measured, and in addition to that there is a mad¢izlac that makes it easy to select
and process individual data sets from the array (and this macro does not cope with
arrayed hypercomplex data).

Phase-Sensitive nD Experiments: Arrayed TPPI

The TPPI implementation discussed above has the disadvantage of leading to
frequency doubling inf there is an alternative that doesn't have that disadvantage:
arrayed TPPIFor this mode, the parameter conventbase=1,4 has beenused. The
method involves acquiring two data sets, with the (phase-relevant) pulses, prior to the
evolution time, shifted by 90 degrees in the second data set, the same as in the
hypercomplex method, but in addition to that, for the second data set the evolution time
is increased by half an increment:
if (phasel == 4)
{ incr(vl);

d2 +=inc2D/2.0;
}

As already mentioned, this method does not lead to frequency doublindpur it
requires processing the data set with real (instead of complex) K (pro€1="rft ).

This again has some disadvantages in that some processing options, like linear
prediction ofisfrqg , are not implemented for real FT; therefore, this method can't
really be recommended. In addition to that, most current sequences add FAD for the
case obhase=1,2 (hypercomplex method, see above), which conflicts with the
definition ofphase=1,4 for arrayed TPPI (where FAD would unnecessarily be added
for phase=1 , but not for the traces withhase=4 ). If arrayed TPPI still is to be used,

it would probably be better to change the conventiophtse=4,5 for this method, or

220

111n earlier YNMR releases, the “increment count&?2 did not exist and had to be created using
an standard real-time variable in constructs like

int t1_counter = (int)(d2 * getval(*sw1”) + 0.1);

()
if (phasel == 3)

initval((double) t1_counter),v13);

add(vl,v13,v1);
}

VNMR Pulse Sequences 01-999014-00 A0398



19.2 nD Quadrature Detection

alternatively, to have FAD under flag control (the former would be preferable, as the
flag solution would still allow for a parameter mis-setting).

Folding in Indirect Dimensions

In hypercomplex phase-sensitin® spectra, folded peaks (in an indirect domain,

where no audio filter is involved) are in phase with the “normal” signals, provided the
evolution time is corrected for the precession of the spins during adjacent pulses, as
shown inSection 19.1, “Indirect Time Domain Incrementation,” on page 216f8D

and 4D experiments, the number on increments that can possibly be performed in any
indirect dimension is very limited, and yet for many biomolecular 3D and 4D
experiments, rather large homonuclear and heteronuclear shift ranges must be covered,
which imposes severe restrictions on the achievable digital resolution.

In this situation, we would welcome using folding in one dimension, because this
allows doubling the digital resolution with the same number of increments—or
acquiring half as many increments only in one dimension (which also cuts the overall
experiment time in half). Of course, this only works if there is no significant overlap
between folded and “real” peaks, and if there is an easy and safe way of distinguishing
between folded and “real” signals.

The method of choice to distinguish between the two groups of signals is to increase
all t, evolution delays by half an, incrementp.5/sw1  (or0.5/sw2 , 0.5/sw3 ). This

is the equivalent to increasimffa by 0.5/sw for the observe dimension and leads to

a 180 degrees first-order phase shift in the corresponding frequency domain, which
inverts all signals that are folded in once in that domain (remember that there is no
attenuation due to audio filters in the indirect domains!). If there was any first point
distortion, this would lead to a half-sinoidal baseline distortion in that domain.
Fortunately, there are no filter distortions in these domains, and with that addition to
the evolution time we may actually be able to even sample the first data point correctly
(assuming the corrections fafl and for the precession during adjacent pulsesis less
than half an evolution time increment).

There are various ways in which this could be implemented. A “minimalist approach”
would be to simply set2=0.5/sw1 in the VNMR parameter set. We don't think this

is an optimal solution, because (in order to avoid operator errors) we would rather
prefer to see the evolution time delays to be set to zero foDadixperiments, with the
exception of the case where either we want to test signal levels somewitt@rethe
evolution delay or where we want teacquire specific traces from a experiment

(the latter case would also be made more difficult with this approach). Also, once the
parameter is entered, it's value doesn't have an obvious meaning to the user, and so
later it is not clear what was intended with that parameter setting.

Still we would like this feature to be under parameter control, because it certainly is
not something that should be applied to all phase-sensibivexperiments (in

particular, notin homonuclear correlation experiments on biomolecular samples where
baseline flatness is a primary requirement).

01-999014-00 A0398 VNMR Pulse Sequences 221



Chapter 19. Multidimensional Experiments

Several existingD sequences use flags nanie$0 , 12180 , andf3180 to control
this feature in{, f,, and §. In the pulse sequence this can then be used as follows:

double d2incr;
char f1180[MAXSTRY];
getstr(“f1180”,f1180);
if (f1180[1] =="Y")
d2incr = inc2D/2.0;
else
d2incr = 0.0;
()
pulse(pw90,v1,rof1,0.0);
if (d2 + d2incr - 4.0*pw90/3.14159 - rofl > 0.0)
delay(d2+d2incr-4.0*pw90/3.14159-rof1);
pulse(pw90,v2,rof1,0.0);

()

Combined Implementations

The majority ofnD pulse sequences have the hypercomplex method (with FAD) and
(standard) TPPI built in. This can be done with the following construct:

if (phasel == 1) || (phasel == 2))
{
dbl(id2,v13);
add(v1,vi3,v1);
add(oph,v13,oph);
if (phasel == 2) incr(v1);

}
else if (phasel == 3) add(v1,id2,v1);

where once morel is the phase of the (phase-relevant) pulse(s) prior to the evolution
time, andd2 is a real-time variable that contains the number of evolution time
incrementsd, 1, 2, ... ,ni-1 ). This should be more than sufficient for most phase-
sensitivenD experiments.

There is a number of pulse sequences around (algarifipsglib ) that combines

all of the aboveind absolute-value acquisition in a single pulse sequence. This is
certainly achievable, but it turns out to be somewhat non-trivial, because it requires
combining two different phase cycles in one sequence. In order to do things in an
optimum way, the f quadrature phase incrementation isn't simply added at the end of
the phase cycle, but instead itrisertedinto the phase cycling sequence (see also
“Absolute Value nD Experiments” on page 21Where this is done with real-time
calculations, it makes the phase cycling difficult to decode and understand, because for
most of the calculation steps we have to consider the absolute value and phase-
sensitive cases separately, as shown in the following (streamlined) example from a
NOESY pulse sequence:

222 VNMR Pulse Sequences 01-999014-00 A0398



19.2 nD Quadrature Detection

/* CALCULATE PHASECYCLE */

sub(ct,ssctr,v12);
mod2(v12,vl);
hiv(v12,v3);
dbl(v1i,vl);
hlv(v3,v10);
hlv(v10,v10);

if (phase == 0)

assign(v10,v9);
hiv(v10,v10);

mod2(v9,v9);
}

else assign(zero,v9);
hiv(v10,v2);

dbl(v2,v2);
add(v9,v1,vl);
mod2(v10,v10);
add(v2,v1,oph);
add(v3,oph,oph);
add(v10,0ph,oph);
add(v10,v2,v2);
add(v10,v1,v1);

add(v10,v3,v3);

if (phase == 1) || (phase == 2))

{
dbl(id2,v11);
add(vi,v11,vi);

add(oph,v11,oph);

[* ctss */
/%01 %/
[* ct/2 */
/¥ 02 */
[* ct/4 */
/* ct/8 */

I* ct/8 */
/¥ ct/16 */
/¥ [01]8 */

[*ct/32 av
ct/16 ph*
/*[02]32 av
[02]16 ph */
*(02)4 (13)4 av
02 ph */
[*[01]16 av
[01]8 ph*/
/* (02)4 (13)4 (20)4 (31)4 av
(02)8 (20)8 ph */
/*0213203113203102 2031021331021320 av
0213203102132031 2031021320310213 ph*/
/*0213203113203102 3102132002132031 av
0213203113203102 2031021331021320 ph*/
/*[0123]16 av
[0123]18 ph*/
*(02)4 (13)4 (13)4 (20)4 av

(02)4 (13)4 ph */
/*[01230123 12301230]2 av
[01231230]2 ph */

I* hypercomplex + FAD */

if (phase == 2) incr(vl);

}
else if (phase==3) add(v1,id2,v1);

/< TPPI ¥

Needless to say, in the original sequence the phase cycle is explained verbally (at least!)
as follows: “The first 90-degree pulse is cycled first to suppress axial peaks. This
requires a two-step phase cycle consistingdf@ 2 ). The third 90-degree pulse is
cycled next using a four-step phase cyefd @esigned to select both longitudinal
magnetization, J-ordered states, and zero-quantum coherence (ZQC) during the mixing
period. If the experiment is to collect data requiring an absolute-value display, the first
pulse is next incremented by 1 to achieyg@iadrature. If the data are to be presented

in a phase-sensitive manner, this step is not done. Next, the second 90-degree pulse is
cycled to suppress axial peakg). Finally, all pulse and receiver phases are
incremented by 90 degreed ) to achieve quadrature image suppression due to
receiver channel imbalance.”

With phase tables, the same phase cycling can be achieved in a somewhat easier way,
but still it requires altering the “division return factor” for those tables that define phase

01-999014-00 A0398

VNMR Pulse Sequences 223



Chapter 19. Multidimensional Experiments

224

cycles that have lower priority than thequadrature phase incrementation and are
“slowed down” for the case of an absolute-value experiment.

This is the phase table definition for the same pulse sequence:

tl= 02 [* 1st pulse */
t2={ 02116 * 2nd pulse (phase=0: divn_return=32) */
t3={0123}2 /* 3rd pulse */

[* calculate oph=t1+t2+t3 in sequence */
t4={ 01}8 /* CYCLOPS (phase=0: divn_return=16) */
t5={01}8 /* f1 quadrature for phase=0 */

In this table, definition the phase cycling elements have been separated in order to
achieve simple phase tables. The division return factor for the tabkeslt4 is
altered within the pulse sequence, before the phases are combined:

sub(ct,ssctr,v10);
if (phasel == 0)
{

setdivnfactor(t2,32); /* modify tables for phase=0 */
setdivnfactor(t4,16);
getelem(t5,v10,v5);
}
else assign(zero,v5);
getelem(t1,v10,v1); [* extract phases from tables */
getelem(t2,v10,v2);
getelem(t3,v10,v3);
add(v1,v5,v1); [* f1 quadrature (phase=0) */
add(v1,v2,oph); /* calculate oph */
add(v3,oph,oph);
getelem(t4,v10,v4); /* add CYCLOPS */
add(oph,v4,oph);
add(vi,v4,vl);
add(v2,v4,v2);
add(v3,v4,v3);
if (phase == 1) || (phase == 2)) /* hypercomplex + FAD */
{
dbl(id2,v11);
add(vi,vi1,vl);
add(oph,v11,0ph);
if (phase == 2) incr(v1);

}
else if (phase==3) add(v1,id2,v1); [* TPPI */

But still: combining absolute-value and phase-sensitive experiments in the same pulse
sequenceomplicates the phase cycling setdpist to incorporate a rarely used

option! Therefore, it is strongly recommended to instead write two different pulse
sequences, where an absolute-value option really makes sense, or at the very least, we
could also think of supplying two separate phase tables with one sequence:

[* phase tables for phase-sensitive NOESY */

tl= 02 [* 1st pulse */
t2={ 02116 [* 2nd pulse */
t3={0123}2 * 3rd pulse */

[* calculate oph=t1+t2+t3 in sequence */
t4={ 01}8 [* CYCLOPS */
t5= 0 [* unused */

VNMR Pulse Sequences

01-999014-00 A0398



19.2 nD Quadrature Detection

[* phase tables for absolute value NOESY */

t1= 02 [* 1st pulse */
t2={ 02132 /* 2nd pulse */
t3={0123}2 [* 3rd pulse */

[* calculate oph=t1+t2+t3 in sequence */
t4={ 013}16 [* CYCLOPS */
t5={01}8 /* f1 quadrature */

Now a single pulse sequence could use these two files to implement both absolute value
and phase-sensitive NOESY phase cycles:

sub(ct,ssctr,v10);

getelem(t1,v10,v1); [* extract phases from tables */
getelem(t2,v10,v2);

getelem(t3,v10,v3);

getelem(t4,v10,v4); /* CYCLOPS */
getelem(t5,v10,v5); /* f1 quadrature (phase=0) */
add(v1,v5,v1); /* f1 quadrature (phase=0) */
add(v1,v2,oph); [* calculate oph */
add(v3,oph,oph);

add(oph,v4,oph); /* add CYCLOPS */
add(vi,v4,v1);

add(v2,v4,v2);

add(v3,v4,v3);

if (phase == 1) || (phase ==2)) /* hypercomplex + FAD */

{

dbl(id2,v11);
add(vi,v11,v1);
add(oph,v11,oph);

if (phase == 2) incr(v1);

}
else if (phase==3) add(v1,id2,v1); [* TPPI */

Of course, for the case of two different pulse sequences, the individual sequences could
be further simplified in that the statement that deals with phase-sensitive
experiments could be left away for the absolute-value case, etc.

Coherence Selection through Gradients

Pulsed field gradients can be used in a number of way3 MMR. For just

scrambling transverse magnetization (such as in some gradient-NOESY pulse
sequences), up to multiple-quantum filtering and coherence selection in general. In the
former case, there will still be a phase cycling section in the sequence, using the above
mechanisms forfcoherence selection and (partial) artifact suppression. In other cases,
the coherence selection will be done using gradients, which often dramatically
simplifies the phase cycling (sometimes no phase cycling is used at all).

Using pulsed field gradients for coherence selection has the important advantage of not
requiring subtraction (cancellation) through phase cycling; therefore, these
experiments are much less susceptible to environmental variations (which otherwise
often lead to bad cancellation). From a programming point-of-view, there is very little
to add here that hasn't been discussed already.

01-999014-00 A0398 VNMR Pulse Sequences 225



Chapter 19. Multidimensional Experiments

226 VNMR Pulse Sequences 01-999014-00 A0398



chapter 20. Solid-State NMR Experiments

Apart from the rotor synchronization feature, which consists of dedicated hardware
and software for specific solid-state experiments, there is mostly a gradual difference
between standard liquids and solid-state experiments. As far as software and the
execution of pulse sequences are concerned, the typical spectral window in solids
experiments is much larger and, because the signals themselves are often extremely
wide, the pulse sequence timing becomes much more of an issue. Extra delays of even
a few microseconds only can cause a severe loss of coherence, or will at the very least
lead to severe phasing problems in the final spectrum.

We can not cover the entire area of solids NMR spectroscopy. In this chapter, just a
few typical highlights are picked and discussed.

20.1 Cross-Polarization MAS Experiments

AP Bus Events in CP/MAS Experiments

The simplest CP/MAS experiment consists of a 90-degree pulse on protons, followed
by the cross-polarization period, during which both protons and the X-nucleus are
spinlocked with the same rf field (Hartmann-Hahn condition). After that, the decoupler
is switched to full power to remove the dipolar line broadening during the acquisition.
The following code is simplified and written for a UNITptus,with AP bus control of

the linear modulator:

status(A)

decpwrf(getval(“crossp”));
delay(dl);
decrgpulse(pw,tl1,rof1,0.0);
status(C);

decphase(zero);
rgpulse(getval(“contact”),t2,0.0,0.0);
decpwrf(getval(“dipolar™));
delay(rof2); rcvron();

status(C)  turns the decoupler on. After the contact time, the decoupler stays on and
is switched to the higher “dipolar” level using fherf statement, which takes 4.6

psec on a UNITYlus It is possible and acceptable to switch the linear modulator
while the rf is turned on for that channel (a gs&c gap would be unacceptable
anyway)—after all, that's what is happening all the time during a shaped!pulse.

I Note that for these applications it is not desirable to switch the 63 or 79 dB attenuator with the rf
turned on (even though that would take less AP bus cycles). On older (UNITY) systems, we have seen
transition phenomena during the switching: there is no guarantee that all the bits of these attenuators
switch at exactly the same time. On such older systems, we have also observed full power coming
through for a very short period (there may also be a very small gap with less power). Even though
that period lasted only a few nsec, it would be enough to make a probe arc with the 1-kW amplifiers
switched on. (In liquids experiments there is much less power involved, and there should be less of a
problem—after all, people have been creating soft shaped pulses using these attenuators.)

01-999014-00 A0398 VNMR Pulse Sequences 227



Chapter 20. Solid-State NMR Experiments

228

If we took an oscilloscope to see what really happens during this experiment, we would
find that after the pulse, during the first three AP bus words (out of four), the power
stays at the same level, because the new power level is being latched (all the bits are
pre-stored and then enabled at the same time, with the last AP bus word). On a
UNITY plus, the actual switching was found to happen 350 nsec into the last AP bus
period. The first 150 nsec are the pulse programmer overhead, then it seems to take
another 200 nsec for the AP bus chip to read the information and set the hardware. So,
the power switching occurs 3*1.15 + 0.15 + 0.2 =|&8c after the transmitter pulse
(while the entiredecpwrf statement takes 4y6&ec). For the standard CP/MAS
experiment, this means that the full dipolar decoupling will occur with a slight delay
that may influence the first 1 or 2 data points, but overall, it still seems acceptable.

There are experiments such as CPCOSY or CPNOESY, however, that require that the
protons are spinlocked at high (dipolar decoupling) pamerediatelyafter the
Hartmann-Hahn polarization transfer. To do this accurately, we would have to shorten
thergpulse by 3.8usec, then turn the transmitter on during tleepwrf statement

and then turn the transmitter aftiring the last AP bus word; however, it is impossible

to switch any high-speed linelsiring AP bus events—we can only switch them before

or after thedecpwrf call. In this case, the second option is the better approximation:
status(A)

decpwrf(getval(“crossp”));

delay(dl);

decrgpulse(pw,t1,rof1,0.0);

status(C);

decphase(zero);

rgpulse(getval(“contact”) -4.6e-6 ,t2,0.0,0.0);

xmtron();

decpwrf(getval(“dipolar”));

xmtroff();

delay(d2);

rgpulse(pw,t3,0.0,rof2);

revron();

The only error we make with this construct is that the decoupler is switching to dipolar
decoupling amplitude for a maximum of u8ec at the end of the contact time, but
that effect is minimal and certainly acceptable.

Using a Waveform Generator in CP/MAS Experiments

A similar problem occurs when a waveform generator is to be used in such experiments
(e.g., for amplitude modulated spinlocking). A construct like

decrgpulse(pw,tl1,rof1,0.0);

decphase(zero);

decprgon(pattern,pw,5.0);

status(C);

rgpulse(getval(“contact”),t2,0.0,0.0);

is clearly unacceptable, because the fhiséc that it takes to set up the waveform
generator (on a UNITplus) are much too long. Immediately after the proton 90-
degree pulse, the Hartmann-Hahn spinlocking must start; otherwise, the proton
magnetization would be lost completely before the spinlocking starts. In this case it
may not even help to play the “trick” that was discussed in the previous section
(shortening the proton 90-degree pulseNG_START_DELA¥Nd then turn the
decoupler back on while setting up the waveform generator via AP bus), because the

VNMR Pulse Sequences 01-999014-00 A0398



20.1 Cross-Polarization MAS Experiments

duration ofWFG_START_DELAMay be longer than the proton 90-degree pulse. Also,
starting the spinlocking while setting up the waveform generator is undesirable,
because this would lead to 5.i{dSec of unmodulated cross-polarization (plus qudéc

for the waveform generator propagation delay on a UIpltigf. Clearly, a better
method is needed here.

It would be nice if it were possible to start the waveform generator without the AP bus
overhead. It turns out that this is possible! Let’s first analyze what happens during the
decprgon call (see als&ection 16.4, “Using Waveform Generators for Programmed
Modulation,” on page 137

300 294 188 102 WG3 AP addr 0x0c18, IB addr = 0x0000

303 297 191 101 WGCMD AP addr 0x0c18, WFG cmd = 0x07

306 300 194 150 HighSpeedLINES DECUP WFG2

309 303 197 150 HighSpeedLINES DECUP WFG2
312 306 200 151 EVENT1_TWRD 1000 msec

First, the instruction block address is sent to the waveform generator (3 AP bus words,
followed by the “waveform generator command” (2 AP bus words), then the high
speed line for the waveform generator is set, after which the modulated time event
starts (with the modulation actually being delayed by the waveform generator
propagation delay of 0.45sec on a UNITYlug). So,decprgon prepares the

waveform generator and sets the high speed line, but that high speed line is only going
to be actuatedith the next time eventVe can use this to do what we want:

#define OBS_WFG Ox4
#define DEC_WFG 0x80
#define DEC2_WFG 0x1000
#define DEC3_WFG 0x20000

((je():prgon(pattern,pw, 5.0);

HSgate(DEC_WFG,FALSE);

decrgpulse(pw,tl1,rof1,0.0);

HSgate(DEC_WFG,TRUE);

decphase(zero);

status(C);

rgpulse(getval(“contact”),t2,0.0,0.0);

decprgoff();

This requires some explanation. After tthecprgon call, the high-speed line for the
waveform generator is set, as discussed aboveediately after that callbefore the

next FIFO word is produced), we reset that fast bit to FALSE, such that itisn’t actually
turned on in the hardware. To do that we needithgate function with an address
constant that we have extracted from Table S@ttion 9.2, “Fast Bits,” on page &&

the UNITYplus? During the pulse that follows, the waveform generator is ready (it has
got the instruction block address and knows how to execute it), but it doesn't start yet.
This only happens when we set the high-speedafites the decoupler pulse.

With this solution we are able to start a waveform generator without overhead. Of
course, this only works for one pattern per waveform generator, and if the same should
be repeated in the sequence with the same waveform generator, we would still need
some time to perform theecprgon in-between. Note that on a UNITY, the statement

2The corresponding constants for UNITY systems can be taken from Table 2 in the same section of
this manual. Note that the entire construct has been tested only on a phNigahd will probably

not work on UNITY systems. Of course, only one vallBEC_WFGs used in this pulse sequence
fragment; the other values are only given here as reference and wouldn't have to be defined if they
are not used.

01-999014-00 A0398 VNMR Pulse Sequences 229



Chapter 20. Solid-State NMR Experiments

degprgoff  also involves AP bus traffic and hence will still introduce a delay
(WFG_STOP_DELAYON a UNITYplusthe line

HSgate(DEC_WFG,FALSE);

is actually identical to

decprgoff();

and does not introduce an extra delay.

The only small timing error that we still have with the above construct is the waveform
generator propagation delay (450 nsec on a UNITY, which will introduce 450

nsec of unmodulated spinlocking, but even that can be taken care of if we want to get
a really perfect solution:

#define DEC_WFG 0x80

()

decprgon(pattern,pw,5.0);
HSgate(DEC_WFG,FALSE);
decrgpulse(pw-WFG2_OFFSET_DELAY,t1,rof1,0.0);
HSgate(DEC_WFG,TRUE);

decon(); delay(WFG2_OFFSET_DELAY); decoff();
decphase(zero);

status(C);

rgpulse(getval(“contact”),t2,0.0,0.0);

decprgoff();

Here, we interrupt the 90 degrees decoupler pulse to enable the waveform generator
high-speed line such thatréally starts at the beginning of the spinlock pe?riod

20.2 Sideband Suppression in MAS Experiments

TOSS (total sideband suppression) has several variants. All form a relatively simple
pulse sequence element: a series of pulses with some specific spacing (which is a
function of the rotor speed). In principle, there isn’t much to discuss here, but we
picked TOSS as an example on how to code a series of spaced pulses and also to
perhaps eliminate some common misunderstandings and help you to optimize your
coding under various aspects.

An early version of TOSS coding, taken fréummr/psglib/xpolar.c in VNMR
4.3, is the following:

revroff();
delay((0.1226/srate)-pw);
rgpulse(2.0*pw,v3,0.0,0.0);
revroff();
delay((0.0773/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
revroff();
delay((0.2236/srate)-2.0*pw);
rgpulse(2.0*pw,v3,0.0,0.0);
revroff();
delay((1.0433/srate)-2.0* pw);
rgpulse(2.0*pw,v4,0.0,rof2);
delay((0.7744/srate)-pw-rof2);

3 Instead of WFG2_OFFSET_DELAWe could also takaVFG_OFFSET_DELAXs a constant,
because all waveform generators in a system will generally behave the same way.

230 VNMR Pulse Sequences 01-999014-00 A0398



20.2 Sideband Suppression in MAS Experiments

There is a misunderstanding involved in this coding. It is not necessary to switch off
the receiver after every pulse, because after adimsiff  statement the receiver is
regarded to be “globally off” and is not switched back on after a pulse, but only by the
next (implicit or explicit)rcvron call, as shown isection 4.2, “How Do Pulses
Work?,” on page 4Qalthough this has no negative effect, of course, other than creating
an unnecessamfighSpeedLINES call in the Acode). This has been cleaned up in a
more recent coding from the user library (slightly simplified):

revroff();

()

if (toss[0] =="'y’)

{
fprintf(stdout,”, TOSS");
delay((0.1226/srate)-pw);
rgpulse(2.0*pw,v3,0.0,0.0);
delay((0.0773/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
delay((0.2236/srate)-2.0*pw);
rgpulse(2.0*pw,v3,0.0,0.0);
delay((1.0433/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
delay((0.7744/srate)-pw);

}

Because this avoids the extaroff  calls, it looks easier to read, but it certainly still
isn't perfect. In both versions the transmitter phase is not preset; therefore, over the first
500 nsec of each pulse (UNITPYus) there will be some phase transition error (there is
no pre-pulse delay). However, the following construct is definitely undesirable:
delay((0.1226/srate)-pw-rofl);

rgpulse(2.0*pw,v3,rof1,0.0);

delay((0.0773/srate)-2.0*pw-rofl);

rgpulse(2.0*pw,v4,rof1,0.0);

delay((0.2236/srate)-2.0*pw-rofl);

rgpulse(2.0*pw,v3,rof1,0.0);

delay((1.0433/srate)-2.0*pw-rofl);

rgpulse(2.0*pw,v4,rof1,0.0);

delay((0.7744/srate)-pw);

This fixes the phase error but creates a new problem. A known trouble with the TOSS
pulse sequence element is that it stops working above a certain rotor speed. In the
expressior{0.0773/srate)-2.0*pw , the value starts becoming negative as soon
as 2*pw > (0.0773/srate) . The above coding increases that problem, because we
now also subtracbfl from that delay.

The following, very compact coding avoids this probkema allows for phase-
presetting:

rgpulse(2.0*pw,v3,(0.1226/srate)-pw,0.0);
rgpulse(2.0*pw,v4,(0.0773/srate)-2.0*pw,0.0);
rgpulse(2.0*pw,v3,(0.2236/srate)-2.0*pw,0.0);
rgpulse(2.0*pw,v4,(1.0433/srate)-2.0*pw,0.0);
delay((0.7744/srate)-pw);

01-999014-00 A0398 VNMR Pulse Sequences 231



Chapter 20. Solid-State NMR Experiments

Unfortunately, we have now traded in another problemdie command in VNMR
hides pre- (and post-) pulse delays. Therefore, this element will be shown as four back-
to-back pulses, which again is undesirable. We can, of course, explicitly pre-set the
phase using thexphase function, as in the following codifig

txphase(v3);

delay((0.1226/srate)-pw);

rgpulse(2.0*pw,v3,0.0,0.0);

txphase(v4);

delay((0.0773/srate)- 2.0*pw);

rgpulse(2.0*pw,v4,0.0,0.0);

txphase(v3);

delay((0.2236/srate)-2.0*pw);

rgpulse(2.0*pw,v3,0.0,0.0);

txphase(v4);

delay((1.0433/srate)-2.0*pw);

rgpulse(2.0*pw,v4,0.0,0.0);

delay((0.7744/srate)-pw);

This finally has the phases preset, and will be doing overall what we want. It also avoids
unnecessary receiver gating (assuming the receiver is off globally), and it works with
thedps command. Alternatively, we could use a coding that is also more efficient in
terms of Acode space and execution speed (if that ever becomes anissue), because with
the above coding thgpulse function will create extr&§ETPHAS90and

HighSpeedLINES calls in the Acode:

revroff();

()
if (toss[A] == )
{

txphase(v3);
delay((0.1226/srate)-pw);
xmtron(); delay(2.0*pw);xmtroff();
txphase(v4);
delay((0.0773/srate)-2.0*pw);
xmtron(); delay(2.0*pw);xmtroff();
txphase(v3);
delay((0.2236/srate)-2.0*pw);
xmtron(); delay(2.0*pw);xmtroff();
txphase(v4);
delay((1.0433/srate)-2.0*pw);
xmtron(); delay(2.0*pw);xmtroff();
delay((0.7744/srate)-pw);

}

Although at first it seems odd not to ysése orrgpulse for something that “is a
pulse”, this coding isn't really too complex, and it fulfills all the needs. It is readable,

it does the proper thing in hardware, and it also is most efficient in terms of Acode size
and execution speed. This efficiency can be relevant in cases where multiple hardloops
or a large number of pulses in general is involved, oDirxperiments, where

excessive Acode size can lead to a loss of the Acode buffering (leading to extra delays
and a disruption of the steady-state between increments).

“4Note thafprintf(stdout,...) in the previous version can always be replaced by the simpler
printf(...) function.printf  sends the output &idout .

232 VNMR Pulse Sequences 01-999014-00 A0398



20.3 Rotor Synchronization

20.3 Rotor Synchronization

Rotor synchronization experiments require dedicated hardware (consisting of a
counter that counts a given number of rotor periods, and a timer/counter that counts
within the rotor period). This accessory can be used in three different ways, as
described in the following sections.

Measuring the Rotor Period Duration

Measuring rotor period duration is achieved withristerperiod(v n);

statement. In this mode, the rotor synchronization hardvestensthe number of 100

nsec clock cycle® the acquisition CPUThe accessory actually counts the clock
cycles for every rotor period and stores the last value in a regaiteperiod

causes the pulse programmerdadthat register through the AP bus (which is
bidirectional) and store it in one of its own registers, from where the acquisition CPU
can retrieve it into the specifiedh (v1 tov14) variable. This could be used to perform
pulse sequence events at defined pulse angles (relative to the trigger position), using
also the external trigger of the pulse programmer. In the example below, we want to
perform a pulse at 0, 120, and 240 degrees rotor positioning on successive scans:

rotorperiod(vl); [* rotor period in 100 nsec units */
modn(ct,three,v2); ¥0120123%
divn(vl,three,v3); [* rotorperiod/3 */
dbl(v3,v3); /* 50 nsec units */
dbl(v3, v3); /* 25 nsec units */
mult(v3,v2,v3); /¥ 0, 120, 240 degrees, in 25 nsec */
()
xgate(1.0); /* wait for next trigger */
ifzero(v3); /* don’t wait for O degrees */
elsenz(v3);
sub(v3,three,v3); /* subtract 150 nsec overhead */
sub(v3,three,v3);
vdelay(NSEC,v3); [* perform 25 nsec time event */
endif(v3);
rgpulsec(....

After reading the rotor period duration usiogorperiod and constructing the
scan-based multiplier, we calculate the desired angle resolution in 100-nsec units and
then convert that to 25-nsec units. We then multiply that number by the scan-based
multiplier and get the number of 25-nsec counts to perform on every scan.

We then wait for the next rotor trigger usimgate(1.0) . Because we don't want to

(and cannot) perform\aelay with zero counts, we exclude that case (O degrees
angle) using a real-timié&ero  statement—a pulse could directly follow. For the

other cases (non-zero phase angles), we subtract the pulse programmer overhead of 6
timer units (150 nsec), and then we performiglay , which is a delay with a given

time base and a timer count given as real-time variable.

However, we have to be careful, in that we should consider that
® Real-time variables are 16-bit integers with a maximum value of 32767.

® Any counter on the pulse programmer is only 12 bits, allowing for a maximum
value of 4096.

01-999014-00 A0398 VNMR Pulse Sequences 233



Chapter 20. Solid-State NMR Experiments

At 10 KHz rotor speed, the rotor period is 100 nsec, corresponding to 4000 clock cycles
of 25 nsec. In this particular case, we would be dealing with a maximum of 2/3 of a full
rotor cycle, which must be less than 4096*25 + 150 nsec or 1086es5 This
corresponds to a rotor period of 153.82%ec, or a rotor speed of 6500 Hz. Therefore,

it may therefore be safer to do the same thing usingdée time base:

rotorperiod(vl); [* rotor period in 100 nsec units */
modn(ct,three,v2); 0120123*%*
divn(vl,three,v3); /* rotorperiod/3 */
add(two,three,v4); [*5%*
dbl(v4,v4); [*10*/
divn(v3,v4,v3); [* usec units */
mult(v3,v2,v3); /* 0, 120, 240 degrees, in usec */
()
xgate(1.0); [* wait for next trigger */
ifzero(v3); /* don’t wait for O degrees */
delay(0.35e-6);
elsenz(v3);
delay(0.2e-6);
vdelay(USEC,v3); [* perform 25 nsec time event */
endif(v3);
rgpulse(....

In this case, we have to face round-off errors of up to 500 nsec (below 2 degrees at
typical rotor speeds). To avoid extra errors from the timer word overhead of 150 nsec,
we should perform a 150 nsec delay for the 0-degree case. Because this is not possible
(with the minimum delay being 200 nsec), we perform a 350 nsec delay for the 0-
degree case, and a 200 nsec delay where wewdsdag . This solution gives us

slightly less accuracy, but definitely no problem with rotor speeds as low as a few
hundred Hz.

Waiting for Triggers

Thexgate function (which was also used in the example in the previous section) loads
the (12-bit) time counter on the pulse programmer with the specified number of counts
and switches the counter to the external time base (the external trigger). On each
trigger, the counter counts one unit down, and the next pulse sequence event starts
when the count reaches zero. Often that time count will be just 1 (1.0, as the argument
must be a floating point number). If in the above example the final pulse is to be
performed after a longer delay, we have the options to perform a normal delay,
followed by thexgate(1.0)  call, or we could calculate how many rotor cycles that
delay would be (this is typically done based on a VNMR paranstege ) and then
performxgate with that calculated number of rotor triggers. Note, however, that the
number of rotor cycles that can be counted this way is 4096 only, because the pulse
programmer uses a 12-bit counter. At typical rotor speeds of 5 to 10 KHz, this limits
the “counted” delay to 0.8 to 0.4 seconds.

234 VNMR Pulse Sequences 01-999014-00 A0398



20.4 Multipulse Experiments

Rotor-Synchronized Experiments

True rotor-synchronized experiments go a bit further than the above examples. In the
rotor-synchronized version of NOESY (XNOESYSYNC pulse sequence) the
requirementis that the two pulses adjacent to the mixing time be perfattieelsame
rotor angle after a given number of rotor periods. This is done withrtitersync
pulse sequence element (simplified coding):

()

initval(srate*mix,v10);

rgpulse(pw,t2,0.0,0.0);

txphase(t3);

rotorsync(v10);

rgpulse(pw,t3,0.0,rof2);

()

The rotor synchronization accessory counts through every rotor period, as mentioned
before. Theotorsync  function stops that counter through a high-speed line. Then
the number of rotor periods specified in the real-time argument variable (calculated
from thesrate parameter and the duration of the delay) is loaded into the accessory,
which starts counting rotor (tachometer) triggers until that number is reached (it
actually counts from that number down to zero). After that it takes the number of 100
nsec clock cycles, at which it was stopped initially, and counts tluzgeto zero.

After that, it sends a trigger to the pulse programmer, which has been set to “external
timebase” mode with a trigger count of 1. Hence, this causes the next pulse sequence
element (the pulse that follows) to be executed.

This complex sequence of events guarantees that when the trigger is sent back to the
pulse programmer, the rotor is at exactly the same angle as when the pulse programmer
stopped the 100 nsec timer through the high-speed line. Note that in this case we do not
use the timer from the pulse programmer to count the rotor cycles; therefore, there is

no 12-bit (4096) count limit. The limit is 32767, the largest number that can be stored

in a real-time variable.

20.4 Multipulse Experiments

Multipulse line narrowing consists of a series of pulses that is performed between each
pair of acquired data points. Although it very much looks like a TOSS pulse train (see
Section 20.2, “Sideband Suppression in MAS Experiments,” on pagetB80
requirements are much different:

pulsesequence()
{
double tau = getval("tau"),
dtau = tau - pw - rofl - rof2;

initval(np/2.0,v9);

delay(dl);
rgpulse(pw,v4,rofl,rof2); [*prep pulse */
starthardloop(v9);
delay(dtau);
rgpulse(pw, v4,rofl,rof2); [*x*/
delay(dtau);
rgpulse(pw,v3,rofl,rof2); [* -y *
delay(tau + dtau);

01-999014-00 A0398 VNMR Pulse Sequences 235



Chapter 20. Solid-State NMR Experiments

rgpulse(pw,v1,rofl,rof2); I y*
delay(dtau);

rgpulse(pw, v2, rofl, rof2); /% -x*/
delay(tau + dtau - 2.0e-7);

acquire(2.0,2.0e-7); [* acquire */
rgpulse(pw,v2,rofl,rof2); [*-x*/
delay(dtau);
rgpulse(pw,v3,rofl,rof2); [* -y */
delay(tau + dtau);
rgpulse(pw,v1,rofl,rof2); Iy *l
delay(dtau);
rgpulse(pw, v4,rofl,rof2); [* x*
delay(tau);

endhardloop();

}

Unlike the TOSS pulse train, we cannot keep the receiver switched off globally;
otherwise, we would not be able to see any signal! Also, the pulses here are extremely
short (typically 1 to 2usec), so a 500 nsec phase or amplitude glitch at the beginning
of each pulse would be clearly unacceptable. Also, the amplifier blanking/unblanking
needs to be timed very carefully. For good signal-to-noise, we need to minimize the
pre-and post-pulse delays. On the other hand, we also need the amplifiers fully
unblanked, and we need to avoid destroying the preamplifiers with the ring-down
voltages from the 1 KW pulses (which rather calls for longer pre- and post-pulse
delays!). Still, there will be preamplifier saturation from the residual probe ring-down;
therefore, we should place the acquisition as late in a delay as possible.

Note also that in the above coding, the maximum number of points that can be acquired
is 65K, because the 16-bit hardloop count limits the number of loop cycles to 32768.
If more points were to be acquired, we would have to pack multiple pulse trains (and
acquisition triggers) into a single loop cycle (in which case again we must set the
parametenp to a number that corresponds to full loop cycles; otherwise, the error
messagerfumber of points acquired not equal to np " is obtained.

20.5 Other Line-Narrowing Techniques

A new line narrowing technique that is now gaining popularity is the so-called
“frequency-switched Lee-Goldberg” (FLSG2) metRpgrhich involves rf irradiation

at a certain field strength with rapid frequency switching between two frequencies on
either side of the proton spectrum.

The critical point about this technique is that the frequency switching must occur
phase-coherently and very rapidly (actually with a 180-degree phase shift at the
frequency switch). It was often thought that these requirements can be met only with
special frequency synthesizers with latching (i.e., the frequency information is sent
firstand all the digits of the frequency change at the same time) and extremely fast (and
phase coherent) frequency switching. the latter can only be obtained with overrange
(i.e., with an extended range of DDS (direct digital frequency synthesis)). Such
frequency synthesizers are available, but it is well known that digital frequency
synthesis at higher frequencies causes increased spurious output (it is just much harder

236

5A. Bielecki, A.C. Kolbert & M.H. LevittChem. Phys. Lett155 341 (1989). For the actual
implementation see the article by Jun Ashida & David Ridélagnetic MomentdVinter, 1996, Vol.
VIIIL.

VNMR Pulse Sequences 01-999014-00 A0398



20.5 Other Line-Narrowing Techniques

to do high frequencies/offsets digitally, rather that using analog techniques). Also, any
phase error during the frequency and phase transition will lead to errors that
accumulate and deteriorate the efficiency of the experiment.

It turns out that with the waveform generator, we can implement these frequency
offsets as linear phase ramps (shifted laminar pulses or SLP) We used 52 steps per
ramp, with 4 degrees phase shift per slice. When the frequency changes, the phase
ramp changes direction (and 180 degrees are added to the phase).

This turns out to be an ideal way to implement this technique. The frequency is
generated using small-angle phase shifts that are performed within 100 nsec, making
frequency switching extremely rapid. And the 180-degree phase switching is done with
the same hardware; therefore, there is no question that both the phase and frequency
switching occur in an absolutely synchronous and accurate manner, with no
accumulation of phase errors or the like.

01-999014-00 A0398 VNMR Pulse Sequences 237



Chapter 20. Solid-State NMR Experiments

238 VNMR Pulse Sequences 01-999014-00 A0398



chapter 21. (Micro)lmaging Experiments

Although, with few exceptions, imaging experiments use the same spectrometer
hardware, the pulse sequences for imaging and the associated data (parameters,
macros) look totally different from any pulse sequence for liquids or solids NMR. This
has a variety of reasons:

* When setting up an imaging experiment, we are dealing with the physical
dimensions of the object we are looking at. On the parameter side, there is a
complex relationship between the physical dimensions in the image (e.qg., the field
of view, the slice thickness and orientation) and the experimental parameters.
Ultimately it all relates to a field gradient strength, but this gradient strength again
depends on the gradient amplifiers, the gradient coil, etc. This all leads to a fairly
large number of parameters involved in imaging experiments. That doesn’t mean
that the imaging experiment is extremely complex. We do not have to interact with
all those parameters! Itis just that the parameter aspect is totally different from the
setup of a high-resolution NMR experiment.

® Most or all imaging experiments use multi-echo/multi-FID acquisition for an
entire plane, if not for a complete 3D image.

® Some or all of the indirect dimensions are not using time incrementation but a
gradient strength (sometimes a frequency offset) is varied instead. Many imaging
experiments use waveform generators for field gradient pulse scaling and shaping.

* To make complex imaging sequences still readable and understandable, the pulse
sequence code has been broken up into a number of C functions (such as for
performing a shaped pulse on top of a gradient pulse) that are defined in the pulse
sequence file itself and which are called from withinghisesequence
function. This leads to a coding style that is totally different from anything in
standard liquids and solids NMR.

Another difference from the rest of the pulse sequences is that all imaging pulse
sequences are now defined consistently, both in terms of the parameters involved as
well as in the C coding used in the pulse sequence file itself. Overalgthugrements
forimaging experiments are totally different from those of any other NMR experiment,
which justifies the fundamental difference in the pulse sequence coding.

Itis beyond the scope of this manual to explain all the special mechanisms involved in
imaging experiment; however, if you look into the dedicated imaging functions, you
will see that it still uses standard pulse sequence elements. The main and basic
difference is the implicit coding for thef -type multi-FID acquisition.

01-999014-00 A0398 VNMR Pulse Sequences 239



Chapter 21. (Micro)imaging Experiments

240 VNMR Pulse Sequences 01-999014-00 A0398



chapter 22. Role of Macros and Parameters

Most pulse sequences are more complex thas2ifved standard sequence for 1D
experiments. They include more pulses, more delays, pulses on other channels,
gradient pulses, etc., and all these additional pulse sequence elements will depend on
parameters.

In principle, it is of course possible to “hard-code” the parameters for such new pulse
sequence elements into the C program, for example:

pulse(13.5e-6,v1,10e-6,0.0);

which would avoid any extra parameter definition etc. Unfortunately, such parameters
are rarely constant, because they will depend on a large number of “external” factors,
such as the machine and amplifier type, the frequency, the probe type, rf and gradient
amplitude settings, and even the rf routing, but also the probe tuning and the sample
properties (like the susceptibility). Even though simple delays are not hardware-
dependent, their optimum setting typically depends on the NMR properties of the
molecules under investigation.

All this would make it necessary to change the pulse sequence and recompile it for the
specific requirements of the experiment to be run, essentially for each and every
acquisition. This is highly undesirable. The C coding of most pulse sequences is
difficult to understand for most of the simple NMR users, and most users don't even
look at the C code of a pulse sequence. Therefore, it is strongly recommended to keep
anything in a pulse sequence variable that may possibly need adjustment for a given
hardware setup and a given sample.

On the other hand, many of today’s pulse sequences use a large number pulses on
various rf channels, combined with several gradient pulses, possibly involving several
waveform generator shapes and pattern. Keeping all this under variable control can
lead to an enormous number of variables, which again can make a pulse sequence
difficult and cumbersome to use.

Therefore, the target should bekeep the number of variables at a minimum without
giving up pulse sequence flexibilitPne obvious way to achieve this is to use
parameter dependenciegere possible (e.g., by deriving all pulse widths at a given
channel and power level from a single pulse length, typically the length of a 90-degree
pulse).

Assuming amplifier linearity and perfect pulse shapes (modern spectrometer hardware
fulfils this criterion to a large extent), we could even extend this principle to pulses at
different power levels, theoretically up to a point where all pulse widths (assuming the
same pulse shape) on a given rf channel are derived from a single pulse width
parameter at a reference power level. Similar considerations apply to gradient
amplitudes and delay lengths.

01-999014-00 A0398 VNMR Pulse Sequences 241



Chapter 22. Role of Macros and Parameters

22.1 Creating New Parameters in VNMR

As mentioned before, we want to be able to manipulate pulse sequence parameters
from within VNMR. This way it is not necessary for the user to read and understand
the C code, and complex experiments can be driven with a simple(r) user interface. In
this scheme VNMR parameters become the primary medium for interacting with a
pulse sequence.

VNMR comes with a basic collection of parameters: configuration parameters
(/vnmr/conpar ), global parameters-{vnmrsys/global ), in addition to the

current and processed parameter trepgifnrsys/exp  n/curpar and

~lvnmrsys/exp n/procpar ). Fordriving a pulse sequence, only the configuration
parameters, plus the acquisition parameter group in both the global and the current
parameter trees, are relevant. Only the parameters in usesfghe pulse sequence

can be assumed to be present in a general case (in many cases the user will, in fact, first
do a simple 1D experiment before switching to a more complex pulse sequence).
Hence, for a new, complex pulse sequence, the user basatethe necessary new
parameters, which is typically done using theate command in VNMR:

create('parameter_name'<,'type’,<'tree'>>)

Typical pulse sequence parameters are created guthenttree (which is the default);
therefore, it is normally not necessary to specify the parameter tree. From a parameter
valuepoint-of-view it is most important to distinguigiulsesirom any other numeric
parameters, because pulses are specified in microseconds. Using a real or integer,
frequency (Hz) or delay (sec) parameter for pulses by mistake could lead to pulses of
several seconds

From a parameter handling and security point-of-view (avoiding more subtle
parameter mis-settings), it is definitely important to specify the correct parameter type,
which is one oftring , flag , delay , frequency ,real ,integer , orpulse .

This leads to parameters with the properties showririe 15

Table 15. VNMR parameter types and propertie

Type Default properties

string character string, enumerals indicate entire string values

flag character string, enumerals are possible string elements

delay real, maximum 8190 sec, minimum 0, stepsize 100 or 25 nsec
frequency real, maximum 1e9 Hz, minimum —1e9 Hz

real real, maximum 9.99999984307e17, minimum —9.99999984307¢17
integer real, maximum 32767.0, minimum 0.0, stepsize 1.0

pulse real, maximum 819Qsec, minimum 0, stepsize 0.1 or 0.Q&®c

1As of VNMR 5.1, the built-in probe protection software should prevent probes from being burnt or
amplifiers from being destroyed due to such mistakes, but it is of course better not to rely on this.

242 VNMR Pulse Sequences 01-999014-00 A0398



22.1 Creating New Parameters in VNMR

The parameter limits for the pulse and delay type parameters are “indirect 2 amnitis

are taken from the paramet@amin , parmax , andparstep  in /vnmr/conpar

(pulse type parameters use element number 13 in these parameters, delay type
parameters use element number 14). These “global” parameter limits (in particular, the
pulse and delay step size) are set byctirdig program and depend on the actual
spectrometer hardware (pulse programmer).

The “indirect” parameter limit is a very useful feature. There are countless parameter
sets around, each of them with numerous delays and pulses. By having the parameter
limits for these parameters stored in one central plaom(/conpar ), it is not

necessary to adjust the parameter limits individually when moving data or software
between spectrometers with different acquisition hardware.

Note that there is no “proper” integer parameter type. All numeric parameters are
stored as floating point numbers. Not all pulse sequence parameters are covered by an
appropriate parameter type. Power levels (rf attenuator settings, linear modulator
amplitude levels), gradient amplitudes and some others do not have their own
parameter types. Many of these “missing types” are covered by integers with the
appropriate parameter limits. Wherever possible, these limits are defined indirectly in
/vnmr/conpar , via the parameteqsarmax , parmin andparstep (seeTable 16.

For new parameters it is advisable to limit the parameter entry to applicable values by
activating the appropriate parameter limits. Wherever such parameter limits may be
hardware-dependent it is advisable to use indirect parameter limitsfathe 16 This

leads to the following recipe for creating new parameters:

* Forfrequency offsef@nd also for parameters holding coupling constants), you can
use either the defaufequency parameter properties or the parameter Iitnits
for thetof parametét:

create('parameter_name’,'frequency’)
setlimit('parameter_name',7)

® Fordelays and standard pulsesthe default parameter properties should be
sufficient:

create('parameter_name','delay’)
create('parameter_name','pulse’)

® For shaped or selective rf pulse lengtsd parameters that define tharation of
gradient pulsesthe default parameter maximum for pulses is too small, because
selective pulses can be up to tenths of a second long. You can use either a delay
parameter to define such pulse lengths, or, probably better, use a pulse parameter

2The definition is such that if protection bit 13 (value 8192, seatNMR Command and Parameter
Referencdor thesetprotect command) is set, the parameter definition does not contain the
actual parameter limits, but rather indices into the teysgeemglobal  parameterparmin,
parmax , andparstep , which are numeric arrays (see alsoWhVIR Command and Parameter
Referencdor thesetlimit command).
3 Note that as of VNMR 5.1setlimit with two arguments automatically activates protection bit
13 (value 8192). Under earlier versions of VNMR, this would be equivalent to
setlimit('parameter_name',x,x,x)
setprotect('parameter_name','on',8192)
4To be very correct, we would have to use index 8 for offsets on the decoupler channel, and indices
16 and 20 for offsets on the second and third decoupler channel, respectively. However, these limits
are typically the same for all channels and not very critical. Also, with the possibility to reassign rf
channels, that difference becomes irrelevant.

01-999014-00 A0398 VNMR Pulse Sequences 243



Chapter 22. Role of Macros and Parameters

with modified parameter limitglf not trysimulating millisecond parameters by
multiplying pulse parameter values by 1000 or dividing delay values by 1000 in a
pulse sequence, because this just complicates and obscures the issuel).

create('parameter_name’,'pulse’)
setlimit('parameter_name’,1e6,0,0.025)

® Forpulse power levels (attenuator settingg)u should use the indirect limits used
for thetpwr parameter. To be very correct, we should use the power parameter
limits for the rf channel the new parameter refers to, but this is often not
appropriate, because tharmax[9] (used fordpwr ) is meant to be for a power
level used in continuous decoupling and is usually set to 49, which is inappropriate
for hard rf pulses.

create('parameter_name','integer’)
setlimit('parameter_name',17)

® Forpower levels used for continuous irradiatigrgu can use the parameter limits
also used with thdpwr parameter (where the maximum is at a safer level):

create('parameter_name','integer’)
setlimit('parameter_name',9)

Table 16. Predefined, indirect parameter limits

Indirect parameter limit definition
Parameter examples
Index | Typical max/ min/ stepsize
1 500/0/0.1 scC
2 840/5/0.1 wc
3 500/0/0.1 sc2
4 520/5/0.1 wc2
5 100000/ 100 / 25e-9 sw
6 51200/ 200/ 200 fb
7 100000 /-100000/ 0.1 tof
8 99000 /-99000/ 0.1 dof
9 49/-16/1 dpwr,dhp
10 39/0/1 dip
11 2e6/1/1 dmf
12 500/-500/1 loc
13 8190/0/0.025 pl, pw,pw90,rofl,rof2,alfa
14 8190/0/ 25e-9 d1,d2,pad,dod,vtwait
15 1e6/0/0.025
16 100000 / -100000/ 0.1 dof2
17 63/-16/1 tpwr
18 63/-16/1 dpwr2
19 32767 /-32768 /1 (shim gradient values)
20 100000 / -100000/ 0.1 dof3
21 49/-161/1 dpwr3

244

VNMR Pulse Sequences

01-999014-00 A0398




22.1 Creating New Parameters in VNMR

® Forlinear modulator amplitude settinggpu must define the limits explicitly:

create('parameter_name','integer’)
setlimit('parameter_name',4095,0,1)

* The same is true fquulsed field gradient (PFG) amplitudes

create('parameter_name','integer’)
setlimit('parameter_name',32767,-32767,1)

® Forstring parametergtypically used for shape and pattern names), no parameter
limits need to be defined. It may occasionally be useful to define enufrterals
avoid parameter entries that don’t make sense:

create(‘parameter_name’,'string’)
setlimit('parameter_name',17)

* Formulti-field flags(typically only allowing for the charactes and'n' )
enumerals are very useful, because they simplify the value testing within the pulse
sequence (e.g., if there are only two allowed character vgluesnd'n' , we can
simply test for one of the values, and if that test fails, the other value can be
assumed). Also, flag enumerals are an easy way to define a large number of
possible values in multifield flags

create('parameter_name','flag’)
setenumeral('parameter_name',2,'y",'n")

*® A single-field flagcan alternatively be defined as string parameter with enumerals,
which would be more restrictive in the parameter entry:

create('parameter_name’,'string’)
setenumeral('parameter_name',2,'y','n")

Needless to say, any new parameter shouliillee with a sensible valudt is best to

do this right after defining the parameter, because otherwise it may be forgotten! Note
in particular that defining enumerals for strings and flag parametersidbes
automatically select or fill in a “legal” valuereate followed bysetenumeral

will leave a parameter with an empty strirfg (, which may lead to unexpected results
when testing for eithéy’ or'n' alone in the pulse sequence!

5The proper limits for Performa | type gradients are 2047, -2047, 1; but still it is recommended to use
the limits for Performa Il gradients as shown in the text, because this makes the parameter set portable
between systems with different PFG amplifiers.

6 See th&/NMR Command and Parameter Referefocehesetenumeral  command. The

problem with enumerals in strings is that VNMR is not very helpful in the case of an “illegal”
parameter entry. An error message is issued, but no hint as to what the allowed values are is given.
You have to usdisplay(‘parameter_name’) to see the enumerals for a parameter. For pulse
shapes and WFG patterns, it is therefore bett¢to define enumerals (you will get an error message
from thego command if a non-existent pattern or pulse shape is specified).

7 For a flag withn fields, allowing for the charactehg and'n’ , the number of possible values is

2", or even more if we account for abbreviated versions (i.e., the fact that by convention the last
character of a flag parameter is propagated to any subsequent pbsiticstands for

‘nnnnn...! ).

01-999014-00 A0398 VNMR Pulse Sequences 245



Chapter 22. Role of Macros and Parameters

22.2 Using New Parameters in C

246

In order to be able to use the value of a new parameter that has been defined in VNMR,
we have to use the special functigiesval  (for numeric parameters) agédtstr

(for flag and string variables) that read such parameter values off the VNMR parameter
table and make them available in the pulse sequence environment.

Numeric Parameters

Thegetval function serves to extract numeric parameter. It returns a double,
irrespective of the parameter type. Note that values frnolse parameterare

converted and passed to the pulse sequence enviroimsecbndsTypically, the

getval function is used to initialize a C variable:

double pwx;

pwx = getval(“pwx”);

The VNMR parameter name in the argument ofgkéval  function and the name of

the C variable don’t necessarily have to be the same, but of course this is very much
preferable. Because it is advisable to keep pulse sequences simple, we should always
watch out for syntax simplifications. One such possibility is to combine variable
declaration and initialization:

double pwx = getval(“pwx”),
pwx2 = getval(“pwx2");

If a parameter value is used only once in a pulse sequence, it is not really necessary to
define a C variable that holds the value. The functjetval can also be used directly
as argument to an other function:

rgpulse(2.0*getval(“pwx”),zero,rof1,0.0);

And, of coursegetval functions can also be used within mathematical expressions:
tau = 1.0/(2.0 * getval(j"));

String Parameters

String parameters are slightly more complicated. In principle it would be possible to
create a function similar tgetval  for strings (i.e., a function returning a (pointer to

a) string). The problem with this is that the user would have to deal with pointer
variables, and that was considered to be too complex for a simple pulse sequence
language (apart from that, pointers are a possible source for errors that are hard to
debug in C programs). Consequently, string parameters must be filled into a string C
variable:

char xpol[MAXSTR];
getstr(“xpol”,xpol);

MAXSTRs defined as 256. Note that after the (fixed-length) string variable definition,
the string imot automatically initialized; its contents can be assumed to be random.

Do not forget to initialize variables! This mechanism is used both for strings and flag
parameters. For checking individual character fields within a status-related flag
variable, see alstChecking Flag Parameters” on page 160

VNMR Pulse Sequences 01-999014-00 A0398



22.3 Adding New Parameters to the Display

22.3 Adding New Parameters to the Display

In VNMR, creating and setting the new parameters isn’t just enough. You want to be
able to see what the values are, and eventually print out complete parameter listings.
Typing parameter_name? , as the only way to see a parameter value, isn't a good
solution, because it is very easy to overlook parameters that are not shown on the
screen or listed in a printout.

Editing display (lg, ap) templates is usually yaramvi('parameter_name") or

by paramedit('parameter_name") . If you have defined an environment
variablevnmreditor  in your~/.login 8 file, paramedit can be set up to use
textedit  instead of thevi editor, which is more convenient for editing parameters
like dg andap, which typically consist of a single, long line (in which occasional users
of vi will have difficulties in setting the insertion pointEntering such a long
parameter value directly in VNMRI¢="..... ) is difficult, if not impossible. Apart

from that, you don’t want to re-enter the entire template, but you selectively want to
add the new parameters.

The parameter display templates are explained in Chapter 5, “Modifying Parameter
Displays in VNMR,” in the manua/NMR User Programminde careful with
conditional displays. Referring to non-existent parameters in a condition expression
causes nasty error messages!

As of VNMR 5.1. it is possible to split a display template into substrings by setting up
an array of strings—typically one substring per column title. Although such split
display templates are incompatible with earlier versions of VNMR, you will find the
shorter substrings much more manageable when editing (particularlyiwitkt even
becomes feasible to substitute entire substrings, for example:

dg[2] = '1:PULSE SEQUENCE:seqfil,d1,p1(p1):1,d2(d2),pw:1;'

Itis advisable to at least definaelg and arap template (if you want, you can also use
thedg template for thep andpap commands, although that will create 4-column
output and arrays will not be shown). You certainly want to make sure that all relevant
acquisition parameters (in particular those that are pulse sequence-specific) are on
contained in a template. For tap template to work properly with arrays, it should be
set up with two columns only.

A potential problem with thdg command and template is that the available space is
very limited, and you often have to use several display templates to cover all relevant
parameters. Thég command is well-behaved if there are too many parameters in a
column. Extra parameters are shown on the top of the next column (except for the last
one, where extra parameters will simply not be shown!). Note, howevedgtllaies
nothandle properly the case where the “parameter overflow” is more than one column!

8You can also typsetenv vnmreditor textedit in a shell window before starting VNMR
with thevn command.

9The best way to position the insertion pointin such a long line uging to search for a text string
(/substring ), rather than using the keyboard arrows.

01-999014-00 A0398 VNMR Pulse Sequences 247



Chapter 22. Role of Macros and Parameters

22.4 Doing It All by Macro

248

Obviously, there is a fair amount of “extra setup work” related to creating a new pulse
sequence. We certainly don’t want to repeat that every time when we want to use such
a sequence! Therefore, many years back, we started using pulse sequence-specific
macros that allow us to easily switch between a simple 1D setup experiment and any
more complex sequence.

Of course, we could also use the strategy of storing one complete and ready-to-use
parameter set for every pulse sequence, which can simply be recalled before starting
the desired sequence. The disadvantage of this approach is that sample-specific
parameters that have been calibrated in the 1D setup experiment (such as transmitter
offsets, spectral window, referencing parameters, probe- and sample-specific pulse
widths and power levels) are lost and would have to be restored manually, which of
course is a source for errors and omissions. We therefore strongly recommend creating
such pulse sequence-specific macros.

Apart from the tasks described above, such a macro can carry the action a bit further
and also adjust additional parameters (existing ones that need adjustment), display a
manual file for the pulse sequence, etc. And of course the macro should also select the
pulse sequence it is written for by setting skqfil  parameter. The ideal pulse
sequence macro should be written in such a way that an inexperienced user can do a
1D setup experiment, then simply type the name of the desired pulse sequence (i.e.,
execute the pulse sequence-specific macro) and start the acquisition. This user should
then end up with aeasonablespectrum using the built-in default parameter values, as
set by the macro.

Macros for 1D Pulse Sequences

Possible tasks for a 1D pulse sequence setup macro can be described as follows:
1. Select the pulse sequence by settingdunél  parameter.

Create new, pulse sequence-specific parameters.

Where necessary, set protection bits and limits for the new parameters.

Fill reasonable values into the new parameters.

a b

Set other parameters to pulse sequence-specific settings, where necessary (e.g.:
setnt to a multiple of the pulse sequence phase cycle length).

Set up parameter display templats, @p).

o

Preadjust processing and display parameters, where necessary.

8. Display information on the new pulse sequence (typically a manual file) with
further information.

9. Display the pulse sequence usilpg (optional).

The first five tasks listed above can be done with standard MAGICAL constructs and
commands listed above:

sedfil="dept’

create('mult’,'real’)

setlimit('mult',2,0,0) mult=0.5,1,1,1.5

create('tau’,'delay")

create('pp’,'pulse’)

VNMR Pulse Sequences 01-999014-00 A0398



22.4 Doing It All by Macro

create('pplvl','integer’)
setlimit('pplvl’,'17)

There is a problem with this construct, in tlce¢ate results in an error if a parameter
already exists. A safer construct would be:
sedfil="dept’
exists('mult','parameter'):$e
if not($e) then
create('mult’,'real’)
setlimit('mult',2,0,0)
endif
mult=0.5,1,1,1.5

Even though that looks complex for sequences with many parameters, it certainly is
readable. Where this concept falls apart is with the parameter display templates. We
can't edit a parameter from within a macro that may be called in background (we don’t
want to re-edit the templates upon recalling a sequence anyway), and we don’t want to
set the entirelg andap parameters with constructs like

dg="

dg[1] = '1:SAMPLE:date,temp,solvent,file(file<>\"exp\");'

dg[2] = ...

because this would make setting up such macros quite complicated!

Instead, the following concept has been adopted by most users: We generate the new
parameters once (as shown above) and fill in the appropriate default values, and we
generate the modified display template parameters. Thesawethe entire parameter

setin parlib  (/vnmr/parlib or ~/vnmrsys/parlib ). Now, in the pulse

sequence start-up macro, we simpigk the new or modified parameters with their
valuesfrom that parameter set:

psgset(‘'dept’,'mult',j','tau’,'presat’,'dg','ap’)
This saves us from checking whether a parameter already exists (an existing parameter

will simply be overwritten by the imported one), and it also allows settingithand
ap parameters in a simple way (once they have been modified and stored, of course!).

The first argument to thesgset command (a macro) is not only the value that is

going to be filled into theeqfil  (andpslabel ) parameter, it also is the (body of

the) file name (without.par " extension) of the parameter file from which the

specified parameters are picked. As expected, a local parameter file takes precedence
over a parameter file with the same name, but storéchimr/parlib . Thepsgset

macro can pick up to 11 parameters in one call (not counting the first argument: the
maximum number of arguments is 12 with this command). To retrieve more
parameters, severnpégset calls are required.

Before recalling the parameters and their values (usingtheommand)psgset
callsprune to remove any extra parameter in the local set that is not present in the
parlib  file. This avoids an excessive accumulation of parameters when calling
different pulse sequence macros consecutively.

01-999014-00 A0398 VNMR Pulse Sequences 249



Chapter 22. Role of Macros and Parameters

After having “imported” the new parameters plus the display templates, most pulse
sequence macros are supposed to also set default values for existing parameters. This
can be achieved in two different ways:

® The values can be stored in the parameter getriip  and recalled with
psgset , which will simply replace existing values with those frpanlib

® The values can be set directly, if necessary, ivittonstructs:
if d1=0 then d1=1 endif

The problem with thearlib  approach is that the parameter values are well hidden
away, and to change the defaults we have to recall the parameter set, change the values,
and then overwrite the saved parameter set again. In the author’s opinion, it is much
easier (and more transparent) to change a macro than to change a parameter set, and
hence it is recommended to rather use the first appresepsgset to recall and set

the new and specific parameters and the display templates, but use simple MAGICAL
assignments to set existing (standard) parameters.

There is a special case. Some macros want totseased on the number of transients
for the previous set-up experiment. In the case ot  pulse sequence, the macro
is supposed to decrease by a factor of 32 (taking into account the sensitivity
enhancement due to polarization transfer), but ensuringnthatill is a multiple of 4
(the basic phase cycle for that sequence). Taking the current valuerafy not be
appropriate, because in the preceding experimembay have been set to a very large
number, and the actual experiment was perhaps stopped after having reached a
satisfactory signal-to-noise ratio. Takiciy, on the other hand, can be wrong also,
because any change in an acquisition parameter wit stt zero! Therefore, it is a
good idea tdirst capture the value @t (note the precaution for arrayet!):

“dept - convert standard parameter set to dept”

if ct>0 then $nt=ct else $nt=nt[1] endif
psgset(‘'dept’,'mult',j','tau’,'presat’,'dg','ap")

if $nt>128 then nt=$nt/128 nt=4*nt else nt=4 endif
if d1=0 then d1=1 endif

in="n" iI="y" gain="y' pw=pw90 hs="nn’

dof=0-2.5*dfrq “move decoupler from 5 to 2.5 ppm”
dm="nny"'

if waltz="y' then dmm="ccw' else dmm="ccf' endif

ai

wexp="deptp' array="mult'
man(sedfil) dps

Note that for thelept sequencemnult is an normally arrayed parameter, but using
psgset andrtv to retrieve such an arrayed parameter dogsutomatically set the

array parameter! Also, some parameter settings may have to be set depending on the
actual hardware. Constructs like the one used fodtheparameter (depending on the
presence of WALTZ decoupler modulation capability) make a pulse sequence (macro)
more portable between different hardware platforms.

250 VNMR Pulse Sequences 01-999014-00 A0398



22.4 Doing It All by Macro

Macros for 2D Pulse Sequences

An important additional task in 2D pulse sequence set-up macros is the creation of the
2D specific parameters andswl. This is typically done by theet2d macro utility:

“relayh - set up parameters for relayh pulse sequence”

if ct>0 then $nt=ct else $nt=nt[1] endif

av set2d('relayh’, 6) “6 Hz resolution in F2“
psgset(‘relayh’,'relay','tau’,'dg’,'ap’)

Theset2d macro sets theeqfil  parameter, then calsar2d(sedfil) , amacro
that creates the standard 2D acquisition parameiteisvl andphase . For
homonuclear 2D spectrdr(=tn ), it sets

swl=sw ni=sw1/24 rfl1=rfl rfpl=rfp

(12-Hz default digital resolution iff. For the heteronuclear case, it calls
psgset(sedfil,'ni','swl’)

or if no argument was specified, it sets256 swl=2*sw as “default guesses”.

Back to theset2d macro. After having callegar2d , theset2d macro switches to

a fixed gain (i.e., that is something you will not have to do in the set-up macro!), then
sets up the acquisition and processing paramater® , ni ,fnl for the specified (or

the default) digital resolution ififand %. The default is 6 Hz inpf 12 Hz in { (the
desired digital resolutions can be specified in arguments 2 and 3).

Theset2d macro then selects sinebell weighting functions in both dimensions for
absolute-value spectrdrog="av' ), or a gaussian apodization for phase-sensitive 2D
spectragmg="ph’ ). It is therefore important thaget2d is only called when the
correct display mode has been selectidd recommended to cadet2d prior to the
first psgset call, and to always have it precededavyor ph, to ensure the proper
display mode selection, as in the example above.

Inalaststep, theet2d macro adjusts the display parameters for the 2D spectrum, and
it disables the “automation parametendy's, wnt , wexp, andwerr .

Forheteronuclear 2experiments, the set-up macro has the additional tasks of setting
up the acquisition parameters for the “other” nucleus,firittwould be nice if these
parametersdof ,swi,rfll ,rfpl )were taken from the equivalent parametéos (,

sw, rfl , rfp ) in a second set-up experiment, typically a 1D experiment in an other
experiment file. Starting with VNMR 5.1, this can also be an “internal” data set in the
same experiment directory. This can be done by adding a lengthy construct like the
following to the set-up macro (simplified, for VNMR 5.1):

jexp:$experiment
exists(curexp+'/subexp/H1','directory'):$internal
if $internal then

$enumber=$experiment
else

$enumber=0
endif
if ($#<1) then

input('exp# containing 1H spectrum (0=none)? '):$enumber
else

$enumber=$1
endif
if (5enumber<0) or ($enumber>9) then

01-999014-00 A0398 VNMR Pulse Sequences 251



Chapter 22. Role of Macros and Parameters

write(‘error','%s - illegal experiment number',$0)
return(1)
endif
if ($enumber>0) then
"get proton parameters”
if (fenumber=$experiment)
if not($internal) then
write(‘error','%s - no 1H data found in current exp',$0)
return(1)
else
svtmp(‘tmp’) rttmp('H1")
$savesw=sw $savetof=tof
$saverfl=rfl $saverfp=rfp $savewp=wp $savesp=sp
ritmp(‘tmp’)
endif
else
jexp($enumber)
$savesw=sw $savetof=tof
$saverfl=rfl $saverfp=rfp $savewp=wp $savesp=sp
jexp($experiment)
endif
swl=$savesw dof=$savetof
rfll=$saverfl rijpl=$saverfp wpl=$savewp spl=$savesp
else
sw1=10*dfrg dof=0
write('line3','a full 10 ppm 1H window will be used')
endif
fnl=sw1/3 ni=fn1/4

The released VNMR 5.ietcor macro actually uses a much more complex
construct! This is, of course, a typical example for a construct that should be putinto a
utility macro. The only reason why this hasn’t happened yet is that within the standard
VNMR pulse sequences it was always onlyhbtor macro that used such a
construct. A number of related pulse sequencalsd , flock , phase-sensitive

hetcor , but also indirect detection sequences likeqc, etc.) could profit from such

a utility.

22.5 Switching Between Similar Sequences

The above macro scheme is acceptable for the way an NMR spectrometer is used in
many organic chemistry and industrial environments, where users typically perform a
series of set-up experiments (like onelfdr one for3C, maybe also extra

experiments with reduced spectral window), and then start a limited number of special
experiments—mostly just one or two:

* 14, <!H (reducedsw),> COSY

* 14, <IH (reducedsw),> NOESY

* 1H, <MH (reducedsw),> 13C, DEPT, HETCOR

* 1H, cosY,'3c, DEPT, HETCOR
Note that for homonuclear 2D spectra it is not necessary to acquire a spectrum with
reduced spectral window. Ydirst adjust the chemical shift referencing, then you save

the 1D spectrum either in a subfile, usapgmp , or by moving into a different
experiment (you will use the 1D spectrum for the 2D plotting). Now you can just place

252 VNMR Pulse Sequences 01-999014-00 A0398



22.5 Switching Between Similar Sequences

the cursors around the relevant signals, typeesw, andthencall the 2D pulse
sequence set-up macro.

However, a typical spectroscopist in biological NMR will work in a totally different
way. Often a sample stays in the magnet for a week or more, while a seggsilair

or closely relatecexperiments are performed, such as HNCOCA, HNCA, etc. Under
such circumstances, the above macro scheme has several disadvantages:

®* The complex sequences used in this environment require a large number of
parameters that have been carefully calibrated on that particular saregéet
would simply overwrite these values with the ones froamlib  , which is highly
undesirable.

® Some of these macros may assume that they are called in a 1D experiment and may
not work properly when called on a 2D or 3D data set (e.g., some of these macros
cannot be called twice in sequence!).

Users have adopted two philosophies to cope with these deficiencies:

® Rather than calling a pulse sequence macro, they simply recall a parameter set
fromparlib . The referencing between different biological samples (at least those
in one lab) is often almost identical, so this is not a problem. However, this will
requirere-entering all calibrated parametefer each experiment (considering the
fact that many of these experiments last for several days, this seems acceptable to
many users).

® Assuming all these pulse sequences use convergent parameter definitions, it may
be possible to simply change thexfil parameter to switch to a related
sequence. The problem is, thatannotbe assumed that parameter sets are
consistent between sequences in a general case (unless all sequences involved
were developed locally), because there is no compulsory style guide for parameter
naming and usage!

Clearly, this is an area which requires improvement. In fact, there are planned
improvements:

® A new style of setup macro is being developed that can be used repeatedly and
does not overwrite calibrated parameters.

® A detailed style guide covering parameter naming will be put forward in a future
version of this manual.

01-999014-00 A0398 VNMR Pulse Sequences 253



Chapter 22. Role of Macros and Parameters

254 VNMR Pulse Sequences 01-999014-00 A0398



chapter 23. Putting It All Together

In this chapter, we look at approaches for programming a new pulse sequence, testing
a sequence and its associated macros and files, and submitting a sequence to the Varian
user library.

23.1 Starting a New Sequence

To write your own pulse sequence, you have two principal options:

1. Lookfora pulse sequence (inmr/psglib  , or inuserlib/psglib ,orin
any other source) and modify or rework that into your desired pulse sequence.
You can do the same thing with the associated parameter sets, macro, phase
table, etc.

2. Start a new sequence “from scratch.”

Programming by Modifying an Existing Pulse Sequence

Definitely, the first approach is very often much easier and is preferred simply because
it is less work. It does have some disadvantages, such as:
® |t is more susceptible to programming errors.
® |tis more difficult to debug because the program is not developed in a “top-down”
approach.
® |tis much more difficult to do systematic programming and development this way.
® |t tends to perpetuate bad syntax and style from existing sequences and old—
maybe outdated—pulse sequence programming features. The syntax tends to get
worse with every transformation of a pulse sequence, unless the programmer is
very disciplined.

Programming by the Top-Down Approach

We are not going to further discuss the first approach (there isn’t much to say about this
method anyway). On the other hand, it certainly is worthwhile giving some hints for
the second approach, pulse sequence programming from the “top-down,” for which
(given the above) some obvious advantages exist:

® |t can lead to clean, well-debugged programs.
® The resulting sequence will have a more systematic and simpler syntax.

® |t probably uses the latest pulse sequence programming features and, therefore, is
more up-to-date to begin with.

Although the top-down approach may be somewhat more work for the programmer, it
certainly is the more valuable method from a didactic point-of-view.

The idea of the top-down approach is simglen't start with the detailsStart with a
rough framework, then start filling in details level by level. Try keeping the syntax
complete and compilable all the time, and recompile the program frequently. This way

01-999014-00 A0398 VNMR Pulse Sequences 255



Chapter 23. Putting It All Together

you hever have too many bugs at once, and it is much easier to find the bugs than if you
start compilation when the program is several pages long.

The best way to do this is to open up two UNIX windows side by side (the development
of a complete, new sequence; don’t block the NMR interface by calling an editor from
within VNMR). In one window you edit the sequence (using your preferred editor); in
the other window yogompile the sequence periodicallyhenever it is appropriate.

You can leave these windows running for as long as the programming lasts (or until
you want to log out, of course). Just close the windows to icons when you want to use
the VNMR user interface.

Periodically save your work—don't give Murphy’s law a chance to destroy several
hours of working effort!

While you program, always add comments. Don’t wait to insert comments until you
are finished, because then you will want to work with the new sequence and the
comments will never be added. Sensible comments never make a sequence more
complicated; they keep it understandable.

Don't write novels into the comments. Use short comments, but add comments to every
part of a complicated pulse sequence. Short sequences on the other hand (if they are
well-written) should be more or less self-explanatory and usually require very little
comment.

As you write the pulse sequence, maintainimgeaual file for the new pulse sequence

is recommended. Often, the manual has been taken from the first part of the comment
of the pulse sequence text; it is not necessary to duplicate that text. Either write a
separate manual and don’t add that text also to the sequence, or just do it in the pulse
sequence for simplicity (you can still move that text out of the sequence and into a
separate manual file later).

23.2 Testing a Sequence and Related Files

256

At some point in the programming you start using new variables (delays, pulse widths,
power levels, etc.). When this happens, always add the parameter definition and
initialization in the pulse sequence (such that it still compiles without error message).
At the same time you can start developing tiero and creating thearameter set

for the pulse sequence. Reserve an experiment in VNMR for that new sequence, and
successively create (and adjust) new parameters, as you add them to the pulse
sequence. Also, you can keep tiieandap templates up-to-date at the same time. In

the macro, very likely you will have to add an argument fisgset command. You

also want to periodically save the macro and the parameter set, even when they aren’t
finished yet, just to secure your work.

Also, as you start using phase tables, you should of course mairttdile éile for the
sequence.

Continue doing this until you think the sequence is complete. When the sequence then
compiles without error, you should complete the macro (of course, you will check with
a similar, existing macro to ensure that you don’t forget anything in the new macro).

Typingdps in VNMR will now indicate whether the parameter set is complete, and it
will also give you a first “clear view” onto the features of the new sequence: are all the
pulses and delays there, in the right sequence? \Wibemvorks without problems, you

VNMR Pulse Sequences 01-999014-00 A0398



23.3 Submitting a Pulse Sequence to the User Library

should double-check thdy andap templates. and then save the parameter set in
parlib

Now either retrieve a simple 1D spectrum or use the VNgliep command to
retrieve standard 1D parameters, and then call the pulse sequence macro and check
again withdps . This will tell you whether the macro is complete and functional.

You can go even further with the testing, still without involving a spectrometer. You
may want to check the pulse sequence for run-time errors and problems by typing
go(‘acqi’) . This executes the pulse sequence and generates Acodes, at least for the
first increment (in case of arrayedriy experiments). It also serves as a test for the
parameter checking built into the pulse sequence. If you then want, you could even use
theapdecode tool (bin/apdecode  from the user library) to have a look at the
Acodes that were generated.

All this can be done on a data station. In order to be able tgatadkqi’) you
must callconfig and declare the system a spectrometer—doutt call setacq on
a data station, of course!

The next steps must happen on the spectrometer. Try a 1Dttt ) first. Then you
may want tacheck the phase cyclifty performing an array with

nt=1,2,4,8,16,32,64,128

You may have to adjust the parameter defaults in the macro, as you continue with the
testing.

Finally make sure the last versions of all related files are complete and saved:

® Pulse sequence (fropsglib ).

® Table file intablib.

* Macro.

® Parameters iparlib.

* Manual file.

® Shape and pattern files, if required.

If the new sequence is functional and works to your satisfaction, don't you want to
submit it to the Varian NMR user library and share the sequence with other users?

23.3 Submitting a Pulse Sequence to the User Library

To submit a new sequence to the user library, first fill in a submission form (in the user
library the form becomes ttREADMEile, myseq.READMEIN this example). You find

a blank form in'vnmr/userlib/SUBMISSION . Then you collect all files related to
your sequence, except for the compiled version (because this is specific to your
software version, it would just take up lots of space in the user library—also, it is very
easy and quick to recompile a sequence):

* |f you want to send the submission by e-mail, you can directly create a uuencoded,
compressed tar file:
cd; cd vnmrsys
tar cf - psglib/myseq.c tablib/myseq parlib/myseq.par \

maclib/myseq manual/myseq | compress |\
uuencode myseg.tar.Z > myseq.uu

01-999014-00 A0398 VNMR Pulse Sequences 257



Chapter 23. Putting It All Together

Now you can send the submission form and the data tséhib  librarian:

cat myseq.README myseq.uu |\
mail -s ‘myseq submission’ rolf@nmr.varian.ch

* |f you want to send the submission by floppy, you create a compressed tar file:
cd; cd vnmrsys
tar cf - psglib/myseq.c tablib/myseq parlib/myseq.par \
maclib/myseq manual/myseq | compress > myseq.tar.Z

Then you store botmyseq.READMEandmyseq.tar.Z  on a floppy and send it

to the librarian: Rolf Kyburz, Varian International AG, Chollerstrasse 38, CH-6303
Zug / Switzerland.

258 VNMR Pulse Sequences 01-999014-00 A0398



chapter 24. Syntax Guidelines

Itis planned to include a complete style guide for writing pulse sequences in a future
version of this manual. For the time being (as long as that style guide hasn’t been
defined yet), we'll just include some hints for writing pulse sequences such that they
are portable to other systems and readable and easily understood by other users.

24.1 General C Syntax

Being disciplined in the use if the C syntax can be a great help in keeping a pulse
sequence readable. A few points in more detail:

Comments

Adding comments is definitely recommended, but add reasonable comments: enough
to explain what is not obvious, but don’t pack too much theory into the comments (you
can add a literature reference. Too many comments can also clutter a C program! You
can have alarger comment segment at the top of the sequence, but for the actual C code
it is better to use one-line comments only.

Indentation

Using proper and systematic indentation helps in two ways: it definitely makes a
sequence more readable, and (even more important) it helps avoiding mistakes! The
author recommends using the following indentation rules (no examples shown—there
are enough examples for C coding in the rest of this manual!):

® Use indentation, but don’'t indent too much (such as an entire tab stop: this would
lead to excessive line lengths in nested if statements etc.). For short sequences (one
page or less), two spaces per indentation level should be enough. For longer
sequences, it may be better to indent by three or four spaces.

® Always have corresponding opening and closing braces at the same indentation
level. Donotadd the opening brace to the end offariine!

* Haveif and the correspondireise at the same indentation level.

®* Where anf or anelse branch contains only one function call or statement,
braces are not really necessary, and you should leave them away, to keep the
coding shorter (although with beginners in C, this is a possible source for errors if
additional statements are added to any of the branches.

® |fthe splitting intostatus  fields is a prominent feature in a pulse sequence (most
traditional pulse sequences were written this way), you can use an additional
indentation aftestatus  calls.

* Additional indentation should also be used for functions betifeeno |
elsenz ,andendif calls, as well as for statements betwésmp andendloop
and betweentarthardloop andendhardloop

® Place comments either behind a C line (preferably at an identical tab stop) or, for
longer comments, at the same indentation level as the surrounding C statements

01-999014-00 A0398 VNMR Pulse Sequences 259



Chapter 24. Syntax Guidelines

(starting comments at the beginning of a line would destroy the effect of the
indentation).

When dealing with a program that has been coded with a “strange” indentation style,
the author often uses the UNixdent command to fix it up (seman indent for
more information)indent can be used with arguments, but it is much easier if it is
configured with a locat/.indent.pro profile. A good set of indent settings would
be the following line in-/.indent.pro
-bap -bad -bl -ncdb -nce -d0 -di2 -eei \

-nfcl -i3 -nip -lp -npsl -sc -nsob
Using-in is the principal indentation. UsR , -i3 , or-i4 , as appropriate. The
indent program usually does a very nice job, but of course it does not “know” about
pulse sequence specifics (i.e., you will have to fix up the result by adding indentations
after status, aftefzero andelsenz , afterloop , and aftestarthardloop ).

Variables

Try keeping things simple and short! Doing variable initialization within the variable
declaration saves many lines of codedlit ensures that all variables are initialized!
For numeric parameter values that are use only once, you don't need to define a
variable at all—you can use thgetval function directly as function argument.

24.2 Outdated PSG Utilities

The use of outdated PSG utilities may not affect the functionality of a pulse sequence
on your systemandthe way you use;ihowever, it makes a sequence less portable, in
that it may be incompatible with different hardware or with the way an other person
uses the spectrometer

Device Addresses

A number of pulse sequence functions require specifying a device (rf channel) address.
The device names used in earlier versions of VNMRIa@eEV(observe channel),
DODEMdecoupler channelpO2DEYandDO3DEVAs of VNMR 5.1, things have
changedl These device addresses still exist, but they now refer to the physical, rf
channelsTODEMs channel 1DODE\s channel 2, etc.) arbn’t reflect the setting

of therfchannel  parameter in VNMR (i.eTODEYDODEVetc. will always point

to the same physical channel).

If you ever want to use thichannel  mechanism for re-assigning tphysical
channels to differedbgical channels (and if you don’t, some other user of your pulse
sequence may!), you should now use the new syn@i®®ch (the logical observe
channel)DECch(the logical decoupler channel)EC2ch, DEC3chinsteadTable 17
summarizes the old and new naming conventions. A simple translation will make your
pulse sequence compatible with thehannel  mechanism.

10n the other hand, using new utilities may make a sequence partly incompatible with previous
versions of VNMR, but as the majority of the VNMR users use the current release, “horizontal”
portability (same release, but different platforms) is more important that trying to keep a sequence
compatible with older versions of VNMR.

260 VNMR Pulse Sequences 01-999014-00 A0398



24.2 Outdated PSG Ultilities

Table 17. RF channel naming convention

Old symbol New symbol
TODEV OBSch
DODEV DECch
DO2DEV DEC2ch
DO3DEV DEC3ch

Functions with Device Addresses

The channel naming complication above can be avoided if functions requiring a device
address are replaced by functions that addresses that logical channel directly. There are
only very few exceptions (namely, sogenpulse type function calls) where this

isn’t possible (or at least not straightforwardable 18gives some guidelines on what
functions to use:

Table 18. Equivalent PSG functions with and without device address

Functions with

. Equivalent functions without device address
device address

rlpower, power obspower, decpower, dec2power, dec3power

rlpwrf, pwrf obspwrf, decpwrf, dec2pwrf, dec3pwrf

offset opsoffset, decoffset, dec2offset, dec3offset

stepsize obsstepsi;e, decstepsize, dec2stepsize,
dec3stepsize

genqdphase txphase, decphase, dec2phase, dec3phase

gensaphase )érg];[%r;)is;edcplrphase, dcplr2phase,

genpulse bulse, decpulse

genrgpulse rgpulse, decrgpulse, dec2rgpulse, dec3rgpulse

shaped_pulse, decshaped_pulse,

genshaped_pulse dec2shaped_puls, /dec3shaped_pulse

apshaped_pulse, apshaped_decpulse,

gen_apshaped_pulse apshaped_dec2pulse

spinlock, decspinlock, dec2spinlock,

genspinlock dec3spinlock
prg_dec_on bbsprgon, decprgon, dec2prgon, dec3prgon
prg_dec_off obsprgoff, decprgoff, dec2prgoff, dec3prgoff

Note that, strictly speakingpwer andripower (and alswrf andrlpwrf ) are
not equivalent functions, because they require different argument types (real-time
integer vs. C double). The next section covers this difference further.

The “gen” type functions are “not officially supported” (i.e., there is no manual page
for these utilities). They have been used by people that wanted to implement rf channel
independent pulse sequences beforeftttmnnel mechanism existed. This feature

01-999014-00 A0398 VNMR Pulse Sequences 261



Chapter 24. Syntax Guidelines

alone added considerable complexity to such sequences and made them very hard to
read. Also, the “gen” type functions have the additional disadvantage of not being
recognized by thdps utility. All these sequences can now be written for fixed logical

rf channels, and the channel switching can be achieved much more easily using the
rfchannel  parameter.

The only case where “gen” type functions are still recommended is for some particular
types of simultaneous pulses (shaped and rectangular). For pulses on “adjacent” logical
channels (starting witdBSch), simpulse , sim3pulse , simshaped_pulse and
sim3shaped_pulse are perfectly adequate. However, if simultaneous pulses are to
be performed on either non-adjacent channels @Bfsch DEC2ch) or on adjacent
channels not includin@BSch it is still better to use “gen” type functions. The simpler
“sim” pulse functions don’t handle the case the case of any of the pulse lengths being
set to zero very wefl.Such functions may be acceptable for testing purposes, but for
a real experiment you don’t want to really use these functions with any of the pulse
widths set to zero (at least for the current VNMR release). As mentioned before, using
“gen” type functions will unfortunately make these pulses “invisibleipgs.

Replacing power and pwrf Statements

The following construct was used in a large number of pulse sequences:

double pwxlvl;

()

pwxIvl = getval(“pwxIvI”);

()

initval(pwxIvl,v10);
E)o)wer(vlo,TODEV);
This has numerous disadvantages:
® |tis complicated and lengthy;
® |t requires reserving one of the few real-time variables (remember that with
initval youmust notuse this real-time variable for anything else in the
sequence!);
® There are often pages betweenittival ~ call and the actual use of the real-time
variable containing the power value. Upon reading such sequences, it is often very
hard to tell what power level is actually used, because with ep@mer statement
you have to go back in the sequence and look for the correspoimitveg ~ call.

It is much preferable to simply use

obspower(getval(“pwxIvl™));

which avoids using and initializing a real-time variable and avoids an extra C variable
declaration and initialization, and the VNMR parameter name occurs where it is
actually used in the sequence.

2Inthe case osimpulse andsim3pulse , some extra (non-sense) FIFO words are produced for
the pulse on the “unused” channel (i.e., it tries performing a timer word of zero length), and for
simshaped_pulse andsim3shaped_pulse the waveform generator on the unused channel is
still being reset (as if there was a shaped pulse of zero length).

262 VNMR Pulse Sequences 01-999014-00 A0398



24.3 General Considerations

C Constructs for Phase-Sensitive  nD NMR

Many pulse sequences use outdated (rather complicated and sometimes even
questionable) constructs fgy doherence selection (States, TPPI, FAD). A preferred
set of constructs is described in detailihapter 19, “Multidimensional Experiments,”
on page 215n particular, it should be noted that the contents of the ViphHge ,
phase2 andphase3 parameters are now already extracted and can be used in the
integervariablesphasel (notphase!), phase2 , andphase3 . Also, the real-time
variablesd2 ,id3 , andid4 should be used for setting up TPPI or FAD. This not only
is simpler than referring the constructs used earlier, it also is safer and easier to
understand.

24.3 General Considerations

This sections just provides a few additional hints of more “philosophical” nature.

Multipurpose Sequences

One of the nice features of VNMR pulse sequences is that you can have logical
branchings based on VNMR parameters, allowing combining a number of related
experiments into a single pulse sequence. But don't overuse this feature by trying to
“pack the world” into a single sequence! You can use this feature to coohbéedy
relatedexperiments (such as HMQC, HMQC with nulling by partial inversion
recovery, and HMBC). Essentially use this capability to turn on or off specific features
of a single experiment, and write separate sequences where the combination would be
hard to understand or would result in most of the pulse sequence being iran

else branch!

Using dps

Thedps command is a useful and powerful tool for quickly controlling the experiment
setup before starting a real acquisition. We fully appreciate the value of this command
(we use it ourselves all the time!), and we will continue to further dedgi®p

However, nothing is perfect, an@s has its deficiencies, mainly:

® |t does not display “gen”-type pulses and simpulses. “G” type functions (not
discussed in this manual) have the same problem.
® |t does not display pre-pulse and post-pulse delays.

* |t does not display a number of other statements that may be relevant to certain
users.

® The statemerntgradpulse is not displayed (this has been fixed in VNMR 5.1).

®* The number of events that can be displayed is limited and may not be sufficient for
very complex experiments (like certain heteronuclear 3D PFG sequences).

® Anumber of other—perhaps minor—problems have been noticed by users.

Most of these problems can be circumvented, and different approaches have been used
to achieve this:

® Some users have created a modified version of a pulse sequence just for the
purpose of usindps, while the “real” pulse sequence is used for the “real”

01-999014-00 A0398 VNMR Pulse Sequences 263



Chapter 24. Syntax Guidelines

acquisition only (with the known deficienciessih2shaped_pulse  and
sim3shaped_pulse , this may actually make real sense!).

® Others have resorted to explicit coding of pre-pulse and post-pulse delays by using
explicit gating and extra delays around rf pulses, instead of relying on the features
built into functions likergpulse

® Evenextraf andelse branchings were builtinto certain sequences (one branch
for dps, one for acquisition).

In all these cases, you should ask yourself: is it worth the effort? Is it worth giving up
the readability of a sequence, just to mdgs work?

Some of the approaches like the explicit coding of pre-pulse and post-pulse delays may
not work because they result in more pulse sequence elementpshaan display!

In any case, it will be a long way untiips can display each and every detail (many
users may not want that, because it can lead to excessively caipgpleisplays).

The question then would be: couldn’t tools, suchpsecode 3that display the Acode
instructions, replace certain aspectsigs (because thegeally showevery detajl?
Displaying the Acode, on the other hand, can be too complex for routine use, but it
certainly can be useful for certain stages of pulse sequence debugging!

3apdecode is available from the user library, see aSection 8.2, “Looking at Acode,” on page
69. Itis a tool to display the data and instructions in the Acode, as they are executed by the acquisition
CPU.

264 VNMR Pulse Sequences 01-999014-00 A0398



chapter 25. Debugging a Pulse Sequence

Many of today’s pulse sequences have grown into an astounding complexity, and in
order to cope with the growing range of experimental demands, modern NMR
instruments have become extremely complex machines. Even though Varian tries hard
to keep the rf and digital scheme as simple as possible (not because this is cheaper but
because in most cases simpler schemes are better and less prone to failures). On the
other hand, every programmer makes mistakasd in a complex instrument there is

also a certain chance that something fails or does not work as expected.

Overall, there is a fair chance that a new, complex experiment does not work as
expected in a first attempt. If this happens, it would be a bad idea to just call a Varian
service or customer support person claiming that “my xyz sequence does not work.”
At the very least one should be able to tell the following:

® What is the instrument type and configuration?

® What was the exact VNMR software release?

® |s this a standard sequence? A sequence from the user library (in this case you
should consider contacting the author of the sequence directly, e.g., via e-mail or
telephone)? One that you modified yourself?

® What exactly are the symptoms? (Can you fax a plot illustrating the problem or
send an FID by e-mail, or mail it on a floppy?)

® Was there any error message?

* What exactly were the parameters in use? (You may want to consider sending a
parameter printout by fax or sending an entire parameter set by e-mail or on a
floppy!)

* What did you do to further locate the problem? (The sections below should give
you some hints on what you could do to track down a problem.)

® Do other (similar or simpler) experiments work without problems? (Very often it
is not really clear whether one is dealing with a hardware or a software problem!)

* What was the last experiment that worked properly?

* What happened since then?

Even with all this information, you might spend considerable time on the phone or
exchanging e-mail, and it is in the last two points where the user can be most helpful
in diagnosing and fixing the problem, saving service time and costs, making e-mail or
telephone calls more efficient, and—Ilast but not least—speeding up the entire process
of getting the experiment to work.

Given the complexity of modern experiments, this may not always be an easy task. It
may require a fair amount of analytical and creative thinking to locate and fix a
particular problem, and certainly knowledge about the functionality of the experiment,
as well as about the internal functionality of the NMR instrument is most helpful for
this task. Of course, it takes time to acquire the knowledge that is necessary to debug
a pulse sequence. One motivation for creating this manual was to shorten the learning
curve for advanced spectrometer operation and debugging. With the right approach,
you should not only be faster in designing and debugging new pulse sequences, but you

1 Many people go as far as claiming that there is no software without bugs!

01-999014-00 A0398 VNMR Pulse Sequences 265



Chapter 25. Debugging a Pulse Sequence

will also be able to save service time and costs by providing a more accurate
description of eventual problems.

It is difficult, if not impossible, to provide a general recipe fro debugging a pulse
sequence or locating an instrumental problem. The tips below are just options. The
“correct” choice and sequence of actions is depending on the nature of the problem.

25.1 Debugging the Parameters

First, you want to find out whether the problem is due to a simple parameter mis-
setting, because this would be the easiest and fastest problem to solve.

® Checkdg anddgs for obvious parameter errors.

® Check withdps whether the parameters really are what you think they are. You
may have used a pulse type parameter for a delay or, much worse, a delay
parameter for a pulse duration (this can burn your probe and damage your
samplel).

* Important parameter may be hidden from the display. Check for the values of all
parameters on which you dagyatval or agetstr in the pulse sequence.

Parameter mis-settings may result from errors or omissions in the setup macro—you
may want to check for problems there. Certainly, if there is a parameter problem, this
should be fixed in the setup macro, to avoid the same problem next time.

25.2 Debugging the Software

Next, you want to check whether thasea software problem, either a faulty sequence
or a malfunction in the acquisition software.

® You also may want to kilAcgproc , restart it, and retry the experiment, just to
check whether the problem is reproducible. Power surges, vibrations or
temperature variations can severely affect cancellation experiments.

® Analyzing the FID or the spectrum can often indicate the nature of a problem (lack
of cancellation, artifacts, etc.).

® Usedps to verify that the sequence corresponds to what you intended it to do.

If you don’t see any obvious source for the problem, try narrowing down the area in
which the problem is located:

¢ Simplify the experiment either by setting selective parameters to zero or by
changing flag parameters (if there are any).

® Check for phase cycling errors by using1,2,4,8,16,32,64,128 .In
cancellation experiments, you should see whether you get cancellation, and how
much. Apart from the cancellation, you should see a steady increase of the signal-
to-noise ratio by a factor of 1.4 with every increment. For 2D experiments, use
ni=0 (measure the first increment orflylFor multiple-quantum filtered
experiments (onD experiments that acquire echo-type signals in general), it is
also necessary to do the same test d2tmi/(2*sw1) to check whether

21n non-PFG absolute-value 2D experiments, there will be one stepnn thieay that shows no
increase in signal-to-noise. This is the point whergufadrature detection is achieved by subtracting
(N+P) from (N-P) type spectra.

266 VNMR Pulse Sequences 01-999014-00 A0398



25.3 Debugging the Hardware

multiple-quantum signals are collected at all (the first increment should contain
only noise if the experiment is functioning properly). For States-type phase-
sensitivenD experiments, usghase=1 (and/orphase2=1).

Useapdecode (supplied in the VNMR user library) to verify that the sequence
of events in the pulse sequence is what you want, including events that are not
shown by thelps command.

Make the pulse sequence print parameter values and variables, maybe at several
points in the sequence. This can reveal misconceptions such as the use of real-time
variables in C calculations or any attempts to extract values from a displ.ay or
processing parameter (only acquisition parameters can be accessed in a pulse
sequence).

It is easy to get mixed up in C decisions (or complex C constructs, in general). If
the execution path within a complex sequence is not clear from looking dpthe

or apdecode output, you may want to check points at certain places in the
sequence, such as the line:

printf(“starting refocusing period\n”);

If all this doesn't help, simplify the pulse sequence code by progressively
removing or commenting out sections of the pulse sequence (of course, you should
keep a copy of the original sequence!) to try locating the problem within the
sequence.

25.3 Debugging the Hardware

WARNING: High voltages are present inside the console!

WARNING: Always have all cables properly connected or terminated when

performing experiments, or while rf output is being generated (you
could damage expensive power amplifiers!). For analyzing the output
of power amplifiers (in particular for the 1 KW amplifiers used in solids
NMR) you will need special power attenuators.

WARNING: Don't pull boards while the power is switched on, and never pull

boards without protection against static electricity!

The one important rule for debugging hardware problems is tainggletools (pulse
sequences and experiments)! Complex pulse sequences may be a good measure for
testing the overall performance of a spectrometer, but they are useless for locating a
specific hardware problem in an NMR spectrometer.

Is the probe tuned properlganit be tuned at all, and on all channels?
Has the proper quarter-wavelength cable been selected?
Is there no problem with the lock?

Try a similar, but different experiments (a different pulse sequence), just to double-
check whether you have a hardware problem.

If that fails as well, try very simple experiments, l8&pul , d2pul , sh2pul ,
g2pul or the like, to further narrow down the possibilities.

Double-check connections between the console, magnet leg, preamplifiers, and
probe.

01-999014-00 A0398 VNMR Pulse Sequences 267



Chapter 25. Debugging a Pulse Sequence

268

® Check fuses in the console.

® Periodically check the fans in the console: overheated boards can easily cause a

malfunction of the spectrometer!

Further hardware troubleshooting requires hardware diagnostics tools such as an

oscilloscope, BNC cables and a set of rf attenuators. You may want to seek the help of
a local expert for accessing cables and connectors within the console and for analyzing

power rf output.

® Check whether rf (pulses, decoupler frequency) is generated and gated properly at

the output of the transmitter board.
* Then follow the signal path and check the input of the amplifiers (after the

attenuators).

Given the appropriate attenuatoodgerve the warnings above!), you may now
check the power output at the amplifier outlets.

To check the rf path in the magnet leg, you can then repeat this test at the input to
the probe.

To check for the signal patinomthe probe, you need a strong sample; otherwise,
you just observe noise. First, check for the presence of the L.O. frequency at the
preamplifier (without L.O. you will not even observe noise behind the mixer!). The
signal at the input to the preamplifier may be difficult or impossible to see on the
oscilloscope, because the signal level is very low at this point. You may have a
better chance at the input to the receiver.

Carefully analyze the FID: Do the signals look normal? Is there truncation? Do
you see unnatural “spikes™? Do both channels have the same or a similar
amplitude? A good and easy way to check for signal overload at the ADC is the
commandddff(1) that shows the numeric contents of the FID.

VNMR Pulse Sequences 01-999014-00 A0398



Symbols

+= notation 118

.DEC file extension179, 180
.RF file extension173
.rootmenu file, 63

Numerics

180-degree phase shiftl
63-dB attenuatqrl39
90-degree phase shiftd1, 45, 163

A

aa commang 60
abort function, 155
aborting a sequengé55
Acode, 57, 66
AP bus words 140
contents 71
datg 15
decodey 59, 70
fast bits 94
file headey 74
file structurg 69
from waveform generator modulatiph83
generation 58
instruction section79
interpretation 66, 82
interpreter 149
loops 147
phase calculation®8
real-time decisions160
saving spacell7
segment 60, 61
space 111
space efficiency123
structure 74
tables in instructions segmenrit22
timer words 94
acoustic ringing 48
acq directory, 59
acgi commang 58, 59
acqi.Code file, 69
acqi.RF file, 170
acgparms.h file, 20, 156
acgpresent file, 59
acqgproc accounf 63
Acqproc error message$6
Acqgproc not active 56
Acgproc process 15, 55, 59, 61, 63, 167, 266
acqqueue directory, 15, 15, 57, 57, 62, 69, 167
acqtriggers variable 205
acquire statement151, 205, 206
acquisition
explicit, 208
implicit, 205
lock, 62
multi-FID, 209
parameters20, 55
process 55, 59
queug 56

01-999014-00 A0398

Index

queue directory57
queuing 60
status window 62
trigger, 205
acquisition bootup selector switch46
acquisition control boargsl51
acquisition control parametgrs7
acquisition CPY 15, 59, 60, 61, 66, 85, 145, 172
bus 67
data blocks 69
acquisition operating systgrb9, 66, 69
acquisition processl5
actively shielded gradient cojl202
ADC (Analog-to-Digital Converter)67, 207
ADC overflow, 214
alfa parameter51, 51, 52, 206
algorithm for phasgs95
algorithms for phase cyclind.24
aliasing 205
alock parameter58
alternating phase cyclg$02
AM/PM transmitter board164
amplifier blanking 45
amplifier stabilization 47
amplifier timing, 41
amplitude modulation circuitfy163
amplitude multiplier for shaped gradienfis’0
analog-to-digital converter (ADC)L6
angled bracket notatigr32
angled brackets conventiph4
anti-parallel switching44
AP bus 67, 67, 86, 137, 163
addressing163
delays 141
indirect mode 86
shaping gradien{s202
statements21
traffic, 140, 200
AP bus chip 137
AP interface board88, 137, 140
AP words 86, 137
apdecode program 71, 75, 140, 267
apdelay.h file, 21, 142
aph commang 52
aph parameter50

apovrride  statement139
apshaped_pulse statement191, 194, 195
aptable.h  file, 21

argument type-checkin@3
arraydim parameter74
artifact cancellation95

artifacts, relative intensityl35
as commang 25

assembly language compilet5
attenuatoy 211

au commangl 55

au('wait’) commang 56
audio filter, 67

audio filter bandwidth 139

audio frequencigss0

audio signal 211

AUTOD data structureg74, 75, 76, 78
autoincrement attributel 18, 119
autoincrementing tabled.19, 151

VNMR Pulse Sequences 269



Index

autolocking 66

automated flag156

automatic statemen89

automation control board6, 66, 78, 145
autophasing50, 52

autoshimming 59, 66, 78, 80
autshm.out file, 59

B

background VNMR 62

base counter for phase cyclingl0
baseline roll 51

bc command51

BCD information 137

Bessel filterg 51

beta constant51, 206

binary coded decimal (BCD) informatipt37
biological NMR, 52

BIRD pulses 122, 156, 158
blanking the amplifier44
blocksize transients96

boot PROMs 66

bootup selector switgh67, 214
BR-24 sequengel50

braces notation117

brackets notation101, 117
broadband rf 156
broadband-type transmitter board$5
bs parameter77

bsctr variablg 96

bsval constant 77, 96

buffered acquisitip61

bug fixes 29

bus decoder86

bus structurgs67

Butterworth filters 51

C

C based decisiond 55

C compiler and linker18

C constructs95

C language erroysl 8

C loop, 147

C preprocessorlg, 19, 21, 22, 23
calculating complex phase cyclel52
calfa macrq 52

cancellation experiments.09, 266
cancellation of artifacts95
cancellation quality134

cc commang 18, 19, 24

ccce.c file, 129

CD-ROM drive 59

celem parameter62

center glitch 95, 212

change macro61

channel imbalanged5

chown commang 63

CIDNP experiments88

class A/B linear amplifiers45
class C amplifiers45, 139, 156

270 VNMR Pulse Sequences

COCONOESY sequeng06
code optimizer option25
code section for pulse sequenc&g6
code segments in Acode fjlé4
codeint variablg 75
coherence pathway selectjodb, 199
coherent signal buildy®06
coil inductancg 47, 48
coil mechanical movementd8
combined COSY and NOESY pulse sequeritiid
combining two pulse sequen¢e$8
command to convert (CTC) bi87, 89, 205
comments for phase cycles01
compilation 18, 24

conditional 22

pulse sequenced5, 15
complex phase cycle generatjarD3
composite pulse inadequate?29
composite pulsesH0
conditional compilation22
conditional processings2
config program 60
configuration parameterd 5
conpar directory, 15
constants definition20
cp commang 31
cp parameter58, 76
cpp program 18, 19, 23
cps.c file, 189, 205
CPU address spacé9
CPU boards66
CRAMPS experimeni{s150
createPS function, 205
ct counter 214
ct variablg 62, 75, 95, 96, 102, 109, 118, 119
curly brackets notatignl17
cycle phase flag76
CYCLOPS phase cyclingl30

D

dl1-randomization135

data acquisition205

date inconsistencies1

date parameter63

dc offsef 51

dc offset cancellation212

dead times37, 41

debuggers25

debugging a pulse sequen@ss
dec2apshaped_pulse  statement191
dec2prgoff  statement181
dec2prgon statment 180
dec2rgpulse  statement48
dec2shaped_pulse statement172
dec2spinlock  statement181
dec3prgoff  statement181
dec3prgon statement180
dec3rgpulse  statement48
dec3shaped_pulse  statement172
dec3spinlock  statement181
decapshaped_pulse  statement191
DECch device 40, 48, 172

01-999014-00 A0398



Index

decompose a complex phase cydle3 E

decoupler amplifier blanking contrab2 .

decougler gat%gzlg J E.COSY experiment106

decoupler high-power level 39 elddy currents199, 21%% 202

decoupler low-power attenuafcr39 ese&z statementi%

decoupler modulation mog¢é&3, 88 enabling statement

decoupler modulatgr.38 end_hardloop statement150, 154, 236

decoupler modulator frequengy.39 eng:f statementleh 149

decoupler waveform generafdr71 endioop f-|Statleg132t 5 48’

decoupling during acquisitigriL59 errmSég e, 2’2 !

decprgoff  statement181 error detection2:

decprgon statement180 error messagesglzeliﬁhg& 24
error message2,

decpulse _ statement21, 48 EVENTL_TWRD instructions93

decrementing phase cyc)es02 . .
decrgpulse  statement4s, 157 EVEN_TZ_TWRD instructions93
evolution phasg110

decshaped_pulse  statement172 s
decspinlock  statement181 evolution timg 143, 157
excitation poinf 52

f izatigri12 L
gggjzg randomizatiort excitation pulse dajad8

delay constants21 execkillacqproc shell scripf 63

delay for AP bus traffic141 executable file 18 )

delay statement37, 150, 235 executable target file25 .
delayer statement37 EXORCYCLE phase cyclingl31
dephasing amoup201 experiment startyp61 "
depth of the FIFQ86 expl!c!t 90-d¢_agr_ee phase shifting2
device addresse&0 explicit acquisition 208

dg commangl 266 explicit modulation 149

dgs commang 266 expn.username.PID  file, 62

; : ; . .PID.Code file, 69
diagnosing experiment problep65 éxpn.username e,
diagnosticgs tefminal%’ %G, 146, 214 expn.username.PID.RF file, 61, 167, 167,
diffusion experiments202 170

dioital components68 external deqlqrfitiomézo
d:g:je switc%e,s 43t,s external definitions20

direct addressing moglé 38 external phase tablg&5, 57, 116

; ; : ; external triggey 88
g::gg gg‘;ﬂ; |5r12format|on137 externally defined code addressés
direct synthesis boarg465
direct synthesis (f139, 156
displaying warning messagé56 F
division factor 117, 118, 119 .
division return factor117 fall-through time 151
DLINT option, 19, 24 FALSE constant20
dmparameter’ﬂé fast bits 20, 76, 86, 87, 88, 160
assignment88, 89
dmf parameter178, 185 speed 137

dmf, dmf2, dmf3 parameters179 .
dmmparameter53, 88, 140, 178 fast status lings163, 168
dmm, dmm2, dmm3 parameters179 fast switching lines6s, 88
double quotes notatigr32 fb parameter51
double-precision flag76 FID data block 69
double-precision timer worg®1 ]';'jD f;illee’ %52
gg”ﬁ;ﬁggfg&@tgred COS106 fidpath _parameter63, 63, 63, 63, 63
dps commang 17, 18, 70, 266 field gradient shapgsl96

dps_ps_gen program 17 FIFO (first-in-first-out) buffey 67, 85
dpsaatf; file, 18 FIFO full messagge86

R PP FIFO typeg 59
dps -modified file, 17 FIFO underflow 82
dres parameter180, 185, 187 FIFO underfl a7
dres, dres2, dres3 parameters189 underflow messagéel

FIFO width, 87
dseq, dseq2, dseq3 parameters179
dumb terminals 146 FIFO words 82, 86, 138, 138, 151

dwell time, 208 fifolpsize flag, 156

: filter delay, 50, 52, 81
dwell_time  argument205 . NS
dynamic binding 26 fine attenuators139, 190

. e s first-order phase correctipil
dynamic run-time linking 26 fixed frequency f 156

01-999014-00 A0398 VNMR Pulse Sequences 271



Index

fixed frequency transmitter boards65
flag fields, 53

flag handling 39

flag variable generatiqri62
flags feature 156

flipback experiment208
flow-through (FIFO) buffer 165
fm-fm modulation 178

forced relaxation208
foreground VNMR 62

fuses 268

G

G_Delay statement20, 37
G_Power statement21

G_Pulse statement20, 21, 40, 49
G_Simpulse function, 50

ga commangd 55

gain parameter58, 62, 214
GARP-1 decoupling178

GARP-1 modulation patteyri87
gate statement89

gate switching 45

gating directly 52

gating information 68, 76
gauss.RF file, 174

Gaussian distributign1 35
Gaussian pulsel74
gen_apshaped_pulse  statement191
general (object-oriented) routinea0
general power statemergtl

generic shapgsl65

genpulse statement40, 48
genshaped_pulse statementl72, 177
gensim2pulse function, 50
gensim3pulse  function, 50
gensim3shaped_pulse  statement173
genspinlock  function, 181
getelem statement115, 118, 119, 122, 122
getval statement55

of macrq 58, 58, 70, 74

Gilbert multipliers 46

glitch peak 206

go commang 15, 55, 170
go('acqi’) commang 58, 58
go('debug’) commang 71
gradient amplifiey 199

gradient amplitude199

gradient coij 200

gradient control unjt202

gradient identifiey 199

gradient MQCOSY experimen201
gradient pulse shap@00

gradient recovery delay01
granularity, 149

grise time, 201

gstab time, 201

H
HAL (Host-to-Acquisition Link) 15, 66, 207

272 VNMR Pulse Sequences

hard abort 181

hard-coded softwares9
hardware diagnostics togl268
hardware loops86, 92, 150, 151
hardware modulatgrl78
hardware troubleshootin@67
HDLOOP instruction 154
hetcor sequencgl57
heteronuclear correlation experimght8
hidden AP delays141
hierarchically stacking161
high-level statement39
high-power amplifiers47
high-power decouplingl59
HighSpeedLINES instructigro4
HMQC pulse sequengd 56, 157
hmult parameter157
homospoil flag 38

homospoil pulsg39, 204

host computer59, 66

host computer peripheral§7
host I/0 bus 145
Host-to-Acquisition Link (HAL) 15, 59, 66
hoult commandg 52

Hoult delay 51

housekeeping delayL 46, 206
HouseKEEPIng instructiqr214
HS (High-Speed) bys$8

hs parameter38

hsdelay statement38, 39, 39
HSgate statement39, 39
hsine-shaped gradignt96
HSLINES instruction 147

hst parameter38, 39
hwlooping.c file, 206
hypercomplex spectya 10

/

I/0 bus 67

I/O functions 20

IB_DELAYTB instruction, 169, 170
IB_LOOPEND instruction 170
IB_PATTB instruction 170, 176, 185
IB_SCALE instruction 170, 196
IB_SEQEND instruction170, 171
IB_START instruction 169, 171, 172
IB_STOP instruction169, 170, 171
IB_WAITHS instruction 170, 172, 175
id parameter63

idelay statement39

ifnotzero statementl 62
IFNotZeroFUNC instruction161, 162
ifzero  statement161

imaging experimentsl95, 200
imaging gradient amplitudg4.39
implicit acquisition 81, 205

implicit decisions 159

implicit gating statements3
improper refocusing95

inadgt.c  file, 98, 124

incdelay statement39

include files 21

01-999014-00 A0398



include notation 32

include statemenjsl9

incrementing phase cycle$02
index of current FID 76

index to phase tahlel16

indirect detection189

inductance of rf cojl 48

initval statement77, 97, 98, 147
inline tables 120

instruction block for RF pattefri69
instrument problems265

interactive acquisition progran®9
interactive FID or spectrum mogdg8
interactive statement$9

interleave parameter62
intermediate frequency (I.5.%6, 210
intermodulation distortions212
internal periodicities 103

internal propagation delay.66
inverse spectral windop205

J
J-coupling 95

K

knobs information 78

L

laser contrgl 88

LC data structurg75

Ic.h file, 78

Id program 25

Idcontrol file, 57, 61, 167

lib-Ic.In file, 23

libparam.a file, 26, 29

libpsglib.a directory; 26, 29, 30

libpsglib.so.1.0 file, 31

libpsglib.so.x.y file, 56

linear amplifiers 44, 138, 156, 190
stabilization 45

linear amplitude modulatprl40, 190

linear ramp 203

link editor, 25

link loader, 26

lint program 17, 18, 19, 22, 22
lintfile.c file, 23, 35
llib-Ipsg file, 29

llib-Ipsg.In file, 23, 24

load parameter58, 78

local oscillator (L.O.) 163, 210
lock commang 61

lock file, 61, 61

lock parameters145

lock power, gain, and phas&40
lock_n.primary file, 61, 61
log file, 62

look-up offsets 47

loop count 149

01-999014-00 A0398

loop countey 149

loop cyclg 208

loop FIFQ 87, 151, 156, 208
loop statement148

loops 147

low-core data structure’4, 75
low-level statement39

Ip parameter51, 52

M

maclib directory;, 15

macro for pulse sequencéb
macros 20, 21

macros.h file, 20, 21, 23, 172
macroscopic phase cycling30, 131
magnet leg pneumatic§6, 145
make filg 18, 30, 33

make program 18, 24, 30
makefid command 213
makesuacqproc shell script 63
makeuser commang 56
makeuserpsg file, 30, 33, 34
Masterlog file, 62

math libraries 26, 33

math.h file, 33

mathematical algorithm for phase3b
mbond parameter 157
mechanical movements in the gall8
method parameter56

mirror images 211

mixer, 211

mixing product 164

mixing time variabtion 112
mixvar scaling factoy 112
MLEV-16 decoupling 178
MLEV-16 spinlocking 186
mod2 statement162

mod4 statement162

modn statement162

modulation algorithms190
modulation files 180

modulo function 97

modulo statemenisl62

Motorola 68000 CPU chip66
MREV-8 sequencel50

multiecho imaging experimentd46, 206

multi-FID experiments 206, 209
multifield flags, 159
multiple hardware loopsl51

Index

multiple-quantum filtering experiment499, 201,

266
multiplexer switch 86
multipulse experimen{sl50
multipulse line narrowing208

N

nesting shorthand notatipa17
newdec flag 156

newdecamp flag156
newtrans flag 156

VNMR Pulse Sequences

273



Index

newtransamp flag156
NextSCan keyword81

nf parameter206

ni parameter266

NOESY experiments110, 112
noise measuremegn80

np parameter75, 206, 207, 209
NSC (next scan) instructior206
nt parameter75, 266

NUMch flag, 156

numeric constanf96

(0]

object archive files31
object dependencig81, 33
object filg, 27

object library 31

object library creation29
object module 25

OBSch device40, 40, 48, 172
observe channel pulse$0, 40
obsprgoff  statement181
obsprgon statement180
obspulse statement40
od commang 69, 170
off-resonance effect95
offset statement138
offset synthesizersl 38, 139
one constant 96, 97
oopc.h file, 20, 20

oph variablg 119
oscilloscope 268

output boards151, 207
overflow, 67

Oxford VTC-4, 66

Oxford vttype flag 156

P

plpat parameterl73, 175
pad parameter80
parameter debuggin@66
parameter treeb5
parameters for pulse sequencés
parentheses notatipa01, 116
parlib  directory; 15
passive diodgs43
pattern time basel70
pfgon parameter199
phase alternatigr212
phase calculation®5, 98
phase changed50
phase cycles
alternating 102
creating phase matti01
decrementing102
evaluation 99

generating complex cycles03

incrementing 102
length, 123
real-time construction106

274 VNMR Pulse Sequences

shifted patterns103
shorthand syntgx101
simplg, 101
phase cycling95
base counterl10
during steady-state pulses09
errors 266
order, 135
real-time phase calculation$11
refocusing periods110
phase generator and frequency divjd&rl
phase mathematic85
phase modulation circuityyl63
phase modulatgrl 63
phase parameter110, 267
phase shifting46
phase shifting timgs45
phase table namg§91
phase tablesl5, 115, 129
phase-pulse technig@14
phase-sensitive NMRL10
phase-settling delayt7
phaseshift  statement213
PIN diodes 43, 190
pointer generation and incrementatidri8
polling ratg 61
post-pulse delay50, 51
power level storage98
power.h file, 21
preacquisition delgy80
preamplifie; 210
preamplifier saturation48
precompiled files 15
precompiled module24
precompiled objec}s32
predefined variable6
preloop FIFQ 86, 87
preprocessqrli9
pre-pulse delay50
prg_dec_off  function, 181
prg_dec_on function, 180
primary lock filg, 61
probe 164
PFG, 201
preamplifief 210
ring-down, 48, 48
programmable audio filtey211
programmable pulse modulajdr63
programmed decouplind.89
programmed modulatiqriL77
proton flipback sequen¢@09
proton frequency156

psg directory, 15, 15, 19, 26, 29, 31, 32, 56, 70

psggen commang 15, 29, 34
psglib  directory;, 15

PTS frequency synthesizer9, 138, 139, 163, 214

pulse break-through47
pulse length41

pulse programmerl5, 37, 53, 66, 67, 82, 163

AP words 138
compared to waveform genergtdi65
Gemini, 151
timers, 89
pulse sequence control board$1, 206

01-999014-00 A0398



pulse sequences
adding acquisition parametgrss
C errors 18
code section106
compilation libraries 29
compilation time 32
compiling, 15
creation 17
dead times37, 41
executable57
execution 15, 56
generation 15
macros 15, 21
parameters15
purpose 53
source coded?29
troubleshooting 265
pulse shape definition fijel73
pulse shaping spegd66
pulse statement40, 49, 119, 161
pulse turn-off time 47
pulse turn-on timg47
pulsed field gradients (PFG).39, 199
pulsed NMR experiment95
pulsesequence functip1
pwpat parameterl73, 175

Q

guad image suppressiph30
quadrature detectigr211
quadrature image suppressiai2
guadrature image®5
quadrature phase shifting5, 103
quadrature phasg806, 212
quality factor Q 48
quarter-wavelength cahlé3, 43, 267
queue files 62

queuing of acquisitionss0
quiescent states89

R

rampgrad function, 202

random function, 112

random number generatat13
random number tabjel 12, 135
random seed113

random variation of variabled12
rc.local file, 59

rc.vnmr  file, 59

rcvroff  statement4l, 41
revroff_flag variablg 41

read switch 42

real-time branching107

real-time calculations vs. table$23
real-time calculations with phase tahldé29
real-time decisions160

real-time loops 148

real-time math in hardware logps51
real-time math operang86
real-time math operatar96

01-999014-00 A0398

Index

real-time numeric constant87
real-time phase calculation$11
real-time phase mati06

real-time pseudo-random number generaidR

real-time variables96
real-time variables vs. table math21
receiver 211

receiver board67

receiver gain 78, 80, 140, 145
receiver gatg45s, 47, 52
receiver gating timg40, 40
receiver phasell5

receiver phase shifting212
receiver timing 41

refocusing period160
refocusing pulsesl10

relay parameter110
relayed COSY experimeni10
relayh pulse sequengel47
relayh sequencgell0
relocation bits 25

reverse synthesis03

revision check 56

revision number26

rf channels 156

rf channels indicgs20

rf gates 47

rf power amplifie; 164

rf power attenuatorsl 39

rf ring-down, 48
rfchan_device.c file, 119
rfchannel  parameter40, 50, 173
rfconst.h file, 20, 89

rgpulse statement23, 40, 45, 49, 150, 161, 235

rgradient  statement199
rhmon.out file, 59

rofl parameter40, 45

rof2 parameter40, 51, 52
root ownership ofAcgproc , 63
round-off timing erroy 91
RS-232 ports145

run-time linker 56

run-time linking 26, 29

S

s2pul pulse sequenc@l, 159
s2pul.i  file, 23

sa commangl 60

sample change66, 78, 145
sample heating159

sample macrp61
sample-and-hold circuitry67
scalar math on tabled21
scan number9s

SCCSid string 24

SCS|, 15

SCSI bus 15, 59, 67

SCSI interface 66

second FIFQ 86

secondary lock file61
send2Vnmr call, 62

seqgfil  parameter55

VNMR Pulse Sequences

275



Index

seqgen commangd 15, 17

seqgenmake file, 18, 24, 35

seqlib directory, 15, 18, 55, 55, 56
sequence of eventd57

serial ports 66, 66

setacq program 59, 60
setautoincrement statement119, 120
setdivnfactor statement118, 120
SETICM (set input card mode) instructjoil?2
SETPHAS9O instruction94
setquadphase statement119
setreceiver statement119, 122
settable  statement120

setuserpsg commang 29

SETVT instruction 80

sh2pul pulse sequenc&73

shape_pulse.c  file, 32, 147, 190
shaped gradient02

shaped pulse statemenis’2
shaped_pulse statement172, 173, 177

shapelib  directory, 15, 57, 168, 172, 179, 197

shaping field gradienfsl 95

shared object librarig29

shared objects26, 26

shell script 17

shifted phase cycle pattegns03

shim coils used for PFE&04

shim command61

shim DAC values 139

shim methods56

shimmethods directory, 56
shorthand notation for phase tables fil&$6
shorthand syntax disadvantagég7
shorthand syntax for phase cyglé§1
shorthand table117

signal measuremen210
signal-to-noise ratip50

sim3pulse statement49
sim3shaped_pulse  statement172
sim4pulse statement49, 50
simple delays 37

simpulse statement49, 49, 123, 157, 158
simshaped_pulse statement172
simultaneous pulsegl9
simultaneous shaped pulsds2
single-point acquisition208
single-precision timer worg91

slew rate 200

slice duration unijt168

slice phasg180

small-angle phase shiftd5, 46, 139, 163
small-angle receiver phase shiftjngjL 3
software debugging266

software loops 148

solid-state NMR 47

source codg29

spare gatgsb2

spare lines94

spatial dimension196

spatial encoding196

spectral artifacts199

spectrometer hardwaré55

spin commang61

spin diffusiony 201

276 VNMR Pulse Sequences

spinlock  statement181, 183
spinlocking pulse train182
spinner control circuitry66, 145
spinner speed regulatipf6
square-wave modulatiori78
srandom function, 112

Ss parameter58, 76, 109

ssctr  real-time variable 109
ssctr  variablg 77, 96

ssval constant 76, 96
stand-alone data statiqrs6
standard include file32
standard.h  file, 19, 32
standing wave reflectigni3
STartFIFO instruction82
starthardloop statement150, 235
static buffey 165

static linking 25, 26

static RAM, 165

status field constant£0

status registers32

status statement53, 159, 160, 178, 178
status-field controlled modulatipri89
statusindex variable 38
statusindx variablg 53

stdio.h  file, 19, 20
steady-state phase cycling09
steady-state transient36

STM (Sum-to-Memory) 16, 67
STM countey 207

StopFIFO instruction83

strobe command138

su macrg 61

submitting experiment to acquisitiph5
SUID protection bit 63
Sum-to-Memory (STM) 16, 211
SunOS 4 26

sw parameter51, 206

swept square-wave modulatioh78
switching timg 44

symbol table 25

symbolic links 30, 31

syntax check19, 22

system configuration parametgfb
systemdir parameter63

T

T/R switch 190

table addresses t1-t6021

table contents119

table index 97, 118, 119

table math vs. real-time variables21
table name 122

tablert  variable 119

tables constants definitipr21
tables vs real-time calculation$23
table-to-table math operatipf17
tablib  directory, 15, 57, 115
target operando6

Televideo terminals146

terminal for diagnostigs146
test4acquire function, 206

01-999014-00 A0398



testing flag fields 160

third rf channel 88

three constant 96, 97

time base 86

time count 86, 89

time event 37

timers, 89

timing resolution 87

tip anglg 180

tip-angle resolution189
TOCSY pulse sequencé81
TODEV devicg 40

touch command , 34

TPPI (time-proportional phase incrementatjoh) 0
transient counteros, 96
transmit switch 42
transmitter board68
transmitter digital control boayd 63
transmitter frequengy211
transmitter gatgs47, 52
transmitter timing 41
transversal relaxatiqr201
trapezoidal gradienf202
traymax parameter145
TRUE constant20

tsadd statement121

tsdiv statement121
tsmult statement121
tssub statement121
T-switch, 42

ttadd statementl117, 121
ttdiv  statement117, 121
ttmult  statement117, 121
ttsub statement117, 121
TUNE_FREQ instructions79
twisted ring shift registerd5
two constant 96, 97
txphase statement119, 119
types.h file, 20

U

unary operators96
unblanking time 45, 45
UNIX kernel, 59

user library 71

userdir parameter63

%4

vl, v2,...vl4 real-time variables96
variable phase cyclel 10

vdelay statement39

vector math with tablgsl21

VERSAbus 67

vgradient  statement199

vmunix file, 59

VT controller, 66, 80, 145

vitype flag 156

vitype  parameter145

01-999014-00 A0398

w

WALTZ decoupling 148, 149, 152, 171

WALTZ-16 decoupling 185
WALTZ-16 modulation 178
warning messagel56
waveform generatgr68, 88, 163

compared to pulse programméics

datg 61, 170
explicit modulation 180
gate settings180
initialization, 79
shapes57, 139
timer, 169
waveform generator board 65
wbs parameter62
werr parameter62
wexp parameter62
wg.c file, 171, 183
WG3 instruction 176
WGCMD instruction 176, 177
wgdecode program 171
while loop, 147
wnt parameter62
writefid command) 213
wshim parameter58, 78, 80

X

x_ file prefix, 18

xmtron statement181
xmtrphase statement214
xr.conf file, 60

xr.out file, 60

xrop.out file, 59
xrxrh.out  file, 59
xrxrp.out  file, 59
XY-32 modulation 178

4

Z gradient coi] 199

zero constant 96, 97

zero power RAM 67

zero pulse length41
Z-filters, 112, 135
zgradpulse  statement200

VNMR Pulse Sequences

Index

277



	Online Menu
	---------
	Overview of Contents
	Table of Contents
	List of Figures
	List of Tables

	Disclaimer
	Foreword
	Acknowledgments
	Conventions in This Manual
	Chapter 1.� Overview
	1.1� Pulse Sequence Execution
	1.2� What to Expect in This Manual

	Chapter 2.� Sequence Generation: seqgen
	2.1� Modifying the File for dps
	2.2� Running the make Program
	2.3� Calling the C Preprocessor
	2.4� Checking Syntax with lint
	2.5� Compiling and Linking

	Chapter 3.� Object Library Generation: psggen
	3.1� How Are Object Libraries Generated?
	3.2� Adding Changes to the Object Libraries
	3.3� Adding a New Precompiled Object

	Chapter 4.� Time Events
	4.1� How Do Delays Work?
	Simple Delays
	Delays With Homospoil Pulse
	Other Delays

	4.2� How Do Pulses Work?
	Pulses on the Observe Channel
	Simple Pulses on Other RF Channels
	Simultaneous Pulses on Different RF Channels
	Composite Pulses
	Considerations for the Delays Following the Last Pulse

	4.3� Other State-Related Pulse Sequence Statements
	Direct Gating
	Implicit Gating

	4.4� Basic Purpose of a Pulse Sequence

	Chapter 5.� Submit to Acquisition: go
	5.1� The Tasks for go
	5.2� Tasks for the Pulse Sequence Executable
	5.3� Using go('acqi')

	Chapter 6.� Acquisition Process
	6.1� Starting the Acquisition Operating System
	6.2� Queuing and Starting the Acquisition
	6.3� Downloading the FID
	6.4� Controlling Acqproc

	Chapter 7.� Digital Components
	7.1� Main Boards
	7.2� Bus Structures

	Chapter 8.� Acquisition CPU and Acode
	8.1� CPU Address Space
	8.2� Looking at Acode
	Methods of Interpreting the Contents of Acode Files

	8.3� Structure of Acode Files
	Acode File Header
	LC Data Structure
	The AUTOD Data Structure
	The Instruction Section

	8.4� Acode Interpretation
	FIFO Flow
	Acode Size Limitations, Acode Buffering


	Chapter 9.� Pulse Programmers
	9.1� Layout of the Pulse Programmer
	9.2� Fast Bits
	9.3� Timers and Timer Words
	9.4� Problems with Timer Word Errors
	9.5� Timer Words and Fast Bits in the Acode

	Chapter 10.� Phase Calculations
	10.1� How Do Phase Calculations Work?
	The Tools
	Phase Calculations in the Acode

	10.2� Case 1: Decoding Phase Calculations
	10.3� Case 2: Creating Phase Math for Given Phase Tables
	Simple Phase Cycles
	Complex Phase Cycles
	Phase Cycles for Many Pulses

	10.4� Real-Time Logical Decisions
	10.5� Steady-State Phase Cycling
	10.6� C Constructs and Phase Calculations
	10.7� Why Phase Calculations?
	10.8� Real-Time Random Numbers

	Chapter 11.� Phase Tables
	11.1� Basic Syntax
	Shorthand Notation
	Advanced Features
	How Does a Table Work?

	11.2� Inline Phase Tables
	11.3� Table Math
	11.4� Phase Tables in the Acode
	11.5� Tables vs. Real-Time Calculations
	Point-to-Point Comparison
	Comparison by Examples

	11.6� Combining the Best of the Two Worlds
	11.7� Using Tables as Source for Random Numbers

	Chapter 12.� AP Bus Traffic
	12.1� What Is the AP Bus
	12.2� What Devices are Driven by the AP Bus?
	12.3� AP Bus Words in the Acode
	12.4� Timing Considerations

	Chapter 13.� Acquisition CPU Communication
	13.1� Regular Pulse Sequence Communication
	13.2� Diagnostics and Error Output

	Chapter 14.� Repeating Events
	14.1� C Loops
	14.2� Real-Time Loops
	14.3� Hardware Loops

	Chapter 15.� Decisions
	15.1� Decisions and Branchings in C
	Decisions Set by the status Statement
	Checking Flag Parameters

	15.2� Real-Time Decisions
	Programming Real-Time Decisions
	Generating the Flag Variable


	Chapter 16.� Waveform Generators
	16.1� How Does a Waveform Generator Fit Into the System?
	16.2� How Does a Waveform Generator Work?
	Sequence of Events in a Waveform Generator
	How Are Patterns Stored in a Waveform Generator?
	Waveform Generator Instruction Words
	Waveform Generator Data File
	Executing Waveform Generator Patterns

	16.3� Using Waveform Generators for Shaped Pulses
	Programming Shaped Pulses: An Example

	16.4� Using Waveform Generators for Programmed Modulation
	Programming Pattern Decoupling and Spinlock Experiments
	How Does Pattern Modulation Work Internally?

	16.5� What If a Waveform Generator Is Not Available
	Programmed Decoupling
	Shaped Pulses

	16.6� Using a Waveform Generator for Shaping Gradient Pulses

	Chapter 17.� Pulsed Field Gradients
	17.1� Pulse Sequence Statements for PFG Gradient Control
	17.2� Shaping Pulsed Field Gradients
	17.3� PFG Experiments Using Homospoil Pulses

	Chapter 18.� Acquiring Data
	18.1� Implicit Acquisition
	18.2� Explicit Acquisition
	18.3� Multi-FID Sequences
	18.4� Receiver Phase Shifting
	Detection of NMR signals
	Quadrature Receiver Phase Shifts
	Small Angle Receiver Phase Shifting

	18.5� Housekeeping Delays

	Chapter 19.� Multidimensional Experiments
	19.1� Indirect Time Domain Incrementation
	19.2� nD Quadrature Detection
	Absolute Value nD Experiments
	Phase-Sensitive nD Experiments: States/Haberkorn/Ruben
	Axial Peak Displacement (FAD)
	Phase-Sensitive nD Experiments: TPPI
	Phase-Sensitive nD Experiments: Arrayed TPPI
	Folding in Indirect Dimensions
	Combined Implementations
	Coherence Selection through Gradients


	Chapter 20.� Solid-State NMR Experiments
	20.1� Cross-Polarization MAS Experiments
	AP Bus Events in CP/MAS Experiments
	Using a Waveform Generator in CP/MAS Experiments

	20.2� Sideband Suppression in MAS Experiments
	20.3� Rotor Synchronization
	Measuring the Rotor Period Duration
	Waiting for Triggers
	Rotor-Synchronized Experiments

	20.4� Multipulse Experiments
	20.5� Other Line-Narrowing Techniques

	Chapter 21.� (Micro)Imaging Experiments
	Chapter 22.� Role of Macros and Parameters
	22.1� Creating New Parameters in VNMR
	22.2� Using New Parameters in C
	Numeric Parameters
	String Parameters

	22.3� Adding New Parameters to the Display
	22.4� Doing It All by Macro
	Macros for 1D Pulse Sequences
	Macros for 2D Pulse Sequences

	22.5� Switching Between Similar Sequences

	Chapter 23.� Putting It All Together
	23.1� Starting a New Sequence
	Programming by Modifying an Existing Pulse Sequence
	Programming by the Top-Down Approach

	23.2� Testing a Sequence and Related Files
	23.3� Submitting a Pulse Sequence to the User Library

	Chapter 24.� Syntax Guidelines
	24.1� General C Syntax
	Comments
	Indentation
	Variables

	24.2� Outdated PSG Utilities
	Device Addresses
	Functions with Device Addresses
	Replacing power and pwrf Statements
	C Constructs for Phase-Sensitive nD NMR

	24.3� General Considerations
	Multipurpose Sequences
	Using dps


	Chapter 25.� Debugging a Pulse Sequence
	25.1� Debugging the Parameters
	25.2� Debugging the Software
	25.3� Debugging the Hardware

	Index

