
VNMR Pulse
Sequences
Programming and Hardware Aspects

Pub. No. 01-999014-00, Rev. A0398

VNMR Pulse Sequences
Programming and Hardware Aspects
Pub. No. 01-999014-00, Rev. A0398

By Rolf Kyburz
rolf@nmr.varian.ch
Varian International AG
Zug/Switzerland

Technical editor: James Welch

Copyright1996, 1998 by Varian, Inc.
3120 Hansen Way, Palo Alto, California 94304
http://www.varianinc.com
All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in
this document are not intended to create any warranty, expressed or implied.
Specifications and performance characteristics of the software described in this manual
may be changed at any time without notice. Varian reserves the right to make changes in
any products herein to improve reliability, function, or design. Varian does not assume
any liability arising out of the application or use of any product or circuit described
herein; neither does it convey any license under its patent rights nor the rights of others.
Inclusion in this document does not imply that any particular feature is standard on the
instrument.

The rights to use the information provided in this material is retained
by Varian. All material is provided solely for your use under the VNMR
software license and may not be transferred.

UNITYINOVA, UNITYplus, UNITY, GEMINI 2000, GLIDE, VXR, XL, VNMR, VnmrS,
VnmrX, VnmrI, VnmrV, VnmrSGI, MAGICAL, AutoLock, AutoShim, AutoPhase,
limNET, Ultra•nmr, Indirect•nmr, Auto•nmr, Triple•nmr, MagicAngle•nmr, Proton•nmr,
Bioproton•nmr, ASM, and SMS are registered trademarks or trademarks of Varian, Inc.
Sun, SunOS, Suninstall, SPARC, SPARCstation, Sun-3, Sun-4, SunCD, SunView, and
NFS are registered trademarks or trademarks of Sun Microsystems, Inc. and SPARC
International. Oxford is a registered trademark of Oxford Instruments LTD. Ethernet is
a registered trademark of Xerox Corporation. Other product names in this document are
registered trademarks or trademarks of their respective holders.

01-999014-00 A0398 VNMR Pulse Sequences 3

Overview of Contents

Disclaimer .. 13

Foreword ... 13

Acknowledgments... 14

Conventions in This Manual ... 14

Chapter 1. Overview .. 15

Chapter 2. Sequence Generation: seqgen .. 17

Chapter 3. Object Library Generation: psggen... 29

Chapter 4. Time Events ... 37

Chapter 5. Submit to Acquisition: go .. 55

Chapter 6. Acquisition Process.. 59

Chapter 7. Digital Components .. 65

Chapter 8. Acquisition CPU and Acode... 69

Chapter 9. Pulse Programmers .. 85

Chapter 10. Phase Calculations ... 95

Chapter 11. Phase Tables.. 115

Chapter 12. AP Bus Traffic.. 137

Chapter 13. Acquisition CPU Communication .. 145

Chapter 14. Repeating Events .. 147

Chapter 15. Decisions ... 155

Chapter 16. Waveform Generators ... 163

Chapter 17. Pulsed Field Gradients ... 199

Chapter 18. Acquiring Data... 205

Chapter 19. Multidimensional Experiments .. 215

Chapter 20. Solid-State NMR Experiments.. 227

Chapter 21. (Micro)Imaging Experiments .. 239

Chapter 22. Role of Macros and Parameters... 241

Chapter 23. Putting It All Together ... 255

Chapter 24. Syntax Guidelines ... 259

Chapter 25. Debugging a Pulse Sequence .. 265

Index ... 269

4 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 5

Table of Contents

Disclaimer .. 13

Foreword ... 13

Acknowledgments .. 14

Conventions in This Manual .. 14

Chapter 1. Overview .. 15

1.1 Pulse Sequence Execution ...15

1.2 What to Expect in This Manual ...16

Chapter 2. Sequence Generation: seqgen .. 17

2.1 Modifying the File for dps ...17

2.2 Running the make Program ...18

2.3 Calling the C Preprocessor ..19

2.4 Checking Syntax with lint ...22

2.5 Compiling and Linking ..24

Chapter 3. Object Library Generation: psggen .. 29

3.1 How Are Object Libraries Generated? ..29

3.2 Adding Changes to the Object Libraries ...29

3.3 Adding a New Precompiled Object ...32

Chapter 4. Time Events .. 37

4.1 How Do Delays Work? ..37
Simple Delays ..37
Delays With Homospoil Pulse ...38
Other Delays ..39

4.2 How Do Pulses Work? ...40
Pulses on the Observe Channel ..40
Simple Pulses on Other RF Channels ..48
Simultaneous Pulses on Different RF Channels ..49
Composite Pulses ...50
Considerations for the Delays Following the Last Pulse50

4.3 Other State-Related Pulse Sequence Statements ...52
Direct Gating ...52
Implicit Gating ...53

4.4 Basic Purpose of a Pulse Sequence ...53

Chapter 5. Submit to Acquisition: go .. 55

5.1 The Tasks for go ..55

5.2 Tasks for the Pulse Sequence Executable ..57

Table of Contents

6 VNMR Pulse Sequences 01-999014-00 A0398

5.3 Using go('acqi') ..58

Chapter 6. Acquisition Process .. 59

6.1 Starting the Acquisition Operating System ..59

6.2 Queuing and Starting the Acquisition ..60

6.3 Downloading the FID ...61

6.4 Controlling Acqproc ...63

Chapter 7. Digital Components .. 65

7.1 Main Boards ...66

7.2 Bus Structures ..67

Chapter 8. Acquisition CPU and Acode ... 69

8.1 CPU Address Space ...69

8.2 Looking at Acode ...69
Methods of Interpreting the Contents of Acode Files70

8.3 Structure of Acode Files ...74
Acode File Header ..74
LC Data Structure ...75
The AUTOD Data Structure ...78
The Instruction Section ...79

8.4 Acode Interpretation ...82
FIFO Flow ..82
Acode Size Limitations, Acode Buffering ...83

Chapter 9. Pulse Programmers ... 85

9.1 Layout of the Pulse Programmer ..85

9.2 Fast Bits ..88

9.3 Timers and Timer Words ..89

9.4 Problems with Timer Word Errors ...92

9.5 Timer Words and Fast Bits in the Acode ..93

Chapter 10. Phase Calculations ... 95

10.1 How Do Phase Calculations Work? ...95
The Tools ..95
Phase Calculations in the Acode ..98

10.2 Case 1: Decoding Phase Calculations ..99

10.3 Case 2: Creating Phase Math for Given Phase Tables101
Simple Phase Cycles ..101
Complex Phase Cycles ..103
Phase Cycles for Many Pulses ...106

10.4 Real-Time Logical Decisions ..106

10.5 Steady-State Phase Cycling ...109

Table of Contents

01-999014-00 A0398 VNMR Pulse Sequences 7

10.6 C Constructs and Phase Calculations ..110

10.7 Why Phase Calculations? ..111

10.8 Real-Time Random Numbers ..112

Chapter 11. Phase Tables ... 115

11.1 Basic Syntax ..115
Shorthand Notation ..116
Advanced Features ...117
How Does a Table Work? ..119

11.2 Inline Phase Tables ..120

11.3 Table Math ...121

11.4 Phase Tables in the Acode ...122

11.5 Tables vs. Real-Time Calculations ..123
Point-to-Point Comparison ..123
Comparison by Examples ..124

11.6 Combining the Best of the Two Worlds ..129

11.7 Using Tables as Source for Random Numbers ..135

Chapter 12. AP Bus Traffic ... 137

12.1 What Is the AP Bus ...137

12.2 What Devices are Driven by the AP Bus? ...139

12.3 AP Bus Words in the Acode ..140

12.4 Timing Considerations ..141

Chapter 13. Acquisition CPU Communication ... 145

13.1 Regular Pulse Sequence Communication ..145

13.2 Diagnostics and Error Output ..146

Chapter 14. Repeating Events ... 147

14.1 C Loops ...147

14.2 Real-Time Loops ...148

14.3 Hardware Loops ..150

Chapter 15. Decisions ... 155

15.1 Decisions and Branchings in C ..155
Decisions Set by the status Statement ...159
Checking Flag Parameters ...160

15.2 Real-Time Decisions ...160
Programming Real-Time Decisions ...160
Generating the Flag Variable ...162

Chapter 16. Waveform Generators .. 163

16.1 How Does a Waveform Generator Fit Into the System?163

Table of Contents

8 VNMR Pulse Sequences 01-999014-00 A0398

16.2 How Does a Waveform Generator Work? ...165
Sequence of Events in a Waveform Generator ..167
How Are Patterns Stored in a Waveform Generator?168
Waveform Generator Instruction Words ..169
Waveform Generator Data File ..170
Executing Waveform Generator Patterns ..172

16.3 Using Waveform Generators for Shaped Pulses ...172
Programming Shaped Pulses: An Example ...173

16.4 Using Waveform Generators for Programmed Modulation177
Programming Pattern Decoupling and Spinlock Experiments178
How Does Pattern Modulation Work Internally?183

16.5 What If a Waveform Generator Is Not Available ..189
Programmed Decoupling ...189
Shaped Pulses ..190

16.6 Using a Waveform Generator for Shaping Gradient Pulses195

Chapter 17. Pulsed Field Gradients ... 199

17.1 Pulse Sequence Statements for PFG Gradient Control199

17.2 Shaping Pulsed Field Gradients ..202

17.3 PFG Experiments Using Homospoil Pulses ..204

Chapter 18. Acquiring Data ... 205

18.1 Implicit Acquisition ..205

18.2 Explicit Acquisition ..208

18.3 Multi-FID Sequences ..209

18.4 Receiver Phase Shifting ...210
Detection of NMR signals ...210
Quadrature Receiver Phase Shifts ...212
Small Angle Receiver Phase Shifting ..213

18.5 Housekeeping Delays ..214

Chapter 19. Multidimensional Experiments .. 215

19.1 Indirect Time Domain Incrementation ..215

19.2 nD Quadrature Detection ..217
Absolute Value nD Experiments ...217
Phase-Sensitive nD Experiments: States/Haberkorn/Ruben217
Axial Peak Displacement (FAD) ...219
Phase-Sensitive nD Experiments: TPPI ..219
Phase-Sensitive nD Experiments: Arrayed TPPI220
Folding in Indirect Dimensions ...221
Combined Implementations ...222
Coherence Selection through Gradients ..225

Table of Contents

01-999014-00 A0398 VNMR Pulse Sequences 9

Chapter 20. Solid-State NMR Experiments ... 227

20.1 Cross-Polarization MAS Experiments ..227
AP Bus Events in CP/MAS Experiments ..227
Using a Waveform Generator in CP/MAS Experiments228

20.2 Sideband Suppression in MAS Experiments ...230

20.3 Rotor Synchronization ...233
Measuring the Rotor Period Duration ..233
Waiting for Triggers ...234
Rotor-Synchronized Experiments ..235

20.4 Multipulse Experiments ...235

20.5 Other Line-Narrowing Techniques ..236

Chapter 21. (Micro)Imaging Experiments ... 239

Chapter 22. Role of Macros and Parameters .. 241

22.1 Creating New Parameters in VNMR ...242

22.2 Using New Parameters in C ...246
Numeric Parameters ...246
String Parameters ...246

22.3 Adding New Parameters to the Display ..247

22.4 Doing It All by Macro ...248
Macros for 1D Pulse Sequences ..248
Macros for 2D Pulse Sequences ..251

22.5 Switching Between Similar Sequences ...252

Chapter 23. Putting It All Together .. 255

23.1 Starting a New Sequence ...255
Programming by Modifying an Existing Pulse Sequence255
Programming by the Top-Down Approach ..255

23.2 Testing a Sequence and Related Files ...256

23.3 Submitting a Pulse Sequence to the User Library ...257

Chapter 24. Syntax Guidelines .. 259

24.1 General C Syntax ...259
Comments ..259
Indentation ...259
Variables ..260

24.2 Outdated PSG Utilities ..260
Device Addresses ...260
Functions with Device Addresses ..261
Replacing power and pwrf Statements ..262
C Constructs for Phase-Sensitive nD NMR ...263

24.3 General Considerations ...263
Multipurpose Sequences ..263

Table of Contents

10 VNMR Pulse Sequences 01-999014-00 A0398

Using dps ...263

Chapter 25. Debugging a Pulse Sequence .. 265

25.1 Debugging the Parameters ..266

25.2 Debugging the Software ..266

25.3 Debugging the Hardware ..267

Index .. 269

01-999014-00 A0398 VNMR Pulse Sequences 11

List of Figures

Figure 1. Stages of pulse sequence execution.. 16

Figure 2. Compiling from themake utility ... 19

Figure 3. Diagram of thecpp program andinclude files...................................... 20

Figure 4. Thelint check ... 24

Figure 5. Compiling and linking to form an executable program 25

Figure 6. Events associated with thepsggen shell script .. 30

Figure 7. Timing diagram with transmitter, receiver, and transmitter phase 42

Figure 8. Switching mode for receiving an NMR signal ... 43

Figure 9. Maximum power directed into the probe ... 43

Figure 10. Timing diagram in “real life” ... 44

Figure 11. Phase shifting on UNITYplus systems... 46

Figure 12. Phase shifting on systems prior to UNITYplus.. 46

Figure 13. Filter delay.. 51

Figure 14. Block diagram for a pulse programmer.. 53

Figure 15. Processes surrounding thego command.. 55

Figure 16. Acquisition control byAcqproc ... 60

Figure 17. Digital components of a spectrometer.. 65

Figure 18. Structure of the pulse programmer... 85

Figure 19. UNITYplus waveform generator circuitry ... 164

Figure 20. UNITY programmable pulse modulator circuitry.................................. 165

Figure 21. Waveform generator board ... 166

Figure 22. Detection of NMR signals.. 210

01-999014-00 A0398 VNMR Pulse Sequences 12

List of Tables

Table 1. Pulse programmer characteristics ... 87

Table 2. Fast bit assignments, output boards and acquisition control boards 88

Table 3. Fast-bit assignments on pulse sequence control boards 90

Table 4. Single- and double-precision timer word characteristics 92

Table 5. Single- and double-precision timer word characteristics, output boards 92

Table 6. Real-time math operators .. 96

Table 7. Predefined AP bus delay constants. .. 142

Table 8. PSG hardware flag and configuration variables .. 156

Table 9. Waveform generator instruction words ... 169

Table 10. Waveform generator gate control for pulse shapes 174

Table 11. Comparison of waveform generator pattern words 196

Table 12. Dealing with real and imaginary signal components 213

Table 13. VNMR acquisition parameters used fornD experiments 215

Table 14. Variables used in nD pulse sequences .. 215

Table 15. VNMR parameter types and propertie .. 242

Table 16. Predefined, indirect parameter limits .. 244

Table 17. RF channel naming convention .. 261

Table 18. Equivalent PSG functions with and without device address 261

01-999014-00 A0398 VNMR Pulse Sequences 13

Disclaimer

The information in this manual is intended to assist users in topics
beyond the normal NMR spectrometer system hardware and software
support provided by Varian. Some of this information is provided on an
as-is basis, and Varian support and service personnel may be unable to
answer questions related to information given in this manual.

Foreword

The main purpose of this manual is to complement the contents of the manualVNMR
User Programmingby providing comprehensive information on theentire subject
of pulse sequence programming and execution as well as spectrometer control, trying
to open up “black boxes” or “white spots” that might exist in a user’s vision of a
UNITYplus, UNITY, or VXR-S spectrometer. No attempt was made to describe all
pulse sequence functions in detail—many of them will not even be mentioned here, but
are covered by the manualVNMR User Programming .

Not all of the sections are equally important for the pulse sequence programmer. Most
certainly it is possible to write correct pulse sequences without having access to the
material presented here. It is the author’s firm belief, however, that somebody who has
more background knowledge on pulse sequence and spectrometer internals (as
presented in this manual) will be more efficient and will less likely get stuck with the
question of “How do I implement this on my spectrometer?”.

The chapters onseqgen andpsggen (chapters 2 and 3) are mainly written for people
that want to learn about the programming internals of a pulse sequence, or for users that
want to implement changes or new features in the pulse sequence overhead; sections
that deal with Acode can be skipped by those who are not interested.

The material was originally written as documentation for the pulse sequence
programming part of the Varian courses for users of Varian VXR-S, UNITY, and
UNITYplus NMR spectrometers using VNMR software. Any input that would help
improve this manual is very welcome.

Note that the specifics of theUNITYINOVA arenot discussed—this will be covered in a
future version of the manual. However, apart from some differences in the digital
hardware, the basic concepts shown in this material are still valid also on the
UNITYINOVA (see also the note below on software compatibility).

The present version of this manual specifically refers to VNMR version 5.1 and is
partly inconsistent with earlier and later VNMR releases (in particular, the Acode
structure for theUNITYINOVAis different, and theapdecode software mentioned in this
manual will not work on the VNMR 5.2 software release). Most Acode printouts have
been generated under VNMR 4.3 and are slightly different from Acode printouts
obtained withapdecode under VNMR 5.1.

Rolf Kyburz
Varian International AG, Zug/Switzerland
February 1996

14 VNMR Pulse Sequences 01-999014-00 A0398

Acknowledgments

The author would like to thank his colleagues for their thorough proofreading,
suggestions, and helpful discussions, as well as the Varian service personnel for
withstanding the author’s endless questions on the subject of this manual. In particular,
Andy Myles (service supervisor in Darmstadt) has been extremely helpful in providing
technical information.

Conventions in This Manual

The following notational conventions are used throughout all VNMR manuals:

• Typewriter-like characters are used to represent UNIX or VNMR commands,
parameters, directories, and file names in the text of the manual; for example:

Theshutdown command is in the/etc directory.

• Typewriter-like characters are also used for text displayed on the screen, including
the text echoed on the screen as you enter commands; for example:

Self test completed successfully.

• Italicized typewriter-like characters are used for text displayed on the screen that
is not the same every time; for example,

Abort at some_address

means the value of “some_address ” depends upon when the abort command is
made—what you might see on the screen is a message like this:

Abort at 47F82

• Special characters are used for keys on the keyboard and menu buttons on the
screen; for example,

Press theReturn key or select theDisplay button.

• Text shown between angled brackets in a syntax entry is optional. For example, if
the syntax isseqgen s2pul<.c> , entering the “.c ” suffix is optional, and
typing seqgen s2pul.c or seqgen s2pul is functionally the same.

• Lines of text containing command syntax, examples of statements, source code,
and similar material are often too long to fit the width of the page. To show that a
line of text had to be broken to fit into the manual, the line is cut at a convenient
point (such as at a comma near the right edge of the column), a backslash (“\ ”) is
inserted at the cut, and the line is continued as the next line of text. This notation
will be familiar to C programmers. Note that the backslash is not part of the line
and, except for C source code, should not be typed when entering the line.

• Because pressing theReturn key is required at the end of almost every command
or line of text you type on the keyboard, use of theReturn key will be mentioned
only in cases where it isnotused. This convention avoids repeating the instruction
“press theReturn key” throughout most of this manual.

01-999014-00 A0398 VNMR Pulse Sequences 15

Chapter 1. Overview

This manual discusses the underlying functionality of the generation and execution of
pulse sequences under VNMR. The idea is to provide the advanced pulse sequence
programmer with a comprehensive insight into all aspects of pulse sequence
generation. With better understanding, avoiding mistakes and writing more efficient
pulse sequences should be possible, while at the same time moving towards more
complex experiments.

1.1 Pulse Sequence Execution

Before going into details, let us review the various stages of pulse sequence generation
and execution (seeFigure 1):

• At the center of pulse sequence execution is the commandgo , which executes a
compiled pulse sequence fromseqlib , based on parameters from the current
experiment and system configuration parameters (/vnmr/conpar). If external
phase tables are used, these are retrieved fromtablib , and pulse shapes or other
waveform generator patterns are retrieved fromshapelib . go stores its output
(Acode, the data that result from executing the file inseqlib) in the directory
/vnmr/acqqueue .

• Beforego can be called, the parameters in the current experiment must be
prepared. This is usually done by calling a macro (frommaclib) with the name
of the pulse sequence. This macro creates the necessary new parameters, usually
from a library (parlib) with pulse sequence specific parameters, and it usually
displays a text file with information about the pulse sequence.

• Beforego can execute the pulse sequence file inseqlib , the pulse sequence file
in psglib must be compiled using the commandseqgen . This requires various
files and libraries in a directorypsg . seqgen itself internally is a complicated,
multi-stage process, while for the user it looks like a simple command.

• The libraries of precompiled files required forseqgen have to be created first.
This is done using a commandpsggen , which again involves numerous source
and header files in the directorypsg . This step is normally not necessary for the
user, because a complete set ofpsg libraries is part of the standard distribution
tape.

• Once the pulse sequence file inseqlib has been successfully executed, the
programAcqproc takes the Acode from/vnmr/acqqueue , transmits it via
SCSI bus to the acquisition CPU (via the HAL, the Host-to-Acquisition Link),
monitors the acquisition, stores the experimental data in the appropriate FID file
within the experiment from which the acquisition has been started, and notifies
VNMR at specific points in the acquisition (error condition, block size, and
number of transients or entire experiment completed).

• In the acquisition CPU, the Acode is executed (interpreted), which results in
information being fed into the pulse programmer or directly into the spectrometer
that interacts with the magnet and the probe.

Chapter 1. Overview

16 VNMR Pulse Sequences 01-999014-00 A0398

• The pulse programmer board controls almost all of the spectrometer (rf channels,
waveform generators, frequency synthesis, receiver chain), including the analog-
to-digital converter (ADC), which produces a new FID that is transferred to the
sum-to-memory board (STM), which adds the current FID to the previous data in
the HAL memory, from whereAcqproc retrieves the final (or preliminary) FID
onto the Sun memory (and disk).

1.2 What to Expect in This Manual

In the following chapters, every single step in the above process is discussed in detail,
starting with pulse sequence generation and thepsggen step, continuing withgo , then
looking into the things that happen in the acquisition CPU and the spectrometer, while
continuously adding knowledge about pulse sequence statements (sometimes also
called elements or functions in VNMR documentation).

In the end, we will come back to the “origin” and discuss how the front end for the user
(the user interface of a pulse sequence) is constructed.

parameters

parlib/cosy.par

macro

maclib/cosy

manual file

manual/cosy

local

expn/curpar

phase tables

tablib/cosy

shapes / pattern

shapelib/*

sequence

seqlib/cosy

sequence source

psglib/cosy.c

psg/libpsglib.a

psg source

psg/*.[chp]

psggen other precom-
piled modules

seqgen cosy

global

conpar

parameters parameters executable

go

Acodes

Acqproc FID

expn/acqfil/fid

SCSI driver

HAL /
Acquisition CPU

Spectrometer Probe & Sample

Pulse
Programmer

ADCSTM

Figure 1. Stages of pulse sequence execution

/vnmr/acqqueue/expn.username.procID.Code

01-999014-00 A0398 VNMR Pulse Sequences 17

Chapter 2. Sequence Generation: seqgen

The central step in the creation of a new pulse sequence is the compilation of the pulse
sequence source code, which results in an executable file (with the name of the pulse
sequence inseqlib , the library for compiled pulse sequences).

2.1 Modifying the File for dps

The VNMR commandseqgen calls a UNIX shell script/vnmr/bin/seqgen with
the same argument (the name of the pulse sequence with or without.c extension).
seqgen can also be called from a UNIX environment:

seqgen sequencename<.c>

The UNIX file /vnmr/bin/seqgen is a lengthy shell script that first checks for all
the files that are necessary for a successful compilation, then it checks for the presence
of a program/vnmr/bin/dps_ps_gen . If this program is found, it is executed:

dps_ps_gen seqgencename.c $HOME/vnmrsys/psglib 2

This results in a new filesequencenamedps.c (the name of the pulse sequence
source file withdps inserted between the extension and the body of the name:

The newdps -modified file contains both the original text of the pulse sequence in the
first part, plus a new, second part for thedps command, which graphically displays the
pulse sequence (enclosed in#ifndef LINT . . . #endif , such thatlint (the syntax
checker) does not “look” at this part of the file):

#include <standard.h>

pulsesequence()
{

/* equilibrium period */
status(A);
hsdelay(d1);

/* tau delay */
status(B);
pulse(p1, zero);
hsdelay(d2);

sequence source

psglib/cosy.c

seqgen cosy dps_ps_gen

intermediate source

psglib/cosydps.c

Chapter 2. Sequence Generation: seqgen

18 VNMR Pulse Sequences 01-999014-00 A0398

* observe period */
status(C);
pulse(pw,oph);

}

#ifndef LINT

extern FILE *dpsdata;

x_pulsesequence()
{

fprintf(dpsdata, "\n status A %f ",pw);
fprintf(dpsdata, " D_d1 %.9f ", d1);

fprintf(dpsdata, "\n status B %f ",pw);
fprintf(dpsdata, " P_p1 %.9f ", p1);
fprintf(dpsdata, " D_d2 %.9f ", d2);

fprintf(dpsdata, "\n status C %f ",pw);
fprintf(dpsdata, " P_pw %.9f ", pw);

}

#endif

The second part of thedps -modified file contains all functions of the first part,
prepended with “x_ ” (e.g.,x_pulsesequence() instead ofpulsesequence()).
Comment is removed, and internal functions (pulse, delay, etc.) are replaced by
functions that print some symbolic text into a temporary text file (curexp/dpsdata ,
referenced here asdpsdata). The VNMRdps command then decodes this text file.
The internal structure and functionality of this text file will not be discussed any further
here—this is beyond the scope of this manual.

If there was any C errors in the pulse sequence, such errors very likely would be
propagated into the second part, leading to an increased number of error messages
(despite the fact that the second part is “hidden fromlint ” through#ifndef LINT
and#endif). For this reason,seqgen recompiles the pulse sequencewithoutthedps
modifications upon detection of errors with the compilation of thedps -modified file.

2.2 Running the make Program

All subsequent steps are performed usingmake, a UNIX program that facilitates the
compilation of complex objects and also checks on the modification date of the files
involved.make avoids an unnecessary compilation if an up-to-date executable already
exists (seeChapter 3, “Object Library Generation: psggen,” on page 29). make then
callscpp (the C preprocessor),lint (syntax checking), andcc (the C compiler and
linker). If, at any of these stages, error messages are produced, the messages are stored
in a separate fileerrmsg , which is displayed byseqgen at the end of the operation.

Themake program takes its instructions from/vnmr/acqbin/seqgenmake , a
special “make file.” If at the end of the entire process an executable is obtained, the
dps part of the name is removed by theseqgen script and the executable pulse
sequence is stored inseqlib . Figure 2 is a diagram of themake process.

2.3 Calling the C Preprocessor

01-999014-00 A0398 VNMR Pulse Sequences 19

2.3 Calling the C Preprocessor

Compiling a C program always involves first a call to the C preprocessor, which has
the task of removing comments and resolving all the preprocessor statements in the C
code. The C preprocessorcpp (or cc -P) is normally invoked implicitly as part of the
cc command, and its output is directly fed into the next stage of the compilation. For
the lint syntax check, however, the C preprocessor is called explicitly:

cc -P -DLINT -I$HOME/vnmrsys/psg -I/vnmr/psg sequencename.c

This generates a filesequencename.i , which is then subjected to thelint check.
The option-DLINT defines the preprocessor variableLINT (i.e., we are explicitly
including source sections between#ifdef LINT and#endif , and explicitly
excluding parts between#ifndef LINT and#endif) . The-I options specify the
path(s) to VNMR-specificinclude files.

The major task for the C preprocessor is the resolution ofinclude statements,
macros, and constants. In a first step, theinclude statements have to be identified and
replaced with the contents of the file they indicate. Every C program has at least one
include statement:

#include <stdio.h>

This statement incorporates the file/usr/include/stdio.h . VNMR pulse
sequences usually also have a singleinclude statement:

#include <standard.h>

This statement incorporates the file/vnmr/psg/standard.h (or the file
$HOME/vnmrsys/psg/standard.h , both paths are specified in the call to
cc -P), andstandard.h is mostly a collection of furtherinclude statements.

The programcpp recursively resolves all these lines, until no otherinclude lines are
found.Figure 3 is a diagram of thecpp program incorporating theinclude files.

The firstinclude file from /vnmr/psg/standard.h is stdio.h (as for any C
program). All otherinclude files (oopc.h , acqparms.h , rfconst.h ,
aptable.h , power.h , macros.h , andapdelay.h) are from thepsg directory,

seqgen cosy make

intermediate source

psglib/cosydps.c

cpp

lint

cc -c

cc -o

makefile

acqbin/seqgenmake

preprocessed source

psglib/cosydps.i

object file

psglib/cosydps.o

linked executable

seqlib/cosydps

error messages

psglib/errmsg

psg/libparam.a

object libraries

psg/libpsglib.a

Figure 2. Compiling from themake utility

Chapter 2. Sequence Generation: seqgen

20 VNMR Pulse Sequences 01-999014-00 A0398

either in/vnmr or in $HOME/vnmrsys . The fileoopc.h calls for anotherinclude
file named/usr/kvm/sys/sys/types.h .

The purpose of all theinclude files is two-fold:

• To declare external definitions for functions and variables that are defined (or
initialized) in another source module (which is precompiled and will simply be
linked from an object library).

• To resolve constants and macros. These are pure preprocessor functions and must
be resolved before the compiler can be called. These further modify the pulse
sequence text for the C compiler (which doesn’t understand constants or macros).

Most of theinclude files for pulse sequences deal with external declarations of
functions and variables, or with the definition of constants. Macros are defined in the
include file psg/macros.h (macros are just a more sophisticated type of
constant). Because at least some of theseinclude files contain information that can
be very helpful to pulse sequence programmers, they are briefly discussed here:

• stdio.h defines the I/O functions for C. Nearly all C programs include
stdio.h .

• psg/oopc.h defines some message structures and all the constants required in
connection with general (object-oriented) routines likeG_Pulse andG_Delay ,
which are described in the manualVNMR User Programming.

• psg/acqparms.h defines all (externally declared and initialized) variables
related to acquisition parameters (pw, p1 , d1 , d2 , d3 , d4 , etc.), externally defined
code addresses (ct , oph , zero , one , two , three , v1 , v2 , v3 , etc.) and objects
(mostly structures), and the indices for the various rf channels.

• psg/rfconst.h defines constants such asTRUE andFALSE, fast bit offsets
(hexadecimal constants) for the fast bits in VXR/UNIT- style output boards and
acquisition control boards, device addresses (TODEV, DODEV, etc.), status field
constantsA (=0) toZ (=25), and a few others.

seqgen cosy

make

cpp

...

psglib/cosydps.c

#include <standard.h>
...

psg/standard.h

#include <stdio.h>

psglib/cosydps.i

precompiled source

#include “oopc.h”
#include “acqparms.h”
#include “rfconst.h”
#include “aptable.h”
#include “power.h”
#include “macros.h”
#include “apdelay.h”
...

/usr/include/stdio.h

psg/oopc.h

#include <sys/types.h>
...

/usr/sys/sys/types.h

psg/acqparms.h

psg/rfconst.h

psg/aptable.h

psg/power.h

psg/macros.h

psg/apdelay.h

Figure 3. Diagram of thecpp program andinclude files

2.3 Calling the C Preprocessor

01-999014-00 A0398 VNMR Pulse Sequences 21

• psg/aptable.h defines constants and structures used in connection with tables,
including the (externally defined) table addressest1 to t60 .

• psg/power.h defines a few constants used in connection with theG_Power
general power statement, described in the manualVNMR User Programming.

• psg/macros.h defines constants used specifically with macros as well as all the
macros used in pulse sequences. Most of the statements used in pulse sequences
are actually macros that are converted into very few general statements such as
G_Pulse andG_Delay .

• psg/apdelay.h defines constants (macro functions in reality) that specify the
implicit delays involved with AP bus statements. Whenever possible, these delay
constants (e.g.,POWER_DELAY, SAPS_DELAY, OFFSET_DELAY) should be used
instead of direct numeric values (e.g.,14.95e-6) in pulse sequences.

The reason why there are many differentinclude files is that specific parts of the
“overhead” defined in these files are used by various other source modules as well, and
the “packaging” is defined by the needs of these other source modules. If there was
only one source module (the pulse sequence itself), there would probably be a single
include (“header”) file.

Macros are a special kind of constant that allow for arguments. Let’s take the definition
of decpulse (from psg/macros.h) as an example:

#define decpulse(DECch,phaseptr) \
G_Pulse(PULSE_DEVICE, DECch, \

PULSE_WIDTH, length, \
PULSE_PHASE, phaseptr, \
PULSE_PRE_ROFF, 0.0, \
PULSE_POST_ROFF, 0.0, \
0)

The two arguments to thedecpulse statement become arguments 4 and 6 of the
G_Pulse statement; the other arguments in the general statement are determined by
the macro name.

The C preprocessor dramaticallychanges the text of the original pulse sequence file,
primarily by replacinginclude lines by the text of theinclude files (and
recursively substituting text forinclude lines contained therein). The text of the
pulse sequence function itself is different after the substitution of macros and constants
(apart from the elimination of comment lines). Look at the simplepulsesequence
function of a S2PUL (standard two-pulse) pulse sequence:

pulsesequence()
{

/* equilibrium period */
status(A);
hsdelay(d1);

/* tau delay */
status(B);
pulse(p1, zero);
hsdelay(d2);

/* observe period */
status(C);
pulse(pw,oph);

}

Chapter 2. Sequence Generation: seqgen

22 VNMR Pulse Sequences 01-999014-00 A0398

After the constantsA, B, andChave been substituted, and the pulse macros have been
replaced by the correspondingG_Pulse calls, the function consists of the following
lines (the blank lines that result from the elimination of comments have been removed):

pulsesequence()
{

status(0);
hsdelay(d1);
status(1);
G_Pulse(1, p1, 5, zero, 0);
hsdelay(d2);
status(2);
G_Pulse(1, pw, 5, oph, 0);

}

Note that the constants within the arguments toG_Pulse have been replaced by their
numeric values: the result of the C preprocessor is not meant to be read by humans but
rather adjusted for the C compiler. What is left are pure C control structures, function
names, variables, and (numeric or string) constants. Remember that C knows symbolic
constants only through preprocessor definitions.

The C preprocessor includes another useful feature that was briefly mentioned earlier
in this chapter: conditional compilation. Based on the definition of a (preprocessor)
variable, certain sections of a source file can be specifically excluded or included. This
feature is used extensively in the “overhead” to pulse sequences (seeChapter 3,
“Object Library Generation: psggen,” on page 29). In pulse sequences, this feature is
only used to hide things fromlint , which would otherwise lead to an error message:

#ifndef LINT
static char SCCSid[] = "@(#)cosy.c 3.1...”;
#endif

The second line would normally cause an error message fromlint , because the array
variableSCCSid is defined but not used (see below). Such preprocessor flags can
either be defined in the file itself (#define LINT ; note that this definition has a name,
but no value) or through an argument (-Dflagname) with the preprocessor or the C
compiler call, for example:

cc -P -DLINT -I$HOME/vnmrsys/psg -I/vnmr/psg sequencename.c

2.4 Checking Syntax with lint

One of the drawbacks of the C programming language is the fact that its compiler has
little error detection. The compiler only finds some very coarse syntactical errors, such
as a mismatch in the parentheses or braces, and eventually also missing semicolons.
Anything more subtle—such as a variable type mismatch, the use of uninitialized (or
even undefined) variables, a mismatch in the number of arguments to a function, etc.—
remains undetected by the compiler itself. With all the syntactical traps and pitfalls
(e.g., using& instead of&&, or | instead of|| makes perfect sense in C), this weakness
could make it a very difficult language for occasional pulse sequence programmers.
Fortunately, there islint , the C syntax checker.

The programlint can be called on any C source program.lint usually makes lots
of output covering two aspects: definite errors and possible errors (the latter includes
warnings about the possibility of exceeding the limits on arrays, if using an array).
Error detection is not a problem withlint —it’s rather that often the output is

2.4 Checking Syntax with lint

01-999014-00 A0398 VNMR Pulse Sequences 23

overwhelming. For that reason, in checking pulse sequences,lint is called with some
of its checking features turned off (e.g., options-n , -u , -v , -z ; seeman lint).

Like cc , lint first calls the C preprocessorcpp to resolve preprocessor statements
(definitions, macros, and conditional sections). In the case of pulse sequences, this step
would have the undesirable effect that the original macro syntax would be lost (and
with it possibly errors in the arguments to macros) because macros would be resolved
to object-oriented function calls, where argument type-checking is nearly impossible
(at thelint level). For this reason, most of the filepsg/macros.h is divided into
two sections—one for the normal compilation (#ifndef LINT) and the other for the
lint pass (#else ...#endif). Thelint version is generated in an explicit call to the
C preprocessor:

cc -P -DLINT -I/vnmr/psg -I$HOME/vnmrsys/psg sequencename.c

The lint part ofpsg/macros.h does not resolve the macros into their C function
equivalents. It simply changes the macro name from lower to upper case (leaving the
arguments intact), while constants are still replaced. The simplified S2PUL pulse
sequence above would then look as follows in the correspondings2pul.i file:

pulsesequence()
{

status(0);
hsdelay(d1);

 status(1);
PULSE(p1, zero);
hsdelay(d2);
status(2);
PULSE(pw, oph);

}

Subsequently,lint checks the syntax in this version of the file, and it “knows” the
argument number and types for all the uppercase “pseudo functions.”

How doeslint know about syntax rules and, in particular, the syntax and types for
externally defined functions and variables? The secret is a special library that is
involved automatically with everylint call. For simple, standard C programs, this
library is the file/usr/lib/lint/llib-lc.ln . This file is used automatically
unless a specific rules file is specified with thelint call. For VNMR, a dedicated
library file psg/llib-lpsg.ln has been created with a speciallint call, using the
-C option:

lint -a -n -z -DLINT -Cpsg lintfile.c

The file lintfile.c contains all the pulse sequence functions that are checked and
all the externally defined variables and addresses. Different from the real functions, the
functions in lintfile.c have a null body ({}). On the other hand, these functions
have the same (complete) argument type declarations as their real equivalents.

As an example, let’s take thelint definition of thergpulse statement:

RGPULSE(pulsewidth, phaseptr, rx1, rx2)
double pulsewidth, rx1, rx2; codeint phasptr; { }

Chapter 2. Sequence Generation: seqgen

24 VNMR Pulse Sequences 01-999014-00 A0398

For thelint check,lint is called with all the preprocessor options (even though it
actually operates on the preprocessed filesequencenamedps.i):

lint -a -c -h -u -z -v -n -DLINT
-I$HOME/vnmrsys/psg \
-I/vnmr/psg sequencenamedps.i \
/vnmr/psg/llib-lpsg.ln >> errmsg

The output of thelint check is fed into the error message fileerrmsg (seeFigure 4).

Of course, VNMR is delivered withpsg/llib-lpsg.ln , a completelint library
file. There seldom should be a need for a user to re-create this library file—perhaps
only if somebody creates a new external function and wants to have it checked by
lint . Note that unlike other files involved in pulse sequence generation, thelint
library file mustreside in/vnmr/psg unless themake file seqgenmake is modified
for a local file.

Error messages and warnings fromlint are added to the error messages fileerrmsg .
The compilation does not stop upon error messages from the C preprocessor or the
lint step; such messages are taken as warnings only and in the end lead to a message
from seqgen : “Pulse sequence did compile, but may not function properly . . .”

2.5 Compiling and Linking

Once the syntax of the pulse sequence is checked,make proceeds to the compilation,
which is done in two steps: first, the pulse sequence module is compiled and, second,
the resulting object module is linked with other precompiled modules to form an
executable program (seeFigure 5).

The actual pulse sequence compilation is done bymake with the commandcc -c ,
which calls the C preprocessor implicitly. This time, of course, the-DLINT option is
not specified, such that macros are resolved into the proper C functions. Also, sections
that were skipped for thelint pass because they would lead to error messages, such
as the definition of theSCCSid string (see above), are now included.

seqgen cosy

make

lint

psglib/cosydps.c

modified source file

psglib/errmsg

error messages

cc -P -DLINT

psglib/cosydps.i

preprocessed source

psg/lintfile.c

lint source

lint -C

psg/llib-lpsg.ln

lint library

Figure 4. The lint check

2.5 Compiling and Linking

01-999014-00 A0398 VNMR Pulse Sequences 25

The compilation is performed with the following command string:

cc -O -I$HOME/vnmrsys/psg -I/vnmr/psg -c sequencenamedps.c

where-O is the code optimizer option. Note that-O is the same as-O2 , which means
level 2 optimization (seeman cc for more information). The-I options are for the
preprocessor, which needs to be told where to find the VNMR-specificinclude files.
With the-c option, the compiler does not produce an executable program, but rather
an object module filesequencenamedps.o . In case of compilation errors, this file
is missing,make aborts, andseqgen reports all errors that were detected up to that
point1. The resulting object modulesequencenamedps.o is not executable, because
it is the bare compiled pulse sequence function, with all the references to external
variables and functions but without the actual code for them.

In order to arrive at an executable file,make callscc again (in reality the call may
differ slightly, depending on the software and hardware configuration; also, for various
reasons, the syntax in themake file is somewhat different):

cc -O -Bstatic -s -L/vnmr/psg -o sequencenamedps \
sequencenamedps.o -lpsglib -lparam -lm

The-O option again specifies the code optimizer. All other options are not forcc itself,
but for ld , the so-called link editor, which is called bycc :

ld -s -Bstatic -L/vnmr/psg -o sequencenamedps \
-lpsglib -lparam -lm sequencenamedps.o

The-s option causesld to strip the so-called “symbol table and relocation bits” (used
by debuggers) to save disk space.-Bstatic causes the externally referenced libraries
to be linked (attached) statically (see below); the-L option permits specifying
additional directories whereld searches for libraries; and the argument
-o sequencenamedps specifies the name of the executable target file.

1 The command/usr/ucb/cc (a shell script) works in two steps: the actual C compiler
intermediately produces assembly language code (*.s), which is then converted to an object module
using theas command (assembly language compiler). The first step can also be done explicitly using
the-S option to thecc command.

seqgen cosy

make

psglib/cosydps.c

modified source file

cc -c

cpp

psglib/cosydps.o

object module

psglib/errmsg

error messages cc -o

seqlib/cosydps

executable sequence

ar x

psg/*.o

object modules

psg/libparam.a

object library

psg/libpsglib.a

object library

/usr/lib/libm.a

object library

Figure 5. Compiling and linking to form an executable program

Chapter 2. Sequence Generation: seqgen

26 VNMR Pulse Sequences 01-999014-00 A0398

The last three options (-lpsglib , -lparam , and-lm) specify the three libraries
from where external modules are loaded:libpsglib.a andlibparam.a (both
normally in/vnmr/psg), and/usr/lib/libm.a . The latter contains the math
libraries (extended floating point math functions), the former two contain all the
VNMR-specific compiled external modules found in the directory/vnmr/psg . The
link editor ld should normally be able to resolve all references to external functions
and variables; otherwise, error messages result.

In the early releases of VNMR, the description above was the way the link loader
worked. Meantime, pulse sequence overhead gained complexity, and each statically
linked executable pulse sequence became 250 to 400 Kbytes (Sun-3 vs. Sun-4). With
about 50 pulse sequences in the standard release, this takes about 10 to 20 Mbytes of
disk space. Moreover, all of these sequences would have thesamemodules linked (i.e.,
a large portion of disk space is lost for 50 copies of almost the same software).

In this situation, it was very useful that Sun introduced the concept of dynamic binding
and shared objects (libraries) with SunOS 4. Instead of binding (linking) all external
modules at compile time, these objects are put into a specialshared library: a library
that is accessed and used by many object modules at run-time (when they are called)2.

For pulse sequences, the run-time aspect of shared objects is not relevant, because the
cases where two pulse sequences are called at the same time on a single system does
not happen normally (the “call” in this case only means the seconds of execution time
upon typinggo). On the other hand, with run-time linking, every pulse sequence only
occupies 16 or 24 Kbytes on the disk3, saving considerable disk space. By default,
seqgen uses dynamic binding (run-time linking) when compiling pulse sequences.

How is dynamic run-time linking enabled and used in practice? To prepare for using
run-time linking, a new file has to be created that combines the contents of the library
files psg/libpsglib.a andpsg/libparam.a in a suitable format. For VNMR,
such files are included under the namespsg/libpsglib.so.x.y and
psg/libparam.so.x.y , wherex andy indicate the major and minor revision
number (in VNMR 4.3A the revision number is 5.0). The idea behind the revision
numbers is that if several revisions of these files coexist in the same directory, only the
last one (the one with the highest revision number) is used. Theso stands for “shared
objects.”

During the compilation, static linking must be prevented. This outcome is achieved by
omitting the-Bstatic option during the link loading (dynamic linking is the default).
This way we get executables without the shared objects, and it turns out that for pulse
sequences these files are only 16 or 24 Kbytes, again in multiples of 8 Kbytes (i.e., we
save about 95% of the disk space that would be used with static binding). Invisibly for
the user, atgo time, the system now picks the executable fromseqlib , links it with
thepsg/libpsglib.so.x.y library with the highest revision number, and
executes the resulting code. The slow-down ingo due to the run-time linking is
negligible.

2 For certain applications—not pulse sequences, though—this not only saves disk space, but also
process/memory space because the shared objects (libraries) are only loaded into memory once and
can the be accessed by several applications simultaneously.
3 The size of executables is always a multiple of 8 Kbytes, because programs are used (loaded into
memory) in 8-Kbyte pages anyway.

2.5 Compiling and Linking

01-999014-00 A0398 VNMR Pulse Sequences 27

One feature of run-time linking sometimes becomes apparent to the user: at link time
(i.e., when executing the command), the revision dates of the current shared objects is
compared with the date of the objects present at compile time (which is included in the
executable file), and if there is a revision mismatch, this leads to error messages—it
may even cause the program to crash. Normally, this should be no problem—but there
are possible dangers when the shared objects are modified by the user, seeChapter 3,
“Object Library Generation: psggen,” on page 29.

One small point is left forseqgen : if the dps additions were included successfully,
the pulse sequence name had the charactersdps added all the way through the syntax
check, compilation, and linking. In order for VNMR to find the executable pulse
sequence,seqgen renames it in the end to the pulse sequence name withoutdps .
Finally, all intermediate files are deleted, including the pulse sequence object file
(sequencenamedps.o). This means that for everyseqgen , theentire process is
repeated, irrespective of whether the pulse sequence executable is already up-to-date
or not.

Chapter 2. Sequence Generation: seqgen

28 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 29

Chapter 3. Object Library Generation: psggen

For creating the pulse sequence compilation libraries, over 80 C modules (mostly
stored in/vnmr/psg) have to be compiled, using over 30 VNMR-specificinclude
files. The compilation process is very similar to the compilation of a pulse sequence,
except that no explicit C preprocessor call andlint syntax checking are involved.

3.1 How Are Object Libraries Generated?

The C preprocessor is called implicitly with the first compiler pass (cc -c). In the
second C compiler pass (cc -o), no executables are created (the program, which is
nothing but a single, big C program, is not complete because itt lacks the
pulsesequence function), but instead, shared object libraries are generated.

Also different from the compilation of a pulse sequence, the intermediate object
modules (*.o) are not discarded, but rather stored in object libraries (libpsglib.a
for C modules supplied in/vnmr/psg , andlibparam.a for C modules that are not
distributed). This has a major advantage—upon recompilation,make only compiles C
modules that have been updated because it compares the dates of the individual C
modules and their corresponding object modules.

The process of creating the object libraries in the distributed software is so similar to
the regeneration of these libraries upon user modifications that only the regeneration
will be discussed in detail here.

3.2 Adding Changes to the Object Libraries

VNMR gives the user access to almost all of the pulse sequence-related source code
and with that the ability to implement user modifications. In the past, this has also
helped Varian to distribute bug fixes for the “pulse sequence overhead” as ASCII text
—simple source code modifications for/vnmr/psg .

In accordance with the VNMR philosophy, such modifications are not done in
/vnmr/psg directly, but rather in a local copy of that directory, which is generated
with thesetuserpsg shell script.

This script creates a local directory~/vnmrsys/psg containing the two object
librarieslibpsglib.a andlibparam.a , the library for run-time linking
libpsglib.so.x.y (libparam.so.x.y is not modified by the user and is
therefore still stored in/vnmr/psg), and thelint library file llib-lpsg.ln . The
principle is that upon re-generation of the libraries, or upon compilation or execution
of a pulse sequence, any file missing in the local library is taken from/vnmr/psg .

If a user ever needs to use modifications in this area, it most likely involves changes to
a single source file. The user either can follow some given recipe (like to fix a bug in
the pulse sequence overhead) or can go into/vnmr/psg and locate the file that needs
modification (typically by usinggrep and an editor to locate the “critical spot”). The
source file to be modified is then copied into the localpsg directory and modified. The
shell script commandpsggen is then called, for example:

Chapter 3. Object Library Generation: psggen

30 VNMR Pulse Sequences 01-999014-00 A0398

cp /vnmr/psg/aptable.c ~/vnmrsys/psg
cd ~/vnmrsys/psg
vi aptable.c
psggen

As shown inFigure 6, thepsggen shell script (in/vnmr/bin) invokes a rather
complex series of events.

First,psggen callsmake with the file/vnmr/psg/makeuserpsg as themake file
(make -fes makeuserpsg lib), and then almost all subsequent actions are done
throughmake:

• For all header and source files (*.c , *.h , *.p) from /vnmr/psg that arenot
present in the local directory, a symbolic link is created. Themake program
expects to “see” a complete directory.

• All object files (*.o) are unpacked from thelibpsglib.a library.

• The creation dates of all C source files and their corresponding object files are
compared. Only those files in which the source file has a later modification date
than the creation date of its object file are compiled. If you callpsggen the first
time in a newly generated localpsg directory, all sources are compiled, because
the original objects inlibpsglib.a have been created at the Varian factory,
whereas the source files carry a modification date from the time when they were
stored in/vnmr/psg (i.e., for the first call ofpsggen all object files look
“outdated”). Such a full compilation takes about five minutes on a SPARCstation
2 or equivalent. On subsequent calls, only the sources that have been modified
since the last call topsggen are compiled. On a SPARCstation 2,psggen takes
about one minute if only one module was updated.

ar x

psg/*.o

psg/libpsglib.a

object library

psggen make cc -c

ar rcc -o

ln -s

cpp

find . -type l rm *.o

psg/makeuserpsg

make file

-exec rm {} \;

object modules

psg/*.c

source modules

/usr/include/*.h

include files

psg/*.h

header files

psg/*.p

psg/*.o

object modules

psg/libpsglib.a

object library

psg/libpsglib.so.1.0

shared objects

Figure 6. Events associated with thepsggen shell script

3.2 Adding Changes to the Object Libraries

01-999014-00 A0398 VNMR Pulse Sequences 31

• Themake file (psg/makeuserpsg) contains all “object dependencies,” which
means that if a header file (*.h or *.p) is modified or updated, automatically all
sources that include this file become part of the compilation.

• Depending on the above date comparisons, C modules are compiled (cc -c); the
C preprocessor is called implicitly with that pass for each file.

• After the compilation, the object library (psg/libpsglib.a) is updated with
the current object files.

• No executables are created in the second compiler (linker) pass, but instead, the
shared object library is updated. For a localpsg directory, this shared object
library always has the namelibpsglib.so.1.0 .

• All object files are deleted from the directory. This seems similar toseqgen —but
here, the objects are still available in archived form. The archive has the advantage
that the directory listing can be kept small.

• In a last step,psggen removes all symbolic links (to source and header files in
/vnmr/psg).

Now, pulse sequences can be compiled using the new libraries. Even if the external
objects are not statically linked to the pulse sequence executable, pulse sequences
should still be recompiled, to avoid internal inconsistencies.

The resulting pulse sequence generation libraries are active only for a single account,
because they are in a localvnmrsys/psg directory. In principle,vnmr1 can make
changes available to “the world” by copying the modified files into/vnmr/psg ,
although caution must be used with this operation, because errors can cause an inability
to compile pulse sequences in general. You may have to reload VNMR to recover.

The main problem is that object archive files should not be copied using thecp
command because this alters the date of the target file, which can lead to date
inconsistencies, and subsequentlymake (seqgen !) refuses to work. Note also that
make does not work if the system date is older than the modification date of source and
object files (e.g., by mistake the system date is set backwards by several months or
years). Another possible problem lies in the fact that the run-time linker takes the
shared library with the highest revision date if several versions coexist; hence, you
cannot copylibpsglib.so.1.0 from the localpsg directory into/vnmr/psg . A
procedure that should be safe is as follows:

1. Make a backup of/vnmr/psg :

cd /vnmr
mkdir psg.bk
cd psg
tar cf - * | (cd ../psg.bk; tar xvfBp -)

2. Transfer the local files:

cd; cd vnmrsys/psg
tar cf - * | (cd /vnmr/psg; tar xvfBp -)
cd ..
rm -r psg
cd /vnmr/psg
ls *.so.*
mv libpsglib.so.1.0 libpsglib.so.8.0

With the last command, the highest revision number is given to the updated copy
(which was revision 1.0 in the local directory). The local directory can be deleted,

Chapter 3. Object Library Generation: psggen

32 VNMR Pulse Sequences 01-999014-00 A0398

because all changes are now available from the system files.cp -p should also work
instead of thetar pipe.

3.3 Adding a New Precompiled Object

Few users only need or want to make changes to the pulse sequence overhead; among
those, even fewer come into a situation where they want to add a new file to the list of
precompiled objects. This chapter was not written with the primary intention to teach
how to do this, but rather to give some additional insight into the internal functionality
of thepsggen andseqgen commands, and into pulse sequence-related software in
general.

A situation where somebodymightwant to add a new file to the list of precompiled
modules is the case of a frequently used, very long, custom-builtinclude file. Such
include files can lengthen the pulse sequence compilation time considerably;
however, with a precompiled module, the same functions could be made available
without slow-down in compilation speed.

First, we create a localpsg directory and store the new module there. As an example,
take the currentinclude file /vnmr/psg/shape_pulse.c :

setuserpsg
cp /vnmr/psg/shape_pulse.c ~/vnmrsys/psg
cd ~/vnmrsys/psg
vi shape_pulse.c

We now need to change the C module in order for it to become a standalone module.
Pulse sequenceinclude files draw all their references to external definitions and the
macro references from the standardinclude file standard.h. As a result, such
files typically have no, or only specific,include lines. As a start we can insert all the
include lines from/vnmr/psg/standard.h :

#include <stdio.h>
#include "oopc.h"
#include "acqparms.h"
#include "rfconst.h"
#include "aptable.h"
#include "power.h"
#include "macros.h"
#include "apdelay.h"

The include notation uses the double quotes (e.g.,"oopc.h") to mean that local
files (e.g., inpsglib) are included. The angled bracket notation (e.g.,<stdio.h>)
causescpp to only search the standard include libraries (e.g.,~/vnmrsys/psg ,
/vnmr/psg , /usr/include). If files are specified with absolute paths, the
include notation doesn’t matter.

Later, we may want to determine whether we need all theseinclude lines. Most
likely at least some of them can be deleted, but for the time being, too manyinclude
lines can’t hurt. Ifinclude lines already exist in the new file, we insert them between
the standard Cinclude lines (such as#include <math.h>) and any VNMR
include lines, avoiding duplication.

3.3 Adding a New Precompiled Object

01-999014-00 A0398 VNMR Pulse Sequences 33

Our example file unnecessarily already contains a reference tostdio.h ; therefore,
we will not add that again. On the other hand, we may have to also include the
additional definitions and references fromstandard.h :

#define ALL 0
extern int rcvroff_flag,

ap_ovrride;
extern double getval();
extern void setprgmode(),

prg_dec_off();

For psggen to recognize the new source file, we need to modify themake file
makeuserpsg . If psggen has not been called beforehand, we get themake file from
the systempsg directory:

cp /vnmr/psg/makeuserpsg .
vi makeuserpsg

We need to change themake file in two places: starting at around line 50 is an
alphabetical list of source files. Here we insert a line for our new module at the
appropriate place, with a backslash at the end of the line:

shape_pulse.c \

The other modification is in the section “Object dependencies,” starting at about line
250, where individual compilation instructions and source code dependencies are
listed alphabetically. Our additions are at approximately line 600:

shape_pulse.o : $(@:.o=.c) \
oopc.h \
rfconst.h \
aptable.h \
power.h \
macros.h \
apdelay.h

(umask 2; $(COMPILE.c) $(@:.o=.c))

Most of this is analogous to other entries; therefore, we don’t really have to understand
all the details of themake file language. A few basics, however, cannot be avoided:

• Constructs like$(COMPILE.c) refer to macros defined elsewhere in themake
file or alternatively in the arguments to themake command.

• The whole thing represents the rules and dependencies for the object file
shape_pulse.o ; all continuation linesmust start withtabs, not spaces.

The lines with the header file names describe the object dependencies (i.e., the header
file changes imply a recompilation of this particular module). As long as we are in the
development stage for that particular module (and maybe don’t know yet for sure what
header files will finally be used), these lines aren’t really required; only in the end we
should make sure that all used include files are also listed in the object dependency list,
to ensure proper updating in the case of header file changes. As a start, we could use
two lines only:

shape_pulse.o : $(@:.o=.c)
(umask 2; $(COMPILE.c) $(@:.o=.c))

Our particular example includesmath.h and makes calls to functions in the math
library, like log10() . It is not necessary to specify$(LIBS) in the last line (LIBS is
defined as-lm , which would link/usr/lib/libm.a), because this flag is specified
with the compilation of each pulse sequence.

Chapter 3. Object Library Generation: psggen

34 VNMR Pulse Sequences 01-999014-00 A0398

Before we can callpsggen , we need to make sure that a copy of the new source
module exists in/vnmr/psg ; otherwise,make results in error messages and refuses
to work, then we can finally callpsggen :

cp shape_pulse.c /vnmr/psg
psggen

For the first time, we receive an error message, becausemake can’t find a copy of
shape_pulse.o in libpsglib.a . This message is harmless—the file is compiled
anyway— and afterpsggen , libpsglib.a contains this object module as well.

You can check this with the entry:

ar t libpsglib.a | more

You can double-check this by recompiling the new module. To do this, first simulate a
change in that module by altering its modification date:

touch shape_pulse.c
psggen

You are now ready to debug the new source module (in the case of a new program) or
to try and reduce the number ofinclude files, in order to minimize the object
dependencies. In the end, make sure themake file (makeuserpsg) contains object
dependencies for allinclude files that are used. For complete debugging, we have to
compile pulse sequences that use the new function. If previously the new source
module was aninclude file, we need to delete thatinclude line from the pulse
sequence, because the file is not required any longer; it is now even incompatible as
include file, because of its owninclude lines (which would lead to multiple error
messages because of duplicate definitions).

The fact that the function now no longer is compiled together with the pulse sequence
function leaves one open question: How does the pulse sequence (better: the compiler
and linker) know that there is now a new function in some other object module? The
answer is that external functions are found and incorporated properly as longas they
are of the default type (int) and do not return a value.The vast majority of the
functions used in pulse sequences are of the default type and do not return values—
there is no need to declare them in the pulse sequence module. The same is true for the
function that we just converted into a precompiled module.

In the standardinclude file, standard.h , we find a definition for the function
getval that returns a double:

extern double getval();

This function is of the non-standard type (and returns a value), and hence it must be
declared as an external function. Any module inpsg that uses the functiongetval
must also include the above line. The filestandard.h also defines two more
functions that are defined as typevoid :

extern void setprgmode(), prg_dec_off();

There is a potential disadvantage in making a file precompiled:lint no longer “sees”
it, and therefore can no longer check the syntax in calls to functions that are now
external. To compensate for this, you can add to thelint syntax file those functions
in the new module that can be called in a pulse sequence. In our particular case, we
would add the function definition (without contents, of course) to the file
lintfile.c .

3.3 Adding a New Precompiled Object

01-999014-00 A0398 VNMR Pulse Sequences 35

The lines to be added would be as follows in our case:

shape_pulse(shape,pws,phs,pwrtbl,phstbl,spwr,npulses,rx1,rx2)
char shape[MAXSTR];
codeint phs, pwrtbl, phstbl;
int npulses;
double pws, spwr, rx1, rx2;
{}

This “dummy” function should be added to the section with plain functions (starting at
about line 350) of the filepsg/lintfile.c ; then thelint syntax file needs to be
generated and copied into/vnmr/psg , seeSection 2.4, “Checking Syntax with lint,”
on page 22:

cp /vnmr/psg/lintfile.c .
vi lintfile.c
lint -a -n -z -DLINT -Cpsg lintfile.c
cp llib-lpsg.ln /vnmr/psg

The last command allowsseqgen to use the newlint library file; alternatively, we
could modify theseqgen make file (seqgenmake , usually stored in
/vnmr/acqbin) and/or theseqgen shell script, to work with the locallint library.
For that, we should not change themake file in /vnmr/acqbin , but rather create a
local copy in~/vnmrsys/psg (i.e., only modify themake file for the account that
has a locallint library). This alternative is not described here.

Chapter 3. Object Library Generation: psggen

36 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 37

Chapter 4. Time Events

In this chapter, we deduce more complex pulse sequence statements from simple
delays, just to see what is their function. The syntax shown in this chapter isnot the
one used in the pulse sequence overhead; the idea here is not to explain how pulse
sequence functions are defined exactly, but merely to understand their functionality in
order to correlate the arguments of such a statement to what is happening in the
spectrometer. At the same time, this is an opportunity to become familiar with the basic
C pulse sequence syntax. Later we shall get a more detailed picture of what is actually
happening in the acquisition CPU and the pulse programmer (seeChapter 8,
“Acquisition CPU and Acode,” on page 69, and subsequent chapters).

4.1 How Do Delays Work?

A delay is nothing but an exactly specified waiting time for the pulse programmer. In
other words, a delay is a time during which the pulse programmer does nothing but
hold the current status (we’ll see later exactly what that means). Although even with a
simple delay a fair amount of “internal software” is involved, we can think of a delay
as a principal pulse sequence element. In fact, a delay or time event is one of the few
very basic actions a pulse programmer can do.

Simple Delays

Even a function as simple as a delay has some logical decisions built in; namely, the
property that if a length of zero is specified or if the specified duration is too short to
be executed by the pulse programmer (seeChapter 9, “Pulse Programmers,” on page
85), the entire pulse sequence statement is skipped. The idea is to avoid unnecessary
dead times in a pulse sequence, as well as statements, that could lead to problems at
execution time. A possible coding for the statementdelay could be as follows:

delay(length)
double length;
{

if (length >= MINDELAY) time_event(length);
if ((length < 0.0) && (ix == 1))

printf("A negative delay has been specified.\n");
}

whereMINDELAY is a constant that defines the duration of the smallest executable
delay (0.2 microseconds); andix is the index of the current FID (starting at 1, up to
arraydim). Most warnings are issued for the first FID only, in order to avoid flooding
the VNMR text window with error messages in arrayed and multidimensional
experiments.

Thedelay statement actually is a macro in/vnmr/psg that is resolved to the
G_Delay statement, and the functiontime_event doesn’t exist as such (instead, a
statementdelayer with a slightly different definition is used internally).

Chapter 4. Time Events

38 VNMR Pulse Sequences 01-999014-00 A0398

Delays With Homospoil Pulse

If we want to write or change the homospoil delay statementhsdelay , we first need
a definition of what that statement is supposed to do. It is always better to first have an
accurate definition before starting to code a program. Sometimes it is necessary to start
with a simple definition that can be expanded during the implementation:

• The statementhsdelay should have a single argument, specifying the total
duration of the homospoil delay:hsdelay(length) .

• If the specified length is zero, the entire pulse sequence statement is skipped.

• If the homospoil flaghs is 'n' in the current status field, a simple delay should be
performed. Ifhs does not cover the current status field, the last specified field of
hs is taken instead (propagation of the last specified status field).

• Otherwise, execute a delay of lengthhst with the homospoil (Z1 gradient) turned
on, followed by a normal delay, such that the total duration is the specified length.

• If the specified length is less thanhst , issue a warning message and perform a
simple delay instead.

A possible implementation of thehsdelay statement could be as follows:

hsdelay(length)
double length;
{

int hspos = statusindex;
int hslen = strlen(hs);
if (hspos >= hslen) hspos = hslen - 1;
if (length >= MINDELAY)
{

if (hs[hspos] == ‘y’)
{

if (length >= hst)
{

HSgate(homospoil_bit,TRUE);
delay(hst);
HSgate(homospoil_bit,FALSE);
delay(length - hst);

}
else
{

if (ix == 1)
printf("delay shorter than hst - no homospoil \
performed.");

delay(length);
}

}
else

delay(length);
}
if ((length < 0.0) && (ix == 1))

printf("A negative delay has been specified.\n");
}

wherestatusindex is a defined variable set by thestatus statement (to the value
of its argument);hs andhst are standard parameters and do not have to be declared
(the same as all parameters used in thes2pul pulse sequence).TRUE(1) andFALSE
(0) are constants defined in/vnmr/psg (they arenot part of the standard C
definition).

4.1 How Do Delays Work?

01-999014-00 A0398 VNMR Pulse Sequences 39

The handling of thehs flag conforms to the general internal flag handling in VNMR,
in that the last flag field is propagated throughout the rest of the string (e.g.,hs='ny'
is the same thing ashs='nyyyyyyy...' ; flags can be up to 255 characters long).
statusindex is a variable used and defined in/vnmr/psg , andHSgate is an
undocumented internal statement1 in /vnmr/psg . In principle, both can be used in
pulse sequences.

The relatively complicatedhsdelay statement above (for the “normal” case) leads to
a fairly simple timing diagram:

In words, the homospoil (Z1 gradient) is turned on, a delayhst is executed, then the
homospoil is turned off, and a second delaylength-hst is executed. Although the
functionhsdelay has only one argument, it actually has two software-controlled
variables: the specifiedlength , and thehst duration of the homospoil pulse, which
is a standard VNMR acquisition parameter. Thestrength (really a third parameter
to hsdelay) of the homospoil pulse is adjustable in hardware only.

Thehsdelay statement is a type of “automatic” or “high-level” statement in that users
do not have to know how to turn on or off the homospoil gradient, or even what the
standard parameter for the length of the homospoil pulse is, in order to use this
statement in a pulse sequence. On the other hand, users often wantmore control in a
pulse sequence, or perhaps for a specific reason they want to use a different parameter
for the duration of the homospoil pulse. This is no problem, because the “low-level”
statements can be taken from the above statement and used in a pulse sequence:

HSgate(homospoil_bit,TRUE);
delay(hst);
HSgate(homospoil_bit,FALSE);
delay(length - hst);

Other Delays

There are a few additional statements for delays:idelay for interactive parameter
(length) adjustment during acquisition,incdelay andvdelay are delays where the
actual length is calculated by the acquisition computer from a time base and a real-time
counter. These other delays are no different than a simple delay in what they do to
spins ; they will not be discussed any further here.

1 A price may be required to pay for the additional flexibility obtained in using undocumented lower-
level statements likeHSgate : The definition for such statements could change with a future VNMR
release or the statement as such may cease to exist altogether, and such changes may not be
documented in the standard VNMR manuals. It is up to the user to verify in/vnmr/psg that this
statement still exists in its current form.

length-hst

Homospoil ON

hst

time

Homospoil OFF

Chapter 4. Time Events

40 VNMR Pulse Sequences 01-999014-00 A0398

4.2 How Do Pulses Work?

Pulses on the Observe Channel

Several statements coexist for performing pulses on the observe channel; all of them
are actually macros and are ultimately translated into calls to a generic function
G_Pulse (see the manualVNMR User Programming). The most general of these
statements isgenpulse (not supported bydps at the time of this writing):

genpulse(length,phase,rx1,rx2,device);

wherelength is the duration of the pulse (see below) in seconds,phase is the pulse
phase and is a reference to either a real-time variable (see below) or a phase table,rx1
andrx2 are “receiver gating times” (again see below), and finallydevice is the rf
channel on which the pulse is to be performed (OBSch in the case of a pulse on the
observe transmitter channel).2 Note that within a pulse sequence all time events are in
seconds, even if the parameter (of type “pulse”) is in microseconds.

The statementgenpulse is the most versatile, yet the most complex, of the statements
for a pulse on a single channel at the level of the pulse sequence. It is not recommended
except where the rf channel for a pulse should be kept under parameter control.

The statements normally used for a pulse on the observe transmitter channel are
rgpulse , pulse , andobspulse . The functionrgpulse has the following syntax:

rgpulse(length,phase,rx1,rx2);

This statement is equivalent togenpulse(length,phase,rx1,rx2,OBSch) ,
i.e., the device name (number) is implicit. The next simpler statement ispulse :

pulse(length,phase);

Thepulse statement is equivalent torgpulse(length,phase,rof1,rof2) or
genpulse(length,phase,rof1,rof2,OBSch) , i.e., the device name (number)
and the two receiver gating times are implicit; for the receiver gating times, parameters
rof1 androf2 are used. The simplest statement isobspulse :

obspulse();

This is equivalent topulse(pw,oph) , rgpulse(pw,oph,rof1,rof2) , or
genpulse(pw,oph,rof1,rof2,OBSch) , i.e., in addition to the implicit
parameters in thepulse statement, the pulse lengthpw and the pulse phaseoph is
implied.

All these statements are more or less “automatic” variants of calling a “pulse”
statement in a pulse sequence. What actually is happening in the rf during the execution
of such a pulse? Why do we need the “receiver gating times,” what are their implicit

2 Traditionally (and exclusively in VNMR releases up to 4.3), devices and channels were treated
equivalently. They were namedTODEV(observe transmitter channel),DODEV(decoupler),DO2DEV
(second decoupler), andDO3DEV(third decoupler). These addresses can basically still be used in the
current version of VNMR to specify any one of the rf channels. However, these device names
hardcode the channels so the channels do not reflect the rf channel assignments made with the
rfchannel parameter. If the rf channel assignment is to be made dynamically (as per
rfchannel), the new device namesOBSch (observe channel),DECch (decoupler channel),
DEC2ch, andDEC3ch must be used. For compatibility, it is recommended to translate all
occurrences ofTODEV-type constants toOBSchand its equivalents, even if the rf channels are to be
assigned statically. Of course, it is even better to use statements that don’t require a channel argument.

4.2 How Do Pulses Work?

01-999014-00 A0398 VNMR Pulse Sequences 41

and desirable values? To answer these questions, let us first have a look at how the
rgpulse statement could be coded in C:

rgpulse(length,phase,rx1,rx2)
double length,rx1,rx2;
codeint phase;
{

int rcvrflag = rcvroff_flag;
if (length >= MINDELAY)
{

rcvroff();
txphase(phase);
delay(rx1);
xmtron();
delay(length);
xmtroff();
delay(rx2);
if (!rcvrflag)

rcvron();
}

}

Like with thedelay or hsdelay statements, unnecessary dead times in the pulse
sequence should be avoided: if the specified length is zero, theentirepulse is skipped.
This actually may have unintended implications, because in the past people have
misadjusted the receiver gating times for functional delays (e.g., refocusing delays) in
a pulse sequence: the fact that upon setting the pulse length to zero (for testing or
calibration purposes), not just the pulse but also the two receiver gating delays
disappear, has sometimes led to unexpected results.

The lastif statement in the above function definition causes the receivernot to be
turned back on if the receiver has been turned off globally (i.e., with a call to
rcvroff() prior to callingrgpulse) . Thercvroff_flag is used for UNITY-
style and older rf only; for UNITYplus systems, a more complex construct is used
within /vnmr/psg . (The value ofrcvroff_flag needs to be stored in an
intermediate variable, because thercvroff() function alters that flag.)

What is the reason for using three time events in the above construction? Why can’t we
simply turn the amplifier on and off again? In order to discuss this, we need to take a
detailed look at the timing diagram, which now (different fromhsdelay) involves
several devices: the transmitter, the receiver, and the transmitter phase setting.

As shown inFigure 7, it turns out that implicitly also the amplifier is involved in a
particular way.

For the transmitter and the receiver (and the amplifier), simple gating (on/off) lines are
involved. The 90-degree phase setting is slightly more complex, as it involves four
possible values instead of a simple on/off information.

It turns out that we can deduce the four phase values fromtwoon/off bits: an on/off bit
(each bit represents the values 0 or 1, i.e., off or on) for the 180-degree phase shift and
an on/off bit for the 90-degree phase shift.

In all, a pulse involvesfiveon/off bits (fast bits, as we call them later): the transmitter,
the receiver, the amplifier, the 180-degree phase shift, and the 90-degree phase shift.

Chapter 4. Time Events

42 VNMR Pulse Sequences 01-999014-00 A0398

In the table below, assume that we switch the transmitter phase from 90 to 180 degrees
and that all other devices were in their default setting for a delay:

Obviously, a pulse is much more complex than a simple delay! Why all this? One of
the points is that the receiver must be shut down while we are pulsing on the observe
channel because both the pulse and the NMR signal are running partially through the
same wire. Also, we want to prevent the NMR signal from going back into the
amplifier, because this would cause a significant signal loss.

The diagram inFigure 8 shows the switching mode for receiving a signal (“receiver
switched on”). In this mode, the T-switch (transmit switch) between the amplifier and
the probe is open and the R-switch (read switch) is also open. This way, the NMR
signal can only proceed into the preamplifier.

With the receiver switched off, both parts of the T/R-switch are closed, and the
amplifier is now connected to the probe. The R-switch puts a specific point between
the probe and the preamplifier to 0 volts (ground). At that point, the rf pulse is

Receiver ON

Receiver OFF

Amplifier ON

Amplifier OFF

Obs. Transmitter 90 deg. ON

Obs. Transmitter 90 deg. OFF

Obs. Transmitter 180 deg. ON

Obs. Transmitter 180 deg. OFF

Obs. Transmitter ON

Obs. Transmitter OFF

rx1 rx2length

Figure 7. Timing diagram with transmitter, receiver, and transmitter phase

180 90 Phase shift

off off 0 degrees

off on 90 degrees

on off 180 degrees

on on 270 degrees

4.2 How Do Pulses Work?

01-999014-00 A0398 VNMR Pulse Sequences 43

reflected, building up a standing wave back in the direction of the amplifier (if there
was no probe connected we would in fact reflect the entire power back into the
amplifier!).

If now the cable between the zero voltage point and the probe connector has the right
length (1/4 or 3/4 of the wavelength), the standing wave has maximum amplitude at
the probe connector and all the power is directed into the probe, as shown inFigure 9.

This works very efficiently and avoids a switchin the line between the probe and the
preamplifier (which would cause a significant signal loss). The only disadvantage is
that the length of the cable needs to be adjusted with the frequency. If the length of the
quarter-wavelength cable is not adjusted, a part of the amplitude is reflected back into
the amplifier, and we would have less power available in the probe; this would affect
the length of the 90-degree pulse.

In earlier rf schemes, both the T-switch and the R-switch were not active switches but
rather a pair of passive, crossed diodes:

Such an arrangement would act as a closed switch for voltages above 1 volt (such as
an rf pulse), but for voltages below around 0.5 volts, the diodes act as an open switch,
so that low voltages (like an NMR signal) cannot pass. In reality, there is still some
leakage across the diodes, but as far as the NMR signal is concerned, this is negligible.

With the advent of shaped pulses, this kind of rf switch became impossible because the
low-level (voltage) part of a pulse shape would be heavily distorted. To avoid that, the
passive diodes have been replaced by actively switched PIN diodes, a special type of

λ/4 Cable

Transmitter / Amplifier

T-Switch

R-Switch

Preamp / Receiver

Probe

Figure 8. Switching mode for receiving an NMR signal

Transmitter / Amplifier

(T-Switch)

(R-Switch)

Preamp / Receiver

Probe

0 V

Figure 9. Maximum power directed into the probe

Chapter 4. Time Events

44 VNMR Pulse Sequences 01-999014-00 A0398

diode that are switched by applying a high dc voltage across them. The switching of
the T/R-switch occurs anti-parallel to the receiver switching.

Even when these diode switches are opened (i.e., when the receiver is on), there is still
some signal leakage across them. The amount is sufficient for the amplifier noise to
enter the receiver chain and ruin the signal-to-noise ratio. Linear amplifiers (which are
prerequisite for performing shaped pulses) produce relatively high levels of rf noise
that can only be suppressed by turning off the last stage of the amplifier (“blanking the
amplifier”). For that reason, the observe channel amplifier is automatically switched
off (“blanked”) whenever the receiver is on (anti-parallel switching).

All this explains the basic switching diagram shown inFigure 8, but does not explain
why there should bedelaysbefore and after the actual pulse. In particular, we can’t yet
deduce any recommendations as to what length of delay is required before and after the
pulse. Also, we would like to know whether there are any hidden additional delays not
shown on this diagram.

The second question depends on the construction of the pulse programmer and cannot
be answered at this point in time (in reality—as we shall see—there are no additional
hidden delays involved in thergpulse function).

To explain the first point we should check how the diagram inFigure 7 looks like in
“real life”; This is shown inFigure 10.

The real reason for introducing additional delays around an rf pulse lies in the fact that
we are dealing with real hardware. No matter how quickly a pulse programmer
switches lines, it always takes a finite time for the various states to establish
themselves. Such delays are already introduced by the pulse programmer (which has a
finite switching time), but since this delays all states by the same amount, we don’t
have to consider this (as well as propagation delays through electrical cables) any
further.

Receiver ON

Receiver OFF

Amplifier ON

Amplifier OFF

Obs. Transmitter 90 deg. ON

Obs. Transmitter 90 deg. OFF

Obs. Transmitter 180 deg. ON

Obs. Transmitter 180 deg. OFF

Obs. Transmitter ON

Obs. Transmitter OFF

rx1 rx2length

Figure 10. Timing diagram in “real life”

4.2 How Do Pulses Work?

01-999014-00 A0398 VNMR Pulse Sequences 45

In order to judge the time constants or the time to completely change status on the
devices involved in anrgpulse statement, we have to consider the individual
hardware involved. First, consider gate switching around the beginning of the pulse.

• Thereceiver gate (without the linked amplifier blanking) operates a number of
TTL (transistor-transistor logic) gates and PIN-diodes (such as the T/R switch)
with very rapid switching times (typically in the order of nanoseconds). For this
reason, the receiver can be considered switching instantaneously relative to the
time scale involved in pulse sequences—no particular delay is required to allow
the receive and related hardware to switch on or off.

• The opposite is true for theamplifier blanking : when the blanking is removed, it
takes a relatively long time for linear amplifiers to reach full output amplitude and
phase stability. The problem is not so much the turn-on time, but rather the time it
takes for the amplitude to stabilize. The time for blanking the output after a pulse
is not so critical. UNITY and UNITYplussystems use linear (class A/B) amplifiers
that are trimmed for short unblanking time: they reach full amplitude stability after
2 to 4 microseconds. Class A linear amplifiers in early high-field VXR
spectrometers take up to 40 microseconds to stabilize after unblanking.

Class C amplifiers used in earlier equipment don’t need to be blanked: they
produce very little noise and are left on all the time. They are also much more
efficient than linear amplifiers, but unfortunately they are unusable for pulse
shaping. They are also not broadband by nature—an entire array of amplifiers is
required to cover the full frequency range.

The amplifier appears to be the prime reason for having a delay prior to starting a
pulse. If the amplifier was blanked (switched off) beforehand, pulses on the
observe channel should be preceded by a delay of 10 microseconds, to make sure
the pulse only starts when full output stability is reached. The unblanking time can
be determined by performing a single pulse experiment (s2pul sequence with a
sample of doped D2O) using a very short pulse width (typically 0.2 to 0.5
microseconds) and arrayingrof1 in the range of 0 to 10 microseconds.

On the other hand, if the amplifier was already unblanked beforehand (perhaps
because another pulse is preceding the currentrgpulse), the amplifier is still
turned on (unblanked) and does not require a special delay. From an amplifier
point-of-view, back-to-back pulses are no problem at all.

• To find out about the 90-degree (“quadrature”)phase shifting times , we need to
know how these phase shifts are generated. There are fundamental differences
between a UNITYplusand prior generations of instruments in the way 90-degree
and small-angle phase shifts are generated. In the UNITYplus, both kinds of phase
shifts are generated on the same (transmitter) board, but by dedicated hardware, as
shown inFigure 11 (the mechanism of programming small-angle phase shifts is
addressed inChapter 12, “AP Bus Traffic,” on page 137). The 90-degree phase
shifts are generated in a special circuitry (a “twisted ring shift register”) that
generates four 10.5 MHz frequencies (0, 90, 180, and 270 degrees) from 42 MHz,
out of which one is selected by means of two digital input lines (90 and 180
degrees phase shift flags)3. The switching between the four phases is virtually
immediate (TTL gates, switching times in the order of nanoseconds).

3 For wideline and multipulse spectroscopy, the 90-, 180-, and 270-degree phase angles can be fine
adjusted in the order of millidegrees.

Chapter 4. Time Events

46 VNMR Pulse Sequences 01-999014-00 A0398

For the small-angle phase shifting, the 10.5-MHz frequency is split into 0- and 90-
degree components. Small-angle phase shifting takes 9 bits of input: values run
from 0 to 512, with 360 steps for phase angles of 0 to 89.75 degrees, in 0.25-degree
resolution. These are translated into digital amplitude values for the 0-degree and
90-degree components: a DAC converts the numeric values into dc voltages, which
are then used in Gilbert multipliers to set the amplitude of the two orthogonal 10.5-
MHz components. These two components are combined again, generating again a
single 10.5-MHz frequency that has the (digital) small-angle phase shifting added
in. This is the 10.5-MHz IF (intermediate frequency) that propagates the 90-degree
and small-angle phase shifts into the transmitter frequency. The small-angle phase
shifting circuitry has no effect on the timing of a pulse on the observe channel.

Figure 12 shows phase shifting on systems prior to the UNITYplus. On these
systems, both 90-degree and small-angle phase shifts were generated using a 720-
step sine look-up table. This generated a frequency of 2.5 MHz, which in turn was
used to generate the 10.5 MHz IF.

With this type of rf generation, a 2.5-MHz frequency is generated by reading the
sine value from a 360-degree look-up table (720 steps, 0.5 degrees resolution) at a
rate of 10 MHz. The resulting output (with a very rough digitization in the time
axis) is then filtered in order to obtain a pure 2.5-MHz frequency that can then be
mixed with 8 MHz to generate the 10.5 MHz IF. Small-angle phase shifts are
nothing but an offset (up to 180 steps of 0.5 degrees) in the same look-up table.

sine look-up table

9 bits input
(360 steps, 0.25o)

0o DAC

90o DAC
combiner

splitter

(10.5 MHz) 0o90o
42 MHz twisted ring

shift register

90o180o
small-angle phase shifting2 bits input

90 degrees phase shifting

10.5 MHz

fine adjustments
90/180/270o

IF

IF out10.5 MHz

Figure 11. Phase shifting on UNITYplus systems

10 MHz trigger

8 bits input
(180 steps, 0.5o)

small-angle phase shifting

720 steps/360o
sine look-up table

90o 180o

2 bits input
90o phase shifting

filter
“2.5 MHz” 2.5 MHz

8 MHz

10.5 MHz IF

Figure 12. Phase shifting on systems prior to UNITYplus

4.2 How Do Pulses Work?

01-999014-00 A0398 VNMR Pulse Sequences 47

The 90-degree phase shifts are selected by means of two digital input lines that
cause look-up offsets in increments of 180 addresses.

What is now the timing of a 90-degree phase shift? The look-up offset is
implemented immediately (TTL gates), but it only has an effect at the next 10 MHz
trigger point, which can be up to 0.1 microseconds later. Also, the filter in the 2.5-
MHz line further delays the response, such that with this type of rf a 90-degree
phase shift is completed typically after 0.4 microseconds. Thus, delays of 0.5 to 1
microseconds are recommended to allow for the phase to settle.

• The actualpulse switching has several components: the rf gates and associated
hardware on the transmitter board, the properties of the amplifier, and the
inductance of the coil. Similar to the receiver gating, the rf gates on the transmitter
board (TTL switches) can be thought of as switching instantaneously
(nanoseconds range); therefore, the pulse turn-on time determined only by the
amplitude rise time of the amplifier, which is usually determined using an
oscilloscope. It turns out that even pulses of only 0.2 microseconds duration is
fairly rectangular. Typically, within a few tens of nanoseconds, the output reaches
full amplitude.

The pulse turn-on time is of no concern for the delay prior to the pulse, but it
should at least be ensured that the rf is stable when the pulse is turned on. Also, we
can do very little in terms of timing in a pulse sequence about turn-on effects from
the inductance of the coil (see below for a discussion on probe ringdown).

The high-power amplifiers used with high-power solid-state NMR experiments
(1 kW 1H/19F or broadband) are at least as fast as the linear amplifiers used for
liquids NMR (which feed the high-power amplifiers); thus, the amplifier
considerations for solid-state systems are no different than for liquids experiments.

Taking all this into consideration, we can conclude that there are two cases for the delay
preceding an rf pulse on the observe channel:

• If the amplifier was blanked beforehand, pulses on the observe channel should be
preceded by a 10-microsecond delay, to allow for the amplifier to stabilize. At the
same time, this delay is more than sufficient for the new phase to settle with all
types of rf generation.

• If the amplifier wasnotblanked beforehand (either another pulse is preceding the
current one or the receiver was switched off during the preceding [time] event), the
delay prior to the pulse is mainly a phase-settling delay and can be reduced
accordingly. On UNITY-type and earlier rf schemes, a delay of 1.0 microseconds
should be more than sufficient for the phase to settle. With UNITYplus-type rf
(with instantaneous phase switching), 0.2 microseconds is long enough—even
back-to-back pulses do not cause problems.

What needs to be considered for determining the setting of the delayfollowinga pulse
on the observe channel? It turns out that this is simpler, because much less gating is
involved and no phase change occurs.

• At the end of the pulse, the gates on the transmitter board close immediately; the
pulse turn-off time should be in the order of nanoseconds. The amplifier turn-off
time may be slightly longer, but this should not be a concern within most of the
pulse sequence, except for the last pulse, where we should make sure that no “pulse
break-through” occurs, which could affect preamplifier performance.

• Thereceiver gates operate at about the same speed as the transmitter gates.

Chapter 4. Time Events

48 VNMR Pulse Sequences 01-999014-00 A0398

• There are phenomena outside the actual rf that also need to be considered here,
namelyprobe ring-down and related effects. The inductance (or better called the
quality factor,Q) of the rf coil causes a finite delay in turning off the pulse (rf ring-
down). With liquids probes, the rf ring-down time constant is typically 200
nanoseconds (high-field,1H) to several microseconds (low-gamma nuclei).
Wideline and high-power CRAMPS probes have a lowerQ and therefore much
shorter ring-down time constants of 20 to 50 nanoseconds at proton frequency4.

Also (and often even more important), the coil experiences considerable
mechanical forces during an rf pulse that shakes the coil mechanically (acoustic
ringing), even if the coil is fixed firmly. These mechanical movements induce
currents in the coil, and these currents in turn may affect the preamplifier and the
receiver, distorting the beginning of the FID.

In conclusion, we have the following different situations for the delay after a pulse:

• If data are acquired immediately following the pulse (i.e., after an excitation pulse
rather than after a refocusing pulse) or if pulses are performed in-between
acquisition points, a delay is recommended after the last pulse in order to avoid
probe ring-down saturating the preamplifier. For normal liquids experiments (1H,
13C,31P,19F), 10 to 20 microseconds should be sufficient; for low-gamma nuclei,
longer values are often appropriate (if theT2 permits); and for typical solid-state
NMR experiments, shorter values can be used because these probes have a much
shorter ring-down time.

• For all other pulses in a pulse sequence, preamplifier saturation should not be a
problem because it generally has sufficient time to recover. Hence, in a typical
liquids experiments, the post-pulse delay can be set to zero for all pulses except the
last pulse.

• If the receiver is switched off “globally” within a pulse sequence (e.g., switched
off before the first pulse), all post-pulse delaysexcept for the lastcan be set to zero.

Simple Pulses on Other RF Channels

Pulses on any rf channel can be performed using thegenpulse statement the same
way as used for the observe channel, except that the deviceOBSch is replaced by
DECch, DEC2ch, or DEC3ch for the first, second, or third decoupler channel,
respectively (see the footnote on page 40). As mentioned before,genpulse is not
generally used (nor recommended) except for cases where the rf channel (the device)
should be held under parameter control.

Typically, such pulses are performed using one of the following statements:

decrgpulse(length,phase,rx1,rx2);
decpulse(length,phase);
dec2rgpulse(length,phase,rx1,rx2);
dec3rgpulse(length,phase,rx1,rx2);

4 The rf ring-down time constant tr is proportional to the quality factorQ, and inversely proportional
to the rf frequencyf: tr= Q/(3 f) . Liquids probes have a highQ of around 300 to 400, theQ of high-
power wideline and CRAMPS probes is typically 10 times lower. After that time, the voltage across
the coil has decayed to 1/e of its initial value. The total ring-down timet tr for a pulse at powerP (in
watts), down to a residual level of 1 microvolt at an impedance of 50 ohms can be calculated as

t tr ln
1

50P
-------------- 

 – 
  Q 3 f()⁄×=

4.2 How Do Pulses Work?

01-999014-00 A0398 VNMR Pulse Sequences 49

These statements are equivalents torgpulse andpulse (for the second and third
decoupler channel, nopulse equivalents have been defined). Unlikepulse , the pre-
and post-pulse delays indecpulse are set to zero. All these statements are macros and
are resolved to calls to the genericG_Pulse statement by the C preprocessor.

The gating scheme around decoupler pulses is basically the same as for pulses on the
observe channel. A difference exists insofar as the decoupler amplifier(s) are usually
set into continuous wave (CW) mode (i.e., they are constantly on5). Amplifier (noise)
blanking is usually not required on these channels because their output is almost
always be directed onto a different rf coil and can hardly reach the receiver6. For this
reason a pre-pulse delay is only used for the phase to settle (particularly on UNITY and
earlier systems; 0.5 to 1 microseconds are recommended), and a post-pulse delay is
almost never necessary. On UNITYplussystems both delays can be left at zero length.

Simultaneous Pulses on Different RF Channels

The VNMR definition of simultaneous pulses is such that they should occur centered
on top of each other. Based on this, a gating scheme can be deduced, for example, for
simpulse (a simultaneous pulse on the observe channel and the first decoupler):

1. Gate receiver off, set phase on all channels involved.
2. Perform pre-pulse delay.
3. Switch on transmitter gate on the channel with the longer pulse.
4. Perform a delay; length: half the difference between the two pulse lengths.
5. Switch on transmitter gate on the channel with the shorter pulse.
6. Perform a delay; length: the shorter of the two pulse lengths.
7. Switch off transmitter gate on the channel with the shorter pulse.
8. Perform a delay; length: half the difference between the two pulse lengths.
9. Switch off transmitter gate on the channel with the longer pulse.
10. Perform post-pulse delay.
11. Gate receiver on, unless it has been switched off globally.

The C construct for such a statement uses the same basic calls as thergpulse
statement described above;if–else statements are used to decide which device to
turn on first and which to turn off last. Similarly, statements for simultaneous pulses
on three and four channels can be constructed. All these statements exist; they have the
syntax:

simpulse(len1,len2,ph1,ph2,rx1,rx2);
sim3pulse(len1,len2,len3,ph1,ph2,ph3,rx1,rx2);
sim4pulse(len1,len2,len3,len4,ph1,ph2,ph3,ph4,rx1,rx2);

The indices in the arguments refer to the observe channel (1) and the first three
decoupler channels (2, 3, 4). In all these statements, the observe channel is involved;
therefore, (because in general we cannot, and do not want to, make assumptions about

5 Except in situations where the decoupler nucleus is identical to the observe nucleus or falls into the
same amplifier frequency band (3H, 1H, 19F vs. the nuclei at31P frequency and below). In this case,
decoupling occurs through the same amplifier as the observe pulses, which are in pulse mode and are
therefore blanked.
6 Provided there is little or no crosstalk between the different coils in a probe. Exceptions would also
be heteronuclear experiments on a single, double-tuned coil. In such cases the amplifier would have
to be either put into pulsed mode or blanked explicitly, seeSection 4.3, “Other State-Related Pulse
Sequence Statements,” on page 52.

Chapter 4. Time Events

50 VNMR Pulse Sequences 01-999014-00 A0398

the length of the individual pulses) for the pre-pulse delay the same considerations
apply as for the pre-pulse delay torgpulse , assuming that the amplifier for the
longest pulse needs to be unblanked first, unless the receiver was already switched off
during the previous time event.

The above statements are macros in whichsimpulse andsim3pulse are resolved
into calls to the following C functions:

gensim2pulse(len1,len2,ph1,ph2,rx1,rx2,dev1,dev2);
gensim3pulse(len1,len2,len3,ph1,ph2,ph3,rx1,rx2,dev1,dev2,dev3);

These functions take the corresponding number of device arguments (rf channel
addresses,see the footnote on page 40); these devices can be specified in any order as
long as the pulse lengths and the phases are specified in the same order. The macro
sim4pulse is translated into a call to the functionG_Simpulse that will not be
discussed any further here. Similar togenrgpulse andgenpulse , these functions
are not supported by thedps command at this point in time, and their use is not
recommended unless there is a need to keep the rf channel selection under parameter
control (with the presence of therfchannel parameter, those functions are not longer
required).

Composite Pulses

From a pulse sequence or gating point of view, composite pulses are nothing but a
sequence of ordinary pulses without explicit delays in-between. As outlined in the
sections above, all pulses but the first can be preceded by a very short pre-pulse delay
only, to allow for the phase shift to complete. On UNITYplussystems, even that delay
can be set to zero (on other systems this may lead to a slight performance loss). For the
pre-pulse delay of the first pulse, the same considerations apply as for a normal pulse
(see above).

All post-pulse delays should be set to zero to avoid unnecessary gaps between the
pulses. The maximum permissible gap between components of a composite pulse is
determined by the question whether noticeable precession can occur during such
delays. In liquids experiments, gaps of 1 microsecond should be harmless.

Considerations for the Delays Following the Last Pulse

Additional considerations apply to the post-pulse delay after the last rf pulse on the
observe channel (better said as the pulse that generates the final, detected coherence),
because that delay affects both the reliability of the autophasing (aph) as well as the
first-order phase parameter (and with that the baseline flatness). Why is that?

In the last receiver stages before the ADC, the NMR signal (with IF+/− δ) is mixed
with the intermediate frequency in order to obtain audio frequencies (signals at-sw/2
to +sw/2 Hz). At that level, any noise (and extra signals) outside the spectral range
need to be filtered away in order to avoid folding noise and undesired signals into the
spectrum (the extra noise would dramatically affect the signal-to-noise ratio). Such a
filter delays the audio signal by a time that is inversely proportional to the filter
bandwidth. This is taken care of by the software—the filter delay (shown inFigure 13)
is calculated automatically and made part of the implicit acquisition, where prior to
acquiring the first data point a delay ofalfa+1/(beta*fb) is performed.

4.2 How Do Pulses Work?

01-999014-00 A0398 VNMR Pulse Sequences 51

alfa is a standard parameter (in microseconds, defined as a pulse),fb is the filter
bandwidth, andbeta is a constant that depends on the type of audio filter in use. For
4-pole Butterworth filters (used in VXR and earlier spectrometers),beta is 2.0; for 8-
pole quasi-elliptical filters (the standard filter in UNITY and UNITYplus systems),
beta is 1.29; and for 6-pole Bessel filters (used for spectral windows above 100 kHz),
it is 2.337. With this setup, the user can adjust the (last) post-pulse delay, while having
an independent parameter for regulating the total delay between the last pulse and the
first sampling point.

In 1983, D. Hoult et al.8 noted that by making thetotaldelay between the last pulse and
the first sampling point equal to the theoretical filter delay (for Butterworth filters,
1/(2*fb)), the best baseline flatness was obtained. This seems to disagree with the
standard setup in Varian pulse sequences (withrof2 andalfa being 10 and 20
microseconds). What are the consequences of these additional delays? It turns out that
with these delays, the first-order phase correction parameterlp has a negative value
that depends on the spectral windowsw. In fact, thelp parameter is decremented by
360 degrees with every dwell time by which we right-shift the first sampling point. If
the condition described by Hoult is fulfilled,lp is close to zero—an approximation for
the lp parameter can be calculated easily fromrof2 andalfa 9:

The real problem is that due to the filter response, the first data point is never accurate.
An offset in the first data point leads to a dc offset in the transformed spectrum (lp=0).
The first-order phase correction converts this dc offset into a sinoidal baseline
distortion: at a correction of±360 degrees, a full sine wave is generated, and with every
additional 360-degree deviation oflp from zero, an additional sine wave is obtained.
Also, aslp increases, this baseline roll increases in amplitude (with very high values
for lp , it is not unusual that the baseline roll becomes larger than the NMR signals!).

Using the above formula, we can estimate that for proton spectra (spectral windows of
2000 to 10000 Hz) first-order phase corrections of –20 up to –100 degrees are obtained
with the standard settings forrof2 andalfa . For typical carbon spectra (spectral
windows of 10 to 50 kHz), the corrections are more severe with 100 to 500 degrees. In
many cases—especially proton spectra on normal organic compounds—this baseline
roll is noticeable but can easily be corrected by means of data processing software (bc
command). In many other cases, such a baseline roll is undesirable—it can even ruin

7 In the1H/13C version of Gemini spectrometers, 3-pole Butterworth filters with a filter constant
beta of 3.0 are used.
8 D.I. Hoult, C.-N. Chen, H. Eden and M. Eden,J. Magn. Reson.51, 110 (1983).
9The division by 106 is needed because within VNMRrof2 andalfa are defined as pulses and are
entered in microseconds.

rof2 1.0/sw 1.0/sw

dwell time

alfa + 1.0 / (beta * fb)

“Hoult delay”

sampling points

Figure 13. Filter delay

lp
rof2 alfa+
106 1 sw⁄()×
-------------------------------------– 360× rof2 alfa+()– sw× 360 10

6–× ×= =

Chapter 4. Time Events

52 VNMR Pulse Sequences 01-999014-00 A0398

the quality of multidimensional spectra. To help cure this, the VNMR software
contains thehoult command, which calculatesrof2 to be one-third of the theoretical
filter delay (1/(beta*fb)), as described in Hoult’s paper, and then setsalfa to the
negativevalue ofrof2 . This only works because the implicit delay that is executed is
thesum of alfa and the filter delay.

Thehoult command bringslp down to a value close to zero—but for many
applications, especially biological NMR, this is still not good enough. Why? The
reason for that is twofold: first, even the best filters are never 100.0% accurate (all
electronic components have a limited accuracy) and hence the real filter delay is always
slightly differ from the theoretical value. Second, it cannot be assumed that the
excitation point (the point where all excited spins are in phase) is at the end of the rf
pulse, because the precessionduring the pulse cannot be neglected.

Overall, it is impossible to calculate the exact filter delay. Consequently, anempirical
timing correction can be used: a (1D) spectrum is first acquired, transformed, and
phase-corrected, and then the above equation is modified to recalculatealfa from lp .
This is done by calling the macrocalfa :

With this new value foralfa , the spectrum is then reacquired. It can be assumed, that
this correction stays the same as long as the spectral window is not changed (although
this probably is only true as long as the pulse width is also not altered).

Another implication from the delays between the last pulse and the first sampling point
is the fact that the autophasing commandaph first estimates a value forlp , assuming
that bothrof2 andalfa were used after the last pulse. It must therefore be ensured
that the last pulse is in fact performed with a post-pulse delayrof2 (or an equivalent
delay must be inserted after the last pulse); otherwise, the reliability of the autophasing
can be severely affected.

4.3 Other State-Related Pulse Sequence Statements

Direct Gating

As shown in the sample coding from the previous sections, rf gates can also be operated
directly. A number of simple, documented commands exist for the transmitter gates
(xmtron/xmtroff , decon/decoff , dec2on/dec2off , dec3on/dec3off),
receiver gate (rcvron/rcvroff), spare gates (sp1on/sp1off , sp2on/sp2off),
and decoupler amplifier blanking control (decblank/decunblank ,
dec2blank/dec2unblank , dec3blank/dec3unblank). Pulse statements
operate these gates implicitly and automatically. If a user decides to operate gates
explicitly, it is the user’s responsibility to switch them back into “normal” mode at an
appropriate time in the pulse sequence.

The statements for explicit 90-degree phase shifting (txphase , decphase ,
dec2phase , dec3phase) can be regarded as special (phase) gating statements (with
the difference that they do not control rf gates or blank an amplifier). All these gating
statements have no immediate effect on what is happening in the rf: they only influence
the gate settings of subsequent time events.

alfa corr alfa lp 10
6×() 360 sw×()⁄+=

4.4 Basic Purpose of a Pulse Sequence

01-999014-00 A0398 VNMR Pulse Sequences 53

Implicit Gating

Thestatus statement can partly be regarded as implicit gating statement. Primarily,
status changes the value of the variablestatusindx to the specified flag field. At
a secondary level, it also switches the decoupler gates depending on the corresponding
status fields in thedm, dm2, anddm3 parameters. These only become active in
subsequent time event. The definition is such that if a flag has less fields than addressed
in the pulse sequence, the last flag field is taken instead (status takes an integer as
argument; the constantsA to Z [0 to 25] are defined inpsg/rfconst.h).

In earlier rf schemes, the decoupler modulation mode (dmm) was also on direct status
lines (two lines for up to four modulation modes) and was set bystatus the same way
as the other gate lines; in UNITY and UNITYplussystems, the decoupler modulation
modes (dmm, dmm2, dmm3) are set through a different mechanism, seeChapter 12, “AP
Bus Traffic,” on page 137.

4.4 Basic Purpose of a Pulse Sequence

The main purpose of a pulse sequence is to define a sequence oftimes (delays) and a
series of associatedstates (on/off information). Pulses—even if composite or
simultaneous on various rf channels—can be deduced from a sequence of simple
delays with variable gating information. From that point-of-view, the heart of the pulse
programmer can be diagrammed as shown inFigure 14.

This is not only a block diagram for what the pulse programmer is doing, but, as we
see later, this diagram contains the “essence” of the pulse programmer hardware in all
Varian NMR spectrometers from the XL, VXR, and UNITY, to the Gemini,
UNITYplus, GEMINI 2000,andUNITYINOVA. Of course, there are additional features
(we shall learn about rf devices that can not be addressed simply with a limited set of
on/off states), but the central idea is already in the diagram—the pulse programmer is
a state–times buffer with associated timing electronics that makes the code
interpretation (the acquisition CPU) independent (asynchronous) of the pulse sequence
timing.

pulse sequence decoder

states times

current states
next states

current time
next time

......

RF
timer

times bufferstates buffer

Figure 14. Block diagram for a pulse programmer

Chapter 4. Time Events

54 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 55

Chapter 5. Submit to Acquisition: go

Thego command (and related commands such asau andga) has the central task of
running the compiled (executable) sequence from theseqlib directory and
submitting the experiment to the acquisition processAcqproc (go does not perform
the acquisition itself).go then hands the control back to VNMR. It is up toAcqproc
to manage the acquisition and notify VNMR about completed blocks, FIDs, and
experiments.

Figure 15 outlines the processes and actions around thego command.

5.1 The Tasks for go

The commandgo directly executes and initiates the following steps:

• From the parameterseqfil , thego command finds out what pulse sequence is to
be executed. If such a pulse sequence executable is not found in the user or the
systemseqlib directory,go aborts with an error message.

• If an executable pulse sequence is found,go strips all non-acquisition parameters
off the current parameter tree and adds acquisition parameters from the global tree
along with all the system configuration parameters. This parameter collection is
then transferred to the pulse sequence.1

1 Because only acquisition-, sample- and configuration-related parameters reach the pulse sequence,
agetval statement on a display, processing, or spin simulation parameter does not work (a zero
value is returned instead for numeric parameters)!

system global

/vnmr/conpar

parameters
global(display)

(processing)

seqfil 2 2 8 0 0 2 1 11 1 64

(acquisition)

1 “cosy”
0
...

...

vnmrsys/global
vnmrsys/expn/curpar

parameters

go seqlib/cosy

shim

shimmethods/*

methods
shapes,

shapelib/*

pattern
phase

tablib/*

tables

WFG datafile

/vnmr/acqqueue/expn.username.PID.RF

WFG load control file

/vnmr/acqqueue \

Acode

/vnmr/acqqueue/expn.username.PID.Code

Acqproc

(notification)

acquisition
parameters

Acqproc parameters

/vnmr/acqqueue/expn.username.PID

Figure 15. Processes surrounding thego command

/ldcontrol

Chapter 5. Submit to Acquisition: go

56 VNMR Pulse Sequences 01-999014-00 A0398

• The shim method from the directoryshimmethods (as specified by the parameter
method) is packed into an internal parametercom$string and added to the set
of transferred acquisition parameters.

• go then executes the sequence fromseqlib . A compiled pulse sequence in the
user’s sequence library (~/vnmrsys/seqlib) takes precedence over a sequence
(with the same name) from the system sequence library (/vnmr/seqlib).

• The execution of the pulse sequence first involves the run-time linker, which binds
the other objects frompsg/libpsglib.so.x.y (seeSection 2.5, “Compiling
and Linking,” on page 24) to the pulse sequence. As part of the run-time linking,
a revision check is made on the run-time link librarypsg/libpsglib.so.x.y .
If the revision of that file (.x.y extension of the file name) is not correct, it results
in a “run-time” error message or even in a crash. For such a case, check whether
an old compiled pulse sequence (from a previous software release) was executed
instead of an updated one in/vnmr/seqlib). If that happened, recompile the
pulse sequence. It could also be that you usedpsggen (seeChapter 3, “Object
Library Generation: psggen,” on page 29) with an earlier software release, and the
localpsg directory (~/vnmrsys/psg) was not deleted when a new release was
installed. In this situation, you must delete (or re-create and update) the localpsg
directory, and recompile the pulse sequence if it was a local file.1

• If the pulse sequence does not return an error code upon execution,go notifies the
acquisition processAcqproc of the new experiment in the acquisition queue.
After that, the VNMR part of thego command is finished, and VNMR is ready for
executing the next command.

• go usually appends a new experiment to the end of the acquisition queue, except
if go (or au) was called with the argument'next' , in which case the experiment
is queued immediately after the running experiment (insertion at the front of the
queue) or immediately before the next acquisition is started, when called as part of
conditionalwerr or wexp processing of an experiment that was started with the
commandau('wait') .

• If VNMR cannot contactAcqproc after several attempts, an error message
“maximum number of retries exceede d . . PSG aborted ” or
“The acquisition daemon 'Acqproc' is not active! ” is issued, and no
experiment is started. In this case, eitherAcqproc has died and needs to be started
again, or for some reason VNMR is unable to contactAcqproc (it may be
hanging), in which caseAcqproc needs to be killed and restarted again. At this
point, any running experiment needs to be restarted, and queued experiments need
to be requeued (seeSection 6.4, “Controlling Acqproc,” on page 63). After this,
call go again.

• The absence ofAcqproc makesgo non-functional on stand-alone data stations
(except forgo('acqi') , see alsoSection 5.3, “Using go('acqi'),” on page 58).

1These problems are avoided ifmakeuser is called for every account and the local files are updated
through this command.makeuser deletes old compiled pulse sequences (not the source file from
psglib) and disables any localpsg directory.

5.2 Tasks for the Pulse Sequence Executable

01-999014-00 A0398 VNMR Pulse Sequences 57

5.2 Tasks for the Pulse Sequence Executable

The primary task of the pulse sequence executable is to generate instructions and data
thatAcqproc later uploads into the acquisition computer plus data to be used by
Acqproc to control that experiment. The resulting information is stored in several
files in the acquisition queue directory/vnmr/acqqueue . The names for most of
these files reflect the experiment name (exp1 to exp9), the name of the user
(username), and the process-ID number of the pulse sequence executable (PID).
Obviously there would be a problem if a user did not have write permission into
/vnmr/acqqueue .

• Parameters are read from the set of acquisition parameters that is handed over by
go ; they are stored in local variables.

• Specified waveform generator (WFG) shapes and patterns are read from
shapelib and transformed into a binary fileexpn.username.PID.RF in
/vnmr/acqqueue . This file is later uploaded via HAL into the waveform
generator(s). Together withexpn.username.PID.RF , a second file named
/vnmr/acqqueue/ldcontrol is generated or updated. This second file
contains information about the size and structure of all waveforms and decoupling
pattern to be used. If a system is not equipped with waveform generators, this file
is not generated or updated; if waveform generators are installed, the file
/vnmr/acqqueue/ldcontrol is updated even if no waveform generator is
actively used in the experiment.

• The main task for the pulse sequence executable is the generation of instructions
to be interpreted by the acquisition CPU called theAcode. The Acode is a sequence
of 16- and 32-bit words, including instructions and a complete set of local
variables used by the acquisition CPU, that are stored in a file in the directory
/vnmr/acqqueue . The file name isexpn.username.PID.Code . Typically,
the Acode size is 1 to 3 Kbytesper FID. For multidimensional experiments, the
Acode can easily fill many megabytes of disk space and can eventually create
“disk full ” problems.

• External phase tables are read from the specified file intablib ; they are built into
the file with the instruction list for the acquisition CPU (seeChapter 9, “Pulse
Programmers,” on page 85).

• A file /vnmr/acqqueue/expn.username.PID is generated that contains
acquisition control parameters the parameters thatAcqproc needs to control the
acquisition, store the FID in the proper place, and initiate the right actions when
certain key conditions (error condition, block size completed, FID or experiment
completed) are reached. This file is a standard ASCII parameter file, containing a
set of parameters that are required forAcqproc to do its job (see alsoChapter 6,
“Acquisition Process,” on page 59).

Chapter 5. Submit to Acquisition: go

58 VNMR Pulse Sequences 01-999014-00 A0398

5.3 Using go('acqi')

Enteringgo('acqi') , or the equivalent macrogf , serves to generate the Acodes
necessary to runacqi in interactive (FID or spectrum) mode. The same as enteringgo
with no arguments, the pulse sequence executable is called, but in the case of
go('acqi') , nothing is submitted toAcqproc , and the resulting files are read solely
by theacqi program. For this reason, different naming conventions are used:

• acqi.Code replaces/vnmr/acqqueue/expn.username.PID.Code .

• acqi.RF replaces/vnmr/acqqueue/expn.username.PID.RF (only used
when shaped pulses or rf patterns involving a waveform generator are involved).

• acqi.par replaces/vnmr/acqqueue/expn.username.PID ; this file (also
an ASCII parameter file) is meant foracqi directly; it tellsacqi how to display
the FID or the spectrum interactively (sp , wp, etc.).

• ldcontrol is the same as with the normalgo command (only used if waveform
generators are present).

Enteringgo('acqi') or gf is often also used to test a pulse sequence up to the point
of Acode generation (without doing a real acquisition yet) or to permit inspection of
the Acode and associated files. Note that the Acode generated bygo('acqi') differs
in several points from the code generated through a normalgo :

• Only Acode for the first FID is generated,
• Parameteralock is set to'n' (no automatic locking),
• Parameterload is set to'n' (shim values are not loaded),
• Parameterwshim is set to'n' (no automatic shimming occurs),
• Parameterss is set to0 (no steady-state pulses),
• Parameterdp is set to'y' (32-bit acquisition),

The macrogf modifies even more parameters:

• Parametercp is set to'n' (the observe phaseoph is not cycled automatically),
• Parametergain is set to'y' (use fixed gain),
• The lock to be set into the “fast loop” mode.

By definition, the parameters used for shimming on the FID or on the spectrum (as well
as the parameters for interactive parameter adjustment) are those for the first increment
of an arrayed experiment. Also,gf sets the parameters such that excessive startup
delays are avoided (alock , wshim , ss , andgain parameters). For the FID mode in
particular,cp='n' avoids jumping baselines and/or intensities by stopping the phase
cycling (assuming thecp flag oroph are used in the pulse sequence).

Note also that the Acode segment for the first FID—as obtained viago(‘acqi’) —
cannotbe taken as a model for subsequent code segments (both in size and contents),
because it contains a number of rf initialization instructions that are not repeated for
every other FID. The first Acode segment is always bigger than all following segments
of an arrayed or multidimensional experiment.

01-999014-00 A0398 VNMR Pulse Sequences 59

Chapter 6. Acquisition Process

The acquisition processAcqproc operates in three phases: uploading and starting the
acquisition operating system, uploading data for the current acquisition, and
downloading acquired FIDs and associated information.Acqproc is the main
software link from the host computer to the acquisition cabinet (the actual
spectrometer)1.

Acqproc is a background process that must be constantly running on a spectrometer.
It is started at boot-up time through/vnmr/rc.vnmr (which is called by
/etc/rc.local) if the file (flag) /etc/acqpresent is found./vnmr/rc.vnmr ,
the UNIX kernel (/vmunix) with the Varian device driver, and theacqpresent flag
are installed together with the VNMR software by thesetacq installation script.

From a hardware point-of-view, the host computer is linked to the acquisition CPU
through the HAL (Host-to-Acquisition Link) board, a board with a SCSI interface.
Thus, the two computers are connected by a SCSI bus. Unless there is a second SCSI
bus used exclusively for acquisition, the same SCSI bus is usually used for
communication with hard disks, tape drives, and a CD-ROM drive (if present)2. Acting
as a special device on the SCSI bus, the HAL board requires a special device driver in
the UNIX kernel (i.e., a special, proprietary communication protocol is used between
the the host computer and the acquisition CPU).

6.1 Starting the Acquisition Operating System

Upon startup,Acqproc checks if the acquisition CPU has resident software. If not
(e.g., after initialization),Acqproc uploads the acquisition operating system (i.e., the
software that permanently resides in the acquisition CPU). The files that form the
acquisition operating system are stored in the directory/vnmr/acq :

• rhmon.out is the part of acquisition CPU operating system that controls the
communication with the host computer through the HAL board.

• autshm.out is the autoshimming part of the operating system.

• xrop.out is the central part of operating system (Acode decoder) for systems
with output board (63-step FIFO).

• xrxrp.out is the central part of operating system (Acode decoder) for systems
with acquisition control board (1024-step FIFO, mostly UNITY systems).

• xrxrh.out is the central part of operating system (Acode decoder) for systems
with pulse sequence control board (2048-step FIFO, UNITYplus systems).

1 The interactive acquisition programacqi talks directly to the acquisition CPU, be it for locking,
for shimming, or for interactive acquisition.
2 Because the electrical specification of the SCSI bus would impose a severe restriction with respect
to the maximum cable length between the two computers (or any two SCSI devices), Varian uses a
special “differential box” that adds an electrically driven branch to the SCSI bus. This box permits
using a maximum cable length of over 10 meters between the host computer (actually the differential
box) and the acquisition cabinet.

Chapter 6. Acquisition Process

60 VNMR Pulse Sequences 01-999014-00 A0398

• xr.conf is the part of operating system that returns information about the rf
configuration toAcqproc and theconfig program (/vnmr/bin/vconfig).

In earlier VNMR releases, a symbolic link namedxr.out was created to one of the
two filesxrop.out andxrxrp.out when calling thesetacq script, in which the
user had to reply whether the system was equipped with 63-step or 1024-step loop
FIFO. The task of selecting the right version ofxrop.out , xrxrp.out , or
xrxrh.out is taken over byAcqproc , which gets the necessary hardware
information from thexr.conf part of the acquisition CPU operating system.

It is possible (although unlikely) that after the installation of a new version of VNMR,
the acquisition CPU still has an old version of the acquisition operating system loaded.
In such a situation,Acqproc may not “realize” the revision discrepancy, because the
acquisition CPU is still running on uploaded software, which in turn leads to error
messages or even a system hangup—at the very least when trying to communicate with
the acquisition CPU. After loading VNMR (before starting the newAcqproc), the
acquisition CPUmust be reinitialized.

6.2 Queuing and Starting the Acquisition

Acqproc monitors the acquisition CPU. If no experiment is running or when the
acquisition CPU is ready to accept the next Acode segment (instruction set and data for
one FID),Acqproc uploads that Acode (and waveform generator data files if
required) to the acquisition CPU (actually to the Host-to-Acquisition Link) and
initiates the acquisition.Figure 16 shows the communications scheme controlled by
Acqproc .

Acqproc controls not only the data acquisition, but also the queuing of acquisitions
from different experiments and different users. The experiments in the queue are
executed in the order of their submission3. “Acquisitions” here also include queue

3 The only means of manipulating the queue is to abort the current acquisition (aa from the current
experiment), to stop it temporarily and go to the next queued experiment (sa from the active
experiment), to remove an acquisition from the queue (sa from the queued experiment before it
becomes active), or to add a new experiment to the end of the queue.

WFG datafile

/vnmr/acqqueue/expn.username.PID.RF WFG load control file

/vnmr/acqqueue/ldcontrol

Acode

/vnmr/acqqueue/expn.username.PID.Code

Acqproc

Acqproc parameters

/vnmr/acqqueue \

FID file

~/vnmrsys/expn/acqfil/fid /vnmr/acqbin/send2Vnmr

HAL / acquisition CPU

S
C

S
I
b

u
s

A
co

d
e

F
ID

s

Vnmracquisition log file

/vnmr/acqqueue/Masterlog

Figure 16. Acquisition control byAcqproc

/expn.username.PID

6.3 Downloading the FID

01-999014-00 A0398 VNMR Pulse Sequences 61

items that do not generate NMR data as submitted bychange , spin , lock , shim,
sample , andsu ; these will not be discussed in detail here because their actions can
also be made part of a “normal” experiment (as started with thego , ga , or au).

The process of starting up an experiment (after its submission bygo) involves the
following steps:

• If either the acquisition CPU is idle or has just terminated the previous experiment,
the next item in the acquisition queue is launched.

• If waveform generator-shaped pulses, decoupling pattern, or shaped gradients are
involved, the necessary waveform generator data are uploaded into the acquisition
CPU memory from/vnmr/acqqueue/expn.username.PID.RF . The file
/vnmr/acqqueue/ldcontrol contains the control information that permits
Acqproc to instruct the acquisition CPU about the structures within the waveform
generator data file, and where to load these structures (pattern, waveform).

• The Acode for the first FID is uploaded into the acquisition CPU as well, and its
interpretation is initiated.

• In arrayed or multidimensional experiments, the Acode segment for the next FID
is loaded ahead of time, such that the acquisition can switch from one FID to the
next without having to upload Acode in between FIDs. This is called buffered
acquisition; it dramatically reduces the dead-times between FIDs (no extra delays
for data transfers or disk access).

• Acqproc also acts as a message handler and transmits interrupt messages (such
as generated by theaa or sa commands) to the acquisition CPU.

6.3 Downloading the FID

Acqproc polls the acquisition CPU at regular (dynamic) intervals. If data are ready
(after a block size or a completed FID or experiment),Acqproc downloads it onto the
host computer memory and stores the data in the experiment directory from which the
acquisition was started. This involves the following actions and mechanisms:

• The data transfer from the acquisition CPU (the HAL) to the host computer occurs
through polling byAcqproc . Acqproc polls at regular intervals, but tries
adjusting the polling rate to the rate at which data are ready in the acquisition CPU.
This avoids unnecessary dead times.

• If data are ready (block size or FID completed,sa interrupt completed),Acqproc
downloads the FID from the HAL memory to the host computer.

• Acqproc then checks whether a lock file~/vnmrsys/lock_n.primary 4

exists for the current experiment. If a lock file is found, its contents are inspected

4The lock file~/vnmrsys/lock_n.primary has the experiment number coded in the file name
(lock_n). The extension.primary indicates that it is aprimary lock file. A secondary lock fileis
generated temporarily before generating the primary one, in order to avoid that two processes lock
the same experiment at the same time (i.e., between detecting that “no lock file exists” and the
creation of a lock file, another process could in theory create the same lock file; the secondary lock
file avoids this). The lock file contains a code for the kind of lock (3 = foreground), the host name of
the system on which the locking process runs, and the process-ID (PID) of the locking process. The
PID permits detecting whether the locking process is still active.

Chapter 6. Acquisition Process

62 VNMR Pulse Sequences 01-999014-00 A0398

in order to find out whether a foreground VNMR is active in the current
experiment.

• The FID is stored in the appropriate experiment by over-writing or updating the
applicable section of the FID file (~/vnmrsys/expn/acqfil/fid). The
ownership of the FID file is transferred (chown) to the experiment owner. During
this process, the active experiment is locked byAcqproc (acquisition lock).

• If a foreground VNMR is running in the current experiment, it is notified through
send2Vnmr , and its (buffered) processed parameter tree is updated (ct and
celem parameters). If conditional processing was specified (werr , wbs, wnt , or
wexp parameters), this processing is initiated through thesend2Vnmr call. The
send2Vnmr call uses the following syntax:

ps -ax | /vnmr/acqbin/send2Vnmr “VNMR command string”

• If no foreground VNMR is found, or if no foreground VNMR process is running
in the current experiment but conditional processing was specified, that processing
is performed through a background VNMR call:

Vnmr -mback -nExp# “VNMR command string”

During this process, the active experiment is locked by VNMR (background lock).

• A log file /vnmr/acqqueue/Masterlog is maintained that contains
information about submitted experiments, interrupts and completion points, as
well as information about acquisition-related processing.

• When the experiment completes, the queue filesexpn.username.PID.Code ,
expn.username.PID.RF (if present), andexpn.username.PID in
/vnmr/acqqueue are deleted, and the next experiment is submitted to the
acquisition CPU.

All the information thatAcqproc needs for handling downloaded FIDs are contained
in the parameter file/vnmr/acqqueue/expn.username.PID . This file includes
the following parameters:

• Parametersdp , np , nf , andarraydim that contain data format information.

• Parametersbs , nt , ct , celem , andinterleave (the latter corresponding toil)
that allowAcqproc to determine whether a block or an FID are completed and
which code segment to load next (ifinterleave='y' , cycle block-wise through
all FIDs; otherwise, switch to the next FID when the previous one is completed).

• Parameterswerr , wbs, wnt , andwexp that specify what action needs to be
initiated in VNMR in the case of an error condition, a completed block, a
completed FID, or completed experiment.

• Parameterwait that specifies whether the following experiment can be started
immediately following the current one (wait='n' , the standard case) or whether
the conditional (wexp or werr) processing should be completed first
(wait='y'). Settingwait to 'y' allows for another experiment to be started on
the same sample usingau('next') , before switching to the next sample (i.e., at
the front of the acquisition queue).

• Parametersgain andspin are used in connection with the Acquisition Status
window. Unused are parameterspriority , the queuing priority, andsuflag .

6.4 Controlling Acqproc

01-999014-00 A0398 VNMR Pulse Sequences 63

Path and other file information:
• Directory fidpath stores the FID file.
• curexp is usually the parent offidpath .
• userdir is usually the parent ofcurexp .
• The variablesystemdir is usually/vnmr .
• id is the name of the parameter file itself; it is also the root part of the names for

the Acode and waveform generator data files.
• date is a time stamp for the submission of the experiment

6.4 Controlling Acqproc

BecauseAcqproc needs to be able to store FIDs and modify parameter files in every
user’s experiment directories, it must be a process owned byroot . Also, onlyroot
can usechown to transfer the ownership to the respective users. IfAcqproc were
owned by a standard VNMR user, only that user could acquire data5 (note that only one
copy ofAcqproc per system can run at a time).

Theroot ownership for the processAcqproc can create problems: in case of errors
(in particular, experiencing communication failures on the SCSI bus) every user should
be able to kill and restartAcqproc . And in the case of software troubles in the
acquisition system, the acquisition CPU sometimes needs to be restarted, which should
only be done whileAcqproc is shut down (otherwise very likelyAcqproc will not
be able to communicate with the HAL board). UNIX processes can only be killed by
their respective owners, or byroot ; this implies that onlyroot can kill Acqproc ,
androot must restart it, unless the SUID protection bit (4000) is set. A consequence
could be that many people need to know theroot password, which of course is totally
unacceptable from a security point of view.

The solution for this situation is a special accountacqproc that is equipped with
root privileges (UID and GID are the same as forroot) and which may or may not
be equipped with a password. In networked environments, a password (different from
theroot password, of course) is certainly recommended; however, this precludes
resettingAcqproc from the.rootmenu to generate such an account. A shell script
/vnmr/bin/makesuacqproc is provided, which must be executed asroot .

When logging into the accountacqproc , no shell is obtained (as with usual UNIX
accounts), but a shell script/vnmr/bin/execkillacqproc (only executable by
root) is executed instead, after which the user is automatically logged out again
immediately./vnmr/bin/execkillacqproc kills Acqproc if it is found in the
process table; otherwise, it startsAcqproc (asroot). This means that for restarting
(killing and starting)Acqproc , the user must callsu acqproc twice. Broadcast
messages indicate whetherAcqproc has been aborted or started (this message is
displayed in every active UNIX window and the VNMR master window).

5The other users could open up the permissions in their directories and files, but this would not solve
all problems; also, it is undesirable to loosen the file system security by making so many files writable
by everybody (or at least the groupnmr).

Chapter 6. Acquisition Process

64 VNMR Pulse Sequences 01-999014-00 A0398

For SunView, by adding the line

“Fix Acquisition” su acqproc

to a user’s~/.rootmenu file, this function becomes available in the
SunView .rootmenu . This can only work if the accountacqproc has no password,
because there is no keyboard input to commands that are executed from
the .rootmenu .

For OpenWindows, the menu file is~/.openwin-menu , and the line to be added is
as follows:

“Fix Acquisition” exec su acqproc

01-999014-00 A0398 VNMR Pulse Sequences 65

Chapter 7. Digital Components

For the remaining sections of this manual, having at least a rough idea about the
structure of the digital part of the spectrometer is essential.Figure 17 gives on
overview of the relevant components that are involved—more details are provided in
the following chapters.

HAL

D
M

A
D

M
A

RAM

se
ria

l

D
M

A

MC68000

D
M

A

Diagnostics terminal

Acquisition CPU

RAM

se
ria

lMC68000

I/O

Diagnostics terminal

SCSI Host Computer

PROM

Automation control

Sample changer I/O

Eject / insert

Spinning

VT controller

pr
e-

F
IF

O

lo
op

 F
IF

O Times

States

Times

States

Hardware loop

Timer

Shim / DAC boardAP bus

Control bits

Control bits

Pulse Programmer

Sample changer

AP bus

V
E

R
S

A
b

u
s

R
F

 S
e

ct
io

n

ADC

ADC

S/H

S/H

0°

90°

ADC

S
ca

lin
g

F
IF

O

A
dd

er

O
ve

rf
lo

w
?STM

(unused)

(VT controller)

Figure 17. Digital components of a spectrometer

Chapter 7. Digital Components

66 VNMR Pulse Sequences 01-999014-00 A0398

It turns out that there are two CPU boards in the acquisition computer: the Host-to-
Acquisition Link (HAL) and the acquisition CPU. Both use a Motorola MC68000 CPU
chip and have a serial port for a diagnostics terminal. The two computers fulfil different
tasks (the HAL is dedicated to communications with the host computer and it holds the
actual NMR data), but they operate on the same bus, share the same address space, and
work on the same data. Therefore, in subsequent chapters we treat them both as one
single computer (the fact that there are two CPUs is irrelevant to the user).

7.1 Main Boards

The tasks for the main components in the digital part of the spectrometer can be
summarized as follows:

• The main purpose of theHAL board is to act as a link between the host computer
and the acquisition CPU. Through its SCSI interface, the host computer
(Acqproc) can upload not only Acode (seeChapter 8, “Acquisition CPU and
Acode,” on page 69), but also the acquisition operating system through DMA
(direct-to-memory access) into the acquisition CPU. After an experiment, the
NMR data are downloaded through the same interface (seeChapter 6,
“Acquisition Process,” on page 59).

The other purpose of the HAL board is to hold the current NMR data in its RAM.
For arrayed and multidimensional experiments, there is sufficient RAM to hold
both the current and the next FID. After completion of the scans for an FID, this
permits continuing with the next data set without delay (“buffered acquisition”).

• The main task of theacquisition CPU is the interpretation of the Acode,
generating the information that is fed into the pulse programmer. With the aid of
the programmer, it also perform the tasks of autolocking and autoshimming (the
spinner speed regulation is done by dedicated peripheral circuitry).

The acquisition CPU is equipped with boot PROMs, containing a primitive
operating system that is running after switching on or resetting the CPU, up until
the real acquisition operating system is loaded (seeSection 6.1, “Starting the
Acquisition Operating System,” on page 59). The acquisition operating system
fills most of its RAM, which during acquisition also holds the Acode, the data, and
instructions needed for performing an experiment (seeChapter 8, “Acquisition
CPU and Acode,” on page 69).

The acquisition CPU sends information to the pulse programmer and exchanges
information with the automation board through an on-board parallel I/O channel
(seeChapter 13, “Acquisition CPU Communication,” on page 145).

The acquisition CPU has two serial ports, one of which can be used for a
diagnostics monitor (either to display diagnostic information during NMR
experiments or to run PROM-based on-board diagnostics software). In UNITY
and earlier spectrometers, the other serial port was used to exchange information
with the VT controller (the Oxford VTC-4); in UNITYplusspectrometers, this is
done via automation board.

• In a UNITYplus spectrometer, theautomation board drives five serial ports,
through which information is exchanged with the sample changer (ASM-100 or
SMS), the magnet leg pneumatics control circuitry (eject/insert, slow drop, and
bearing air flows), the spinner control circuitry, and the VT controller (one serial
port is currently unused). In UNITY and earlier spectrometers, the second serial

7.2 Bus Structures

01-999014-00 A0398 VNMR Pulse Sequences 67

port of the acquisition CPU was used for the VT controller. Instead, on these
systems the automation board also drove the lock power, phase and gain controls,
and the receiver gain; all these functions are now addressed via the AP bus (see
Chapter 12, “AP Bus Traffic,” on page 137).

In a UNITYplus,the automation board also contains the bootup mode selector and
some battery-buffered RAM (“zero-power RAM”) to store the rf configuration.

• The main task of thepulse programmer is to accurately control the timing during
an NMR experiment. It also acts as a buffer for timing and control information; it
directly controls most of the rf gates and has a dedicated output channel (the AP
bus, seeChapter 12, “AP Bus Traffic,” on page 137) through which it can send
information to most parts of the spectrometer. It controls the shim gradients and all
devices that set frequency offsets, attenuations and pulse amplitudes, phase shifts
and pulsed field gradient amplitudes (see alsoChapter 9, “Pulse Programmers,” on
page 85).

• TheADC (Analog-to-Digital Converter) board receives two audio signals (0 and
90 degrees) from the receiver board (via an audio filter). Each of the channels is
fed into sample-and-hold and ADC circuitry. The data sampling is triggered by the
pulse programmer. If necessary, the data are also scaled down on the ADC board.
At its output, there is a FIFO (first-in-first-out) buffer, from which the data are fed
directly into the sum-to-memory board.

• TheSTM (Sum-to-Memory) board reads in the current FID from the HAL board
through DMA and adds in the new FID from the FIFO buffer on the ADC board,
checks for mathematical overflow (at which point the FID will be scaled by
another bit), and stores the result back in the HAL memory. The STM board does
complex additions according to the current receiver phase (seeChapter 18,
“Acquiring Data,” on page 205).

7.2 Bus Structures

The main components in the digital part of the spectrometer are linked with different
bus structures that carry the data traffic:

• SCSI (Small Computer System Interface) bus is an 8-bit parallel bus that links
the HAL board, the host computer, and most host computer peripherals (disks,
tapes, CD-ROM, etc.).

• Acquisition CPU bus is a 16-bit parallel bus structure that is integrated in the
cardcage backplane (VERSAbus). It carries the data traffic between the
acquisition CPU, the HAL board, and the STM board. It also provides dc power to
the other boards in the same card cage (e.g., the automation board).

• I/O bus is an 8-bit parallel bus that is driven by the acquisition CPU. This bus
connects the acquisition CPU, automation board, and pulse programmer.

• AP (analog port) bus is the most important link between the pulse programmer
and most of the rf devices. Apart from the gating lines, the AP bus carries
information on frequency offsets, attenuation and power modulation levels, pulsed
field gradient amplitudes, small-angle phase shifts—all the numeric information
for the rf part in general. The AP bus is also used to transfer shapes and patterns to
the waveform generators. On the UNITYplus,lock power, lock phase, lock gain,
and the receiver gain are set over the AP bus (on UNITY and earlier spectrometers,

Chapter 7. Digital Components

68 VNMR Pulse Sequences 01-999014-00 A0398

this was done with the automation board). The AP bus is 16-bit parallel (see also
Chapter 12, “AP Bus Traffic,” on page 137).

• On UNITYplussystems, the gating information (“fast lines”) is routed in its own
bus, theHS (high-speed) bus (seeChapter 9, “Pulse Programmers,” on page 85).

The components shown inFigure 17 do not cover the entire digital part of the
spectrometer, but mainly the computing part. Especially on more recent instruments,
such as the UNITYplus, digital components reach much further into the spectrometer:

• The waveform generators (seeChapter 16, “Waveform Generators,” on page 163)
are completely digital.

• Each transmitter board consists of two parts: the rf board and a digital control
board (seeSection 16.1, “How Does a Waveform Generator Fit Into the System?,”
on page 163 andSection 4.2, “How Do Pulses Work?,” on page 40).

Because virtually everything in the spectrometer is digitally controlled, digital
components are found on every subunit of the spectrometer (see alsoSection 12.2,
“What Devices are Driven by the AP Bus?,” on page 139).

01-999014-00 A0398 VNMR Pulse Sequences 69

Chapter 8. Acquisition CPU and Acode

After the acquisition CPU is “running” (i.e., once the acquisition operating system has
been uploaded and started) and “active” (performing an experiment), it in essence
holds the following data blocks:

• Acquisition operating system (seeSection 6.1, “Starting the Acquisition Operating
System,” on page 59), including the Acode interpreter.

• Current FID.

• FID-specific data and instructions (Acode).

8.1 CPU Address Space

The operating system and the Acode are located in the RAM of the acquisition CPU;
the FID is stored in the RAM of the HAL board. For the rest of this chapter, we will
discuss the Acode alone. With respect to the acquisition CPU and the HAL board, you
don’t have to be concerned with anything but the data in the address space of the
acquisition CPU and the way these data are interpreted and used.

The CPU address space also includes status registers on the STM (sum-to-memory)
board. This enables communicating with a board driven by firmware (“hard-coded
software”) and permits transferring acquisition information (number of points, observe
phase) to the STM board (see alsoChapter 18, “Acquiring Data,” on page 205).

8.2 Looking at Acode

Acode (acqi.Code from go('acqi') or expn.username.PID.Code for
normal acquisitions, both in/vnmr/acqqueue , see also the previous chapters) is
primarily a binary file, mostly consisting of 16-bit integers, interspersed with bit
patterns (organized in 16-bit binary words) and some 32-bit long integers. As 16-bit
units dominate (and everything is organized in 2- or 4-byte units), theod -i
command (orod -s under Solaris 2.3) is an almost adequate way to look at this file:

UNITY400:vnmr1 - 1> od -i /vnmr/acqqueue/acqi.Code
0000000 0 1 0 6 0 421 0 -28096
0000020 0 16 0 0 0 0 0 0
0000040 0 0 0 0 0 0 0 0
0000060 0 0 0 1 0 0 268 94
0000100 1 293 3 106 106 85 4 0
0000120 0 0 0 0 64 0 16 16
0000140 0 0 0 0 512 1024 1536 0
0000160 4096 8192 12288 0 0 1 0 0
0000200 0 0 0 0 0 0 0 0
0000220 0 0 0 0 63 0 0 0
0000240 0 1 2 3 0 0 0 0
0000260 0 0 0 0 0 0 0 0
0000300 0 0 0 0 0 0 0 1542
0000320 0 0 0 0 20 31 59 1
0000340 15 1 0 0 0 8 0 16
0000360 0 24 0 24 11 148 15 2
0000400 0 0 0 256 0 512 0 768
0000420 0 768 11 164 53 0 1 19
0000440 5 157 1 4 6 6 -21696 -17651
0000460 -25856 -21676 -17428 -25809 -25713 6 8 -22752

Chapter 8. Acquisition CPU and Acode

70 VNMR Pulse Sequences 01-999014-00 A0398

0000500 -18688 -26690 -18449 -18514 -18437 -18498 -26879 -18688
0000520 159 1 8 -22752 -18688 -26690 -18449 -18514
0000540 -18437 -18498 -26879 -18688 0 16 257 0
0000560 68 1 360 65 769 0 59 2867
0000600 1025 79 16 55 59 2966 514 4095
0000620 0 4095 6 3 -21608 -17454 -25856 -25856
0000640 6 1 -21614 -17504 6 1 -21605 -17664
0000660 6 1 -21615 -17536 6 1 -21616 -17647
0000700 6 7 -32255 -32236 -32224 -32207 -32191 -32171
0000720 -32156 -32143 16 258 0 59 2866 1025
0000740 79 16 30 59 2982 514 4095 0
0000760 4095 6 3 -21592 -17622 -25856 -25856 6
0001000 1 -21598 -17472 6 1 -21589 -17664 6
0001020 1 -21599 -17536 6 1 -21600 -17646 6
0001040 1 -21688 -17663 6 1 -21708 -17579 6
0001060 1 -21707 -17664 6 1 -21683 -17631 6
0001100 1 -21693 -17663 6 1 -21687 -17664 6
0001120 1 -21706 -17658 6 1 -21605 -17528 6
0001140 1 -21589 -17528 151 4129 71 63 2
0001160 440 30000 250 0 151 12297 7 9
0001200 95 4 151 12787 7 9 75 1
0001220 7 1792 15363 0 0 5229 27904 0
0001240 43 1 0 256 8390 4123 19 5
0001260 98 150 0 0 6 1 -21605 -17528
0001300 150 0 0 6 1 -21589 -17528 150
0001320 0 0 150 0 0 150 0 0
0001340 150 0 0 16 1 74 150 0
0001360 1 150 0 1 151 4489 150 0
0001400 3 151 4369 150 0 1 151 4489
0001420 150 0 0 150 0 0 39 74
0001440 39 16 1 74 16 2 74 152
0001460 8487 4117 90 99 1 0 -28096 8390
0001500 4123 7 97 20 232
0001512

This Acode is for a simple experiment (s2pul , p1=0 , d1=0 , d2=0) and obtained with
thegf macro (“real” Acode for arrayed or multidimensional experiments can bevery
long, seeSection 5.2, “Tasks for the Pulse Sequence Executable,” on page 57).
Looking at the above code, we can already (roughly) distinguish two parts: the top part
that consists mainly of “simple numbers” and the bottom part that has a lot of “funny
numbers” (indicating that there are things other than 16- or 32-bit integers).

The-i option causesod to interpret the file given in the argument as 16-bit signed
integers; bit patterns that have the most significant bit set, large unsigned 16-bit
integers, negative or very large 32-bit integers result in large negative numbers being
shown.od -l would interpret most 32-bit integers correctly (those which start at an
odd address), but would misinterpret most of the file by taking two 16-bit numbers for
a single 32-bit number; bit pattern would again mostly be shown as very large numbers.
Other options forod (for octal or hexadecimal output) make the result even less
interpretable. Clearly, a tool is needed that properly takes all the bits and pieces of the
Acode apart.

Methods of Interpreting the Contents of Acode Files

The information on the contents of the Acode is found (somehow) in/vnmr/psg ,
although not in a single place or file, but rather convoluted and spread over many
source and header files. In general it isnotnecessary to know about the contents of the
Acode, although for people who do low-level pulse sequence programming (or modify
files in /vnmr/psg), an Acode decoder can sometimes provide extremely valuable
debugging information—especially because thedps command does not interpret
certain low-level commands and does not show phase tables, real-time phase math, and
even some of the “normal” statements, such asoffset .

8.2 Looking at Acode

01-999014-00 A0398 VNMR Pulse Sequences 71

• In the remaining parts of this manual, Acode contents are shown as output by a
program that has been submitted to the user library (userlib/bin/apdecode).
This program shows Acode structures in detail (all contents); the instruction part
is decoded in that only the instruction codes themselves are shown, whereas
arguments to code functions are (partly) decoded.

apdecode is certainly not a perfect solution because it doesn’t try decoding
everything; it will also not work with all possible rf configurations. Also, because
the Acode undergoes extensive changes with every VNMR release,apdecode is
undergoing constant adaptations, and it, in general, only works with the VNMR
release for which it has been written. The main purpose for showingapdecode
output in this manual is to illustrate specific contents of the Acode and to show the
effect that specific functions (phase calculations, phase tables) have on Acode.

An alternative option for looking at Acode (and related things) is the'debug'
option to thego command, which will display extensive (debugging) information
in the window from which VNMR was called (the parent window). For anyone
who is not an expert,go('debug') cannot be recommended because its output
is much too detailed to be of real value. The output ofapdecode is much more
compact (but may be incomplete at times).

• The output of the Acode decoderapdecode on the same Acode as shown above
looks as follows:

Number of traces: 1
Code Start: 6
Code Ends: 421

aaddr faddr laddr value comment
----- ----- ----- ----- -------

########### LC (Low Core) Structure ###########
6 0 0 37440 LC->np (long)
8 2 2 16 LC->nt (long)

10 4 4 0 LC->ct (long)
12 6 6 0 LC->isum (long)
14 8 8 0 LC->rsum (long)
16 10 10 0 LC->dpts (long)
18 12 12 0 LC->autop (long)
20 14 14 0 LC->stmar (long)
22 16 16 0 LC->stmcr (long)
24 18 18 0 LC->rtvptr (long)
26 20 20 1 LC->elemid (long)
28 22 22 0 LC->squi (long)
30 24 24 268 LC->idver
31 25 25 94 LC->o2auto (Offset to AUTOD)
32 26 26 1 LC->ctctr
33 27 27 293 LC->dsize (blocks)
34 28 28 3 LC->asize (blocks)
35 29 29 106 LC->codeb (Offset to Code)
36 30 30 106 LC->codep
37 31 31 85 LC->status
38 32 32 4 LC->dpf (0=int, 4=long)
39 33 33 0 LC->maxscale
40 34 34 0 LC->icmode
41 35 35 0 LC->stmchk
42 36 36 0 LC->nflag
43 37 37 0 LC->scale
44 38 38 64 LC->check
45 39 39 0 LC->oph
46 40 40 16 LC->bsval
47 41 41 16 LC->bsctr
48 42 42 0 LC->ssval
49 43 43 0 LC->ssctr
50 44 44 0 LC->ctcom
51 45 45 LC->dptab 0 0x200 0x400 0x600
55 49 49 LC->obsptb 0 0x1000 0x2000 0x3000

Chapter 8. Acquisition CPU and Acode

72 VNMR Pulse Sequences 01-999014-00 A0398

59 53 53 0 LC->rfphpt
60 54 54 0 LC->curdec (unused)
61 55 55 1 LC->cpf (cycle phase flag)
62 56 56 0 LC->maxconst
63 57 57 0 LC->tablert
64 58 58 0 LC->output card status reg
65 59 59 0 LC->analog port status reg
66 60 60 0 LC->analog port data reg
67 61 61 0 LC->analog port address/control reg
68 62 62 0 LC->input card status reg
69 63 63 0 LC->input card data reg
70 64 64 0 LC->input card ocsr reg
71 65 65 0 LC->stm card status reg
72 66 66 0 LC->tpwrr (xmtr power)
73 67 67 0 LC->dpwrr (dec power)
74 68 68 0 LC->tphsr (xmtr phase shift)
75 69 69 0 LC->dphsr (dec phase shift)
76 70 70 63 LC->dlvlr (dec level)
77 71 71 0 LC->srate (High Speed Rotor Freq)
78 72 72 0 LC->rttmp (temp real time->interlock)
79 73 73 0 LC->spare1 (unused)
80 74 74 0 LC->zero
81 75 75 1 LC->one
82 76 76 2 LC->two
83 77 77 3 LC->three
84 78 78 0 LC->v1
85 79 79 0 LC->v2
86 80 80 0 LC->v3
87 81 81 0 LC->v4
88 82 82 0 LC->v5
89 83 83 0 LC->v6
90 84 84 0 LC->v7
91 85 85 0 LC->v8
92 86 86 0 LC->v9
93 87 87 0 LC->v10
94 88 88 0 LC->v11
95 89 89 0 LC->v12
96 90 90 0 LC->v13
97 91 91 0 LC->v14
98 92 92 0 LC->(v15)
99 93 93 0 LC->(v16)

########### AUTOD: Automation Data ###########
100 94 0 0 AUTOD->checkmask (long)
102 96 2 0 AUTOD->when_mask: load=’n’ wshim=’n’
103 97 3 1542 AUTOD->control_mask
104 98 4 0 AUTOD->best
105 99 5 0 AUTOD->loops
106 100 6 0 AUTOD->sample_mask (tray location)
107 101 7 0 AUTOD->sample_error
108 102 8 20 AUTOD->recgain
109 103 9 31 AUTOD->lockpower
110 104 10 59 AUTOD->lockgain
111 105 11 1 AUTOD->lockphase

############# Instruction Section ##############
112 106 0 15 SETPHATTRibutes CH1 0 0x8 0x10 0x18

allBits = 0x18, addr = 0xb0094
126 120 14 15 SETPHATTRibutes CH2 0 0x100 0x200 0x300

allBits = 0x300, addr = 0xb00a4
140 134 28 53 ACQBITMASK 0
142 136 30 1 CBEGIN
143 137 31 19 INITialize acq
144 138 32 5 CLEAR
145 139 33 157 LocKFILTER fast = 1, slow = 4
148 142 36 6 APBOUT 7 items 0xab40 0xbb0d 0x9b00 0xab54 0xbbec

0x9b2f 0x9b8f
157 151 45 6 APBOUT 9 items 0xa720 0xb700 0x97be 0xb7ef 0xb7ae

0xb7fb 0xb7be 0x9701 0xb700
168 162 56 159 TUNE_FREQ CH1 9 words

0xa720 0xb700 0x97be 0xb7ef 0xb7ae 0xb7fb 0xb7be
0x9701 0xb700

8.2 Looking at Acode

01-999014-00 A0398 VNMR Pulse Sequences 73

180 174 68 0 NO_OP
181 175 69 16 SETPHAS90 CH1c 0
184 178 72 68 PHASESTEP CH1 360 units (90.00 degrees)
187 181 75 65 SETPHASE CH1f 0
190 184 78 59 APChipOUT APaddr 11, reg 51, +logic, 1 byte

max 79, offset 16, value 55
196 190 84 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes

max 4095, offset 0, value 4095
202 196 90 6 APBOUT 4 items 0xab98 0xbbd2 0x9b00 0x9b00
208 202 96 6 APBOUT 2 items 0xab92 0xbba0
212 206 100 6 APBOUT 2 items 0xab9b 0xbb00
216 210 104 6 APBOUT 2 items 0xab91 0xbb80
220 214 108 6 APBOUT 2 items 0xab90 0xbb11
224 218 112 6 APBOUT 8 items 0x8201 0x8214 0x8220 0x8231 0x8241

0x8255 0x8264 0x8271
234 228 122 16 SETPHAS90 CH2c 0
237 231 125 59 APChipOUT APaddr 11, reg 50, +logic, 1 byte

max 79, offset 16, value 30
243 237 131 59 APChipOUT APaddr 11, reg 166, -logic, 2 bytes

max 4095, offset 0, value 4095
249 243 137 6 APBOUT 4 items 0xaba8 0xbb2a 0x9b00 0x9b00
255 249 143 6 APBOUT 2 items 0xaba2 0xbbc0
259 253 147 6 APBOUT 2 items 0xabab 0xbb00
263 257 151 6 APBOUT 2 items 0xaba1 0xbb80
267 261 155 6 APBOUT 2 items 0xaba0 0xbb12
271 265 159 6 APBOUT 2 items 0xab48 0xbb01
275 269 163 6 APBOUT 2 items 0xab34 0xbb55
279 273 167 6 APBOUT 2 items 0xab35 0xbb00
283 277 171 6 APBOUT 2 items 0xab4d 0xbb21
287 281 175 6 APBOUT 2 items 0xab43 0xbb01
291 285 179 6 APBOUT 2 items 0xab49 0xbb00
295 289 183 6 APBOUT 2 items 0xab36 0xbb06
299 293 187 6 APBOUT 2 items 0xab9b 0xbb88
303 297 191 6 APBOUT 2 items 0xabab 0xbb88
307 301 195 151 EVENT1_TWRD 1.000 usec
309 303 197 71 GAINAutomation
310 304 198 63 SETVT Oxford PID 440, temp 3000.0, vtc 25.0
315 309 203 0 NO_OP
316 310 204 151 EVENT1_TWRD 10 msec
318 312 206 7 STartFIFO
319 313 207 9 StopFIFO
320 314 208 95 PADelay 4 words
322 316 210 151 EVENT1_TWRD 500 msec
324 318 212 7 STartFIFO
325 319 213 9 StopFIFO
326 320 214 75 SHIMAutomation mode = 1, 7 words

0x700 0x3c03 0 0 0x146d 0x6d00 0
341 335 229 43 NOISE loop 256 pts, dwell 199 usec + 1.000 usec
342 336 230 19 INITialize acq
343 337 231 5 CLEAR
344 338 232 98 NextSCan
345 339 233 150 HighSpeedLINES (void)
348 342 236 6 APBOUT 2 items 0xab9b 0xbb88
352 346 240 150 HighSpeedLINES (void)
355 349 243 6 APBOUT 2 items 0xabab 0xbb88
359 353 247 150 HighSpeedLINES (void)
362 356 250 150 HighSpeedLINES (void)
365 359 253 150 HighSpeedLINES (void)
368 362 256 150 HighSpeedLINES (void)
371 365 259 16 SETPHAS90 CH1 zero
374 368 262 150 HighSpeedLINES RXOFF
377 371 265 150 HighSpeedLINES RXOFF
380 374 268 151 EVENT1_TWRD 10.000 usec
382 376 270 150 HighSpeedLINES RXOFF TXON
385 379 273 151 EVENT1_TWRD 7.000 usec
387 381 275 150 HighSpeedLINES RXOFF
390 384 278 151 EVENT1_TWRD 10.000 usec
392 386 280 150 HighSpeedLINES (void)
395 389 283 150 HighSpeedLINES (void)
398 392 286 39 ASSIGNFUNC zero oph
401 395 289 16 SETPHAS90 CH1 zero
404 398 292 16 SETPHAS90 CH2 zero

Chapter 8. Acquisition CPU and Acode

74 VNMR Pulse Sequences 01-999014-00 A0398

407 401 295 152 EVENT2_TWRD 296 usec + 850 nsec
410 404 298 90 SETInputCardMode
414 408 302 99 ACQXX loop np=37440, dwell 199 usec + 1.000 usec
417 411 305 7 STartFIFO
418 412 306 97 HouseKEEPing
419 413 307 20 BRANCH Offset 232

==
Total code size = 421 words / 842 Bytes / 0.8 KB
==

8.3 Structure of Acode Files
The Acode consists of four parts:

• File header
• Data structureLC (low-core)
• Second data structureAUTOD (automation data)
• Instruction section

In the case of arrayed and multidimensional experiments, the Acode contains one file
header plus three other parts: theLC data structure,AUTOD data structure, and an
instruction sectionper FID. TheLC andAUTOD data structures are always the same
(within one software release at least): rigid assemblies of 16- and 32-bit numbers
according to a predefined scheme. The instruction section is variable in length and
contents, and varies considerably with the hardware configuration. The last part of the
instruction sections depends on the current pulse sequence. As mentioned before, the
first instruction segment is always much longer than all others, because of all the
initialization instructions.

Let us now have a more detailed look at the different parts of the Acode. No attempt
will be made to explain all parts of the Acode—in particular, only those parts of the
data structures are explained that are relevant to the following chapters or which are
needed to explain the Acode by itself.

Acode File Header

The Acode has a variable-size file header, consisting of 32-bit (long) integers. The first
number describes thenumber of code segments (corresponds to the value of the
arraydim , except forgo('acqi') orgf , which always produces one code segment
only). In the above example (obtained withgf), there is one code segment only.

The next (32-bit integer) number is theoffset to the first code segmentas 16-bit (2-byte)
address. In this case (one code segment), the header is three 32-bit words long,
resulting in an offset of 6 for the first segment (the first number of the header is located
at address 0).

The following 32-bit numbers are the number of 16-bit words up to (and including) the
last code word for every code segment, or theaddresses of the next code segments, if
any more segments follow. For a standard acquisition (not in Acode generated with
go('acqi') or gf), there arearraydim code segments; therefore, the header is
2*(arraydim + 2) words (16 bits or 2 bytes each) long, or4*(arraydim + 2)
bytes.

8.3 Structure of Acode Files

01-999014-00 A0398 VNMR Pulse Sequences 75

The header information is used byAcqproc to extract individual code segments,
because in arrayed or multidimensional experiments the code is transferred to the
acquisition CPU segment by segment during the acquisition.

LC Data Structure

For the rest of the Acode, the programapdecode lists three different offsets (in 16-
bit words): an absolute word count throughout the entire Acode file (aaddr), a word
count per code segment (faddr), and a local word count or address (laddr)—this
kind of code offset is used by the Acode interpreter itself: addresses are either offsets
within theLC or AUTOD structures, or within the instruction segment (see below).

As explained previously, the term LC stands for “low core.” This terminology is
historic and has little meaning with respect the memory organization in the acquisition
CPU. Both structures (AUTOD andLC) are stored in the acquisition memory the way
they are stored in/vnmr/acqqueue , and the same is done with the instruction
section, but the three sections arenot stored in consecutive memory locations (in
particular, the instruction section isnotstored after the two data structures). After they
are loaded into their proper memory locations, the two data structures form the
“workspace” for the instruction section. Such a workspace could also be “built” by the
acquisition software, but there is of course a good reason for creating an image of that
workspace together with the instruction section as part of the Acode: the two data
structures also serve as container for numeric information that is transferred between
the two computers. This becomes obvious when we look at some of the contents ofLC
(only selected parts are explained here).

LC contains many items that sound very familiar to the pulse sequence programmer: it
turns out that all real-time variables (ct , v1 , one , etc., see below) are actually (16-bit)
addressesto some specific word (16-bit integer) within theLC structure. Because they
are addresses and not normal integers, a special typecodeint was created, describing
C variables that contain addresses (code offsets) within theLC structure. As we see
later, by using thosecodeint variables, the pulse sequence program is able to
generate Acode that contains these addresses. Based on that, during the acquisition the
Acode interpreter can do real-time calculations and operations using the addressed
memory locations.

LC starts with a series of long (32-bit and two 16-bit word) integers, containing:

• LC->np , the number of points to acquire, corresponding to thenp parameter in
VNMR; LC->np is the C syntax for thent element of a structure namedLC—we
use this syntax to differentiate the structure element from thenp variable in C and
thenp parameter in VNMR.

• LC->nt , the number of transients to acquire, corresponding to thent parameter.

• The number of acquired transients, corresponding to thect parameter in VNMR;
as we will see below, all so-called real-time variables in a pulse sequence are 16-
bit integers, and all real-time math operations are 16-bit operations; thecodeint
variablect in a pulse sequence therefore is defined as the “low-order” half of the
LC->ct structure element:ct is first set to the offset toLC->ct and then
incremented by one (this is found in/vnmr/psg/psg.c); all code offsets are in
(16-bit) words,not in bytes. LC->ct is incrementedafterevery scan (i.e., during
the first scanct andLC->ct is 0, and the acquisition for one FID is finished when
the two long integersLC->ct andLC->nt are the same).

Chapter 8. Acquisition CPU and Acode

76 VNMR Pulse Sequences 01-999014-00 A0398

• The index of the current FID and Acode segment (in C pulse sequence code
corresponding to the variableix in the C code of a pulse sequence; the index for
the first FID is 1, not 0).LC->ix is an unsigned, 32-bit integer; therefore, the
theoretical maximum number of elements is 4,294,967,296. This may sound
excessive, but earlier releases of VNMR hadLC->ix defined as a 16-bit integer,
which limited the number of elements to 32767, a value that is easily exceeded in
3D or 4D experiments.

• “squi”, the current set of “quiescent” states: in this location the acquisition
software stores (at real time) the set of gating information (the “fast bits”) to be
used with the next pulse programmer event, and to (or from) which new gate
setting is added and subtracted.

The remainder ofLC consists of 16-bit words and integers, among others including:

• LC->o2auto , the offset to theAUTOD structure (within the code segment, in 16-
bit words), in other words: the size of theLC structure in 16-bit words.

• LC->codeb , the offset to the instruction section within the code segment (faddr
in theapdecode output) or the size of the sum of theLC andAUTOD structures.

• LC->codep , a pointer to the current code word.

• LC->dpf , the “double-precision flag”—an integer that contains either 0 (for 16-
bit acquisitions) or 4 (for 32-bit acquisitions,dp='y').

• LC->dsize , the data size in 512-byte blocks (fordp='y' : 4*np/512 , rounded
up to the next full block).

• LC->asize , the Acode size in 512-byte blocks (minimum: 3 blocks).

• LC->scale , the number of binary scaling operations during an acquisition:
whenever the maximum or minimum number in an FID would exceed the numeric
range at the selected precision, the ADC output and the current FID are scaled
down by a factor of 2 (this corresponds to a right-shift in the binary numbers). For
16-bit acquisitions (dp='n'), the range is from -32768 to +32767; for 32-bit
acquisitions (dp='y'), it is from -2,147,483,648 to +2,147,483,647.

• LC->maxscale , the maximum number of permissible scaling operations (right-
shifts): before starting any acquisition, the system measures the amount of noise
by acquiring 256 data points at the conditions of the experiment. From that noise
the maximum number of scaling operations is determined, such that after the
scaling the noise is still properly digitized. If at that point more scaling would be
required, the acquisition is stopped with the message “maximum number of
transients accumulated”.

• LC->cpf , the “cycle phase flag”: 0 stands forcp='n' , 1 forcp='y' in VNMR;
if cp='n' , the observe phaseoph remains constant; otherwise, it is incremented
with thect counter.

• LC->ssval , the number of steady-state pulses, corresponding to thess
parameter in VNMR. Acodeint (real-time) variablessval contains the
address(the offset) toLC->ssval , such that in a pulse sequence we can instruct
the acquisition CPU to perform (mathematical) operations based on the value
stored inLC->ssval .

• LC->ssctr , the counter location, in which the acquisition CPU counts the
steady-state pulses; this location is initially set to the value ofLC->ssval and the

8.3 Structure of Acode Files

01-999014-00 A0398 VNMR Pulse Sequences 77

decremented after each transient. During “real” transients,LC->ssctr remains
set to zero. Also here (equivalent tossval), acodeint variablessctr exists
that allows performing real-time calculations based on the value ofLC->ssctr .

• LC->bsval , the block size, corresponding to thebs parameter in VNMR. A
codeint (real-time) constantbsval contains the offset toLC->bsval , such
that in a pulse sequence we can instruct the acquisition CPU to perform
(mathematical) operations based on the value stored inLC->bsval .

• LC->bsctr , the counter location, in which the acquisition CPU counts through
the block size; at the beginning of the acquisition this location is set to the value of
LC->ssval and is decremented after each transient; whenever the location
LC->bsctr contains zero, the FID is stored, andLC->bsctr is reset to the value
of LC->bsval . Again, acodeint variable (bsctr) exists that allows
performing real-time calculations based on the value ofLC->bsctr , or even
recalculating the value ofLC->bsctr (e.g., for implementing dynamic block
sizes).

• LC->oph , the observe phase real time variable:oph in a pulse sequence is nothing
but theaddress (the local offset,laddr in theapdecode output) to that
structure element. Ifcp='n' (LC->cpf is 0),LC->oph contains 0, otherwise
(cp='y' , and LC->cpf is 1) LC->oph is the same asct (the low-order half of
LC->ct). As the observe phase can only assume four values (0, 1, 2, 3), it doesn’t
matter ifoph contains the values fromct that are incremented up tont-1 : the
software simply looks at the last two (the two least-significant) bits of that 16-bit
number, which is identical to amodulo 4function, resulting in a sequence 0, 1, 2,
3, 0, 1, 2, 3, etc. Of course,oph can also be calculated (or set from a phase table,
see the following chapters); in any case, it isnot necessary to perform a modulo
function to ensure values in the proper range of 0 to 3—for the modulo (mod 4)
function is implicit!

• LC->v1 , LC->v2 , . . . LC->v14 , 14 storage locations for results of phase
calculations, flags, etc.: in a pulse sequence these locations can be addressed via
thecodeint (“real-time”) variablesv1 , v2 , . . . v14 . Since real-time math
happens detached from the C compiler and the execution of the C pulse sequence,
the only way to instruct the acquisition CPU to perform math with specified
variables is to the addresses on which mathematical and logical operations are to
be performed. There are two kinds of such addresses: addresses to the variables
v1 , v2 , . . . v14 , oph , ssctr , andbsctr (the latter two are rarely used as
variables), and addresses to constants (see below) and “system variables” likect
(as well asssval , ssctr , bsval , bsctr , tablert). The integersLC->v1 up
to LC->v14 are initialized with zero value, unless the user specifies a different
value using theinitval statement. This also is the only way to set the contents
of these locations directly from within C; once the experiment is running, the
values can and will only be changed by real-time math.

• LC->zero , LC->one , LC->two , LC->three , four locations with the numeric
values 0, 1, 2, and 3: these numbers are accessible via the real-time (codeint)
variableszero , one , two , andthree . As numeric C constants (or variables)
cannot exist in the Acode translation, these four frequently used numeric values are
stored in real-time locations and made accessible by the address variableszero ,
one , two , three . They all could theoretically constructed from a single value
(zero or one), but it is more convenient to have at least these three numbers
available for real-time math.

Chapter 8. Acquisition CPU and Acode

78 VNMR Pulse Sequences 01-999014-00 A0398

• LC->tablert , this is the location in which phase values from a table are stored
in table calls (e.g., thepulse(pw,t1) statement), unless the table value is
extracted into a real-time variable (v1 , v2 , . . . v14 , using thegetelem
statement, or intooph with thesetreceiver statement, see alsoChapter 11,
“Phase Tables,” on page 115).

The other elements (addresses) in theLC structure are used internally within the
acquisition CPU and are rarely of interest to the user, not even for debugging.

TheLC structure (together withAUTOD) is defined in/vnmr/psg/lc.h . It is
initialized in /vnmr/psg/psg.c , which also defines and sets the corresponding
codeint (real-time) variables. TheLC andAUTOD structures are to be regarded as
non-user modifiable, because there are matching counterparts within the VNMR
module and in the acquisition operating system.

The AUTOD Data Structure

In the current software, theAUTOD structure serves two purposes: it provides
parameters and intermediate storage locations for the autoshimming routine, and it
contains the current values for the operations that are performed via the automation
control board (seeChapter 7, “Digital Components,” on page 65). Compared to theLC
structure,AUTODis small, containing one long (32-bit) integer and ten 16-bit integers:

• AUTOD->when_mask is a 16-bit integer that contains the information from the
VNMR load andwshim parameters.

• AUTOD->checkmask , AUTOD->control_mask , AUTOD->best ,
AUTOD->loops are used for the autoshimming.

• AUTOD->samplemask is the sample changer location (0 = not used).

• AUTOD->sample_error contains sample changer error codes.

• AUTOD->recgain is the receiver gain (value as set by the parameter, or as set by
the autogain (ifgain='n').

• AUTOD->lockpower , AUTOD->lockgain , AUTOD->lockphase are the
lock parameters—again, either as set by the parameters or (in case the autolock is
selected) as set by the autolock function.

In earlier VNMR releases,AUTOD was larger and contained many more functions:

• 32 shim gradient coil values. With the increasing number of gradients and the
many different possible gradient sets, this became obsolete and was moved into the
instruction section. No fixed space is allocated for the gradient settings.

• The shim method as ASCII text (up to 128 characters). This was moved into the
instruction section, where the method text appears in parsed (semi-interpreted)
form. No fixed amount of space is allocated for the shim method any longer.

• Knobs information—memory space that was allocated for processes internal to the
acquisition CPU. This was removed fromAUTOD as well.

8.3 Structure of Acode Files

01-999014-00 A0398 VNMR Pulse Sequences 79

The Instruction Section

The instruction section of each Acode segment is structured by itself and consists of
two subsections:

• The first part does all the initializations and is executed only once per FID.

• The second part contains the code that is generated by the pulse sequence function
itself and is looped overnt .

We will now take a more detailed look at the two parts of the instruction section,
without discussing individual functions (these will be discussed in later chapters).

The Initialization Part

The initialization part of the instruction section contains definitions and initializations.
To a very large extent, this part of the code depends on the rf configuration. The more
channel and the more devices that exist, the longer this section becomes. Of course, it
also depends on the parameter settings (gradient settings, frequencies, power levels,
etc.), but these mainly change the numeric (and binary) values used in this section and
not so much its length.

In arrayed and multidimensional experiments, this section also depends on the FID
index. Certain segments and instructions (as indicated below) only show up in the
instruction segment for the first FID and, in general, the instruction segments for
subsequent FIDs are slightly shorter. The difference is about 50 to 150 Acode words
(about 100 to 300 bytes), depending on the spectrometer configuration.

At the beginning of the initialization part, the binary values for the fast bits that
determine the 90-degree phase shifts are defined for each channel, together with an
internal address used in connection with phase shifting. This part only shows up in the
Acode for the first FID.

112 106 0 15 SETPHATTRibutes CH1 0 0x8 0x10 0x18
allBits = 0x18, addr = 0xb0094

126 120 14 15 SETPHATTRibutes CH2 0 0x100 0x200 0x300
allBits = 0x300, addr = 0xb00a4

The next, large section includes initialization output to virtually every digital and rf
device in the spectrometer (including magnet leg control and shims), ensuring that they
are in their proper state, as defined by configuration and non-pulse sequence dependent
acquisition parameters. Most of this section consists of AP output (seeChapter 12, “AP
Bus Traffic,” on page 137). The lock filter response times are set, all shim gradient
settings, frequencies, and power levels are set, amplifiers, rf switches, and relays are
set into a proper state. In this section, theTUNE_FREQ instructions (setting the PTS
frequency synthesizers), the instructions that initialize the waveform generators, and a
few other functions are only present as part of the first Acode segment.

140 134 28 53 ACQBITMASK 0
142 136 30 1 CBEGIN
143 137 31 19 INITialize acq
144 138 32 5 CLEAR
145 139 33 157 LocKFILTER fast = 1, slow = 4
148 142 36 6 APBOUT 7 items 0xab40 0xbb0d 0x9b00 0xab54 0xbbec

0x9b2f 0x9b8f
157 151 45 6 APBOUT 9 items 0xa720 0xb700 0x97be 0xb7ef 0xb7ae

0xb7fb 0xb7be 0x9701 0xb700
168 162 56 159 TUNE_FREQ CH1 9 words

0xa720 0xb700 0x97be 0xb7ef 0xb7ae 0xb7fb 0xb7be
0x9701 0xb700

180 174 68 0 NO_OP

Chapter 8. Acquisition CPU and Acode

80 VNMR Pulse Sequences 01-999014-00 A0398

181 175 69 16 SETPHAS90 CH1c 0
184 178 72 68 PHASESTEP CH1 360 units (90.00 degrees)
187 181 75 65 SETPHASE CH1f 0
190 184 78 59 APChipOUT APaddr 11, reg 51, +logic, 1 byte

max 79, offset 16, value 55
196 190 84 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes

max 4095, offset 0, value 4095
202 196 90 6 APBOUT 4 items 0xab98 0xbbd2 0x9b00 0x9b00
208 202 96 6 APBOUT 2 items 0xab92 0xbba0
212 206 100 6 APBOUT 2 items 0xab9b 0xbb00
216 210 104 6 APBOUT 2 items 0xab91 0xbb80
220 214 108 6 APBOUT 2 items 0xab90 0xbb11
224 218 112 6 APBOUT 8 items 0x8201 0x8214 0x8220 0x8231 0x8241

0x8255 0x8264 0x8271
234 228 122 16 SETPHAS90 CH2c 0
237 231 125 59 APChipOUT APaddr 11, reg 50, +logic, 1 byte

max 79, offset 16, value 30
243 237 131 59 APChipOUT APaddr 11, reg 166, -logic, 2 bytes

max 4095, offset 0, value 4095
249 243 137 6 APBOUT 4 items 0xaba8 0xbb2a 0x9b00 0x9b00
255 249 143 6 APBOUT 2 items 0xaba2 0xbbc0
259 253 147 6 APBOUT 2 items 0xabab 0xbb00
263 257 151 6 APBOUT 2 items 0xaba1 0xbb80
267 261 155 6 APBOUT 2 items 0xaba0 0xbb12
271 265 159 6 APBOUT 2 items 0xab48 0xbb01
275 269 163 6 APBOUT 2 items 0xab34 0xbb55
279 273 167 6 APBOUT 2 items 0xab35 0xbb00
283 277 171 6 APBOUT 2 items 0xab4d 0xbb21
287 281 175 6 APBOUT 2 items 0xab43 0xbb01
291 285 179 6 APBOUT 2 items 0xab49 0xbb00
295 289 183 6 APBOUT 2 items 0xab36 0xbb06
299 293 187 6 APBOUT 2 items 0xab9b 0xbb88
303 297 191 6 APBOUT 2 items 0xabab 0xbb88
307 301 195 151 EVENT1_TWRD 1.000 usec

The receiver gain is set to the value specified in the corresponding VNMR parameter,
and the VT controller is initialized (a temperature setting of 3000 degrees switches off
the active VT regulation, the PID regulation parameters are set with every acquisition,
and the VT cut-over value is set at the same time). Unless a temperature array is
specified, theSETVT instruction is only used in the first FID.

309 303 197 71 GAINAutomation
310 304 198 63 SETVT Oxford PID 440, temp 3000.0, vtc 25.0
315 309 203 0 NO_OP
316 310 204 151 EVENT1_TWRD 10 msec
318 312 206 7 STartFIFO
319 313 207 9 StopFIFO

Next, the preacquisition delay (pad) is executed; in Acode segments other than for the
first FID, this is omitted.

320 314 208 95 PADelay 4 words
322 316 210 151 EVENT1_TWRD 500 msec
324 318 212 7 STartFIFO
325 319 213 9 StopFIFO

Depending on thewshim parameter, autoshimming is now performed on the first FID
only, or for each increment. The shim method has become part of the Acode
instructions (it doesnot show up in ASCII text, but rather in parsed form).

326 320 214 75 SHIMAutomation mode = 1, 7 words
0x700 0x3c03 0 0 0x146d 0x6d00 0

The last element of the initialization part is the noise measurement: for the first FID,
256 noise points are acquired using the spectral window (as well as the gain and filter
settings, of course) of the “real” FID. This noise measurement is used to calculate the
maximum number of down-scalings (right-shifts) that can be performed under the

8.3 Structure of Acode Files

01-999014-00 A0398 VNMR Pulse Sequences 81

current conditions (in case the maximum or minimum integer is reached in the FID),
such that the noise is still sufficiently digitized.

341 335 229 43 NOISE loop 256 pts, dwell 199 usec + 1.000 usec
342 336 230 19 INITialize acq
343 337 231 5 CLEAR

With these instructions, the pulse sequence independent part of the instruction section
terminates. The keyword for the pulse-sequence-related section isNextSCan , or the
Acode instruction92 .

Pulse-Sequence-Related Part

The pulse-sequence-related part of the instruction section can be as short as 80 Acode
words, as in the example (s2pul) below. In other cases it can be up to several thousand
Acode words. The maximum Acode size for a single FID (including the initialization
section) currently is 10,000 words.

The starting point for the pulse sequence section is always the instruction92
(NextSCan). Typically, the pulse sequence function itself is a sequence of math
functions (not in this example), AP output (APBOUT) statements, instructions that set
fast bits (HighSpeedLINES , SETPHAS90), and time events. Any pulse sequence
statement call that can possibly change the fast bits (state information) generates a
HighSpeedLINES call. In this particular example, we recognize only three time
events:pw was set to 7 microseconds, androf1 androf2 both set to 10
microseconds. The other pulse (p1) was set to zero (thus the time events associated
with p1 do not show up), and the two delays are set to zero and are therefore skipped.

344 338 232 98 NextSCan
345 339 233 150 HighSpeedLINES (void)
348 342 236 6 APBOUT 2 items 0xab9b 0xbb88
352 346 240 150 HighSpeedLINES (void)
355 349 243 6 APBOUT 2 items 0xabab 0xbb88
359 353 247 150 HighSpeedLINES (void)
362 356 250 150 HighSpeedLINES (void)
365 359 253 150 HighSpeedLINES (void)
368 362 256 150 HighSpeedLINES (void)
371 365 259 16 SETPHAS90 CH1 zero
374 368 262 150 HighSpeedLINES RXOFF
377 371 265 150 HighSpeedLINES RXOFF
380 374 268 151 EVENT1_TWRD 10.000 usec
382 376 270 150 HighSpeedLINES RXOFF TXON
385 379 273 151 EVENT1_TWRD 7.000 usec
387 381 275 150 HighSpeedLINES RXOFF
390 384 278 151 EVENT1_TWRD 10.000 usec
392 386 280 150 HighSpeedLINES (void)
395 389 283 150 HighSpeedLINES (void)

The remainder of the code is related to the implicit acquisition. The observe phase
(oph) is set to zero, because this code was generated using thegf macro that disables
the observe phase cycling (to avoid jumping dc levels in the real-time FID display). All
rf channels are then reset to zero phase to avoid a center glitch due to rf leakage. Of
course, this is only relevant in real acquisitions withcp='y' (i.e.,with observe phase
cycling). After that, the filter delay,alfa+1/(beta*fb) , is executed.

The instruction90 (SETInputCardMode) transmits the observe phase to the sum-to-
memory board (seeChapter 18, “Acquiring Data,” on page 205). This is done
automatically before acquiring the first data point (after which the receiver phase can’t
be changed any longer); here, the entire FID is acquired in a single instruction.

398 392 286 39 ASSIGNFUNC zero oph
401 395 289 16 SETPHAS90 CH1 zero

Chapter 8. Acquisition CPU and Acode

82 VNMR Pulse Sequences 01-999014-00 A0398

404 398 292 16 SETPHAS90 CH2 zero
407 401 295 152 EVENT2_TWRD 296 usec + 850 nsec
410 404 298 90 SETInputCardMode
414 408 302 99 ACQXX loop np=37440, dwell 199 usec + 1.000 usec
417 411 305 7 STartFIFO

The last instruction before “branching” (jumping) back to the instructionNextSCan
is for housekeeping. Housekeeping is necessary for the sum-to-memory card to return
to its proper state, finishing storing the FID in the RAM. It also increments thect
counter (LC->ct), decrements block size or steady-state counters (LC->bsctr or
LC->ssctr), checks for the end of the an acquisition block size or for the termination
of the steady-state scans, and starts the necessary actions (see alsoChapter 18,
“Acquiring Data,” on page 205).

418 412 306 97 HouseKEEPing
419 413 307 20 BRANCH Offset 232

8.4 Acode Interpretation

The acquisition operating system interprets the Acode instruction section. This process
involves a number of different tasks:

• Setting internal status registers.

• Setting or reading status registers on other boards, such as the sum-to-memory
board or the HAL.

• Math operations on internal registers (see alsoChapter 10, “Phase Calculations,”
on page 95).

• Table manipulations (in essence, extraction of single values from tables, see also
Chapter 11, “Phase Tables,” on page 115) and the main task.

• Constructing FIFO words that are then suitably “packed” and sent to the pulse
programmer through the host I/O bus (seeChapter 7, “Digital Components,” on
page 65).

FIFO Flow

The last acquisition operating system task, constructing FIFO words, needs to be
coordinated with the pulse programmer; otherwise, the pulse programmer might obtain
a few short time events or AP bus words, and execute them, and then run out of FIFO
words before the acquisition CPU is able to deliver the continuation of the pulse
sequence. With a 0.2 microsecond minimum time event, or 1.15 microseconds (2.15
microseconds for older systems) per AP bus word, the execution of these events can
easily be faster than the delivery of information from the acquisition CPU. If the FIFO
(seeChapter 9, “Pulse Programmers,” on page 85) runs empty, this generates an error
message “FIFO underflow”. On the other hand, if the FIFO is full, the pulse
programmer sets a status register that indicates to the acquisition CPU that the FIFO is
full, and no more FIFO words are generated.

Initially, the FIFO is empty, but it is stopped (no information is released at the “other”
end); this way the acquisition CPU can feed the FIFO words from the initialization part
without danger that the FIFO runs empty. Actually, it is exactly the initialization part
that consists of only fast (AP bus) events. Only after most of the initialization data has
been fed into the pulse programmer and the VT controller has been initialized, the
FIFO output is started with Acode instruction7 (STartFIFO , at local offset206 in

8.4 Acode Interpretation

01-999014-00 A0398 VNMR Pulse Sequences 83

the above example). The following block (preacquisition delay) is surrounded by
Acode instruction9 (StopFIFO) and anotherSTartFIFO , and also the pulse
sequence code itself is surrounded by these function.

In theory, it is possible to have only very few, fast events in the pulse sequence
statement (e.g., no delay, a very short pulse, and a very short acquisition at a very large
spectral window). In such a case, it must be ensured that the sequence of events during
the execution of the pulse sequence is not disrupted by a FIFO underflow.

It can be assumed that during the execution of a pulse sequence, the pulse programmer
normally does not run empty or spend extra waiting times in a “stopped” state, because
this would also disrupt steady states.

Acode Size Limitations, Acode Buffering

The acquisition CPU has somewhat less than 22 Kbyte of memory space reserved for
storing Acodes (including theLC andAUTODstructures and the instruction segment).
That defines the absolute maximum for the Acode size on these systems: about 10900
words in the instruction segment. There hasn’t been an experiment yet that exceeded
this limit (but we certainly could construct one, for the sake of the argument), so this
should not be a point to be concerned about for pulse sequence programmers.

The topic of Acode size is more complex than that, however. If we were to fill the
Acode space in the acquisition CPU to more than 50%, then only one Acode segment
can be held in the acquisition CPU at any given time during an experiment. This means,
that after finishing one increment of a multi-FID experiment the system would first
have to upload the next Acode segment from the host (and this again can only happen
when the acquisition CPU ispolled by the host) before it can continue with the
acquisition of the next trace. This leads to inter-increment delays of over one second
(the actual length of that delay is unpredictable) and totally disrupts the steady state in
arrayed andnD experiments (apart from lengthening the overall experiment time,
making any calculation/prediction of the experiment duration very unreliable).

If, however, the Acode segment size is less than 50% of the available memory, more
than one Acode segment will be stored in the acquisition CPU, and when one
increment is finished, the interpretation of the next Acode segment can start
immediately (the system will store as many Acode segments in the acquisition CPU as
it can, given the current memory limitations). So, to maintain any steady-state across
multiple increments, we should not exceed the limit of approximately 5400 words
(10800 bytes) per Acode segment1. To estimate the size of an Acode segment, enter
go('acqi') in VNMR and check the size of file/vnmr/acqqueue/acqi.Code 2.

A limit of 5400 words still is fairly large for an Acode segment, but it is definitely not
impossible to exceed that limit, in particular in some complex sequences with a long,
explicitly coded spin locking sequence, or when using either extremely long phase
tables and/or trying to useapshaped_pulse with complex pulse shapes (over 1000
to 2000 slices).

1We haven’t confirmed whether 5400 words is the real and accurate limit beyond which the multiple
buffering is lost. The pulse sequence generation software has a built-in limit of 11000 words per
Acode segment (or about 10900 words in the instruction section).
2 This size is approximate becausego('acqi') calculates the Acode only for the first increment
(which always has some extra instruction overhead), and also becausego('acqi') temporarily
alters some of the parameters (see alsoSection 5.3, “Using go('acqi'),” on page 58).

Chapter 8. Acquisition CPU and Acode

84 VNMR Pulse Sequences 01-999014-00 A0398

For most cases there is a solution that avoids the problem:

• In tables use the division return factor (see alsoChapter 11, “Phase Tables,” on
page 115).

• The number of shape slices is definitely limited withapshaped_pulse (see also
Section 16.5, “What If a Waveform Generator Is Not Available,” on page 189).

• As for DANTE-type pulses, explicitly coded programmed spin locking sequences,
etc., it is very inefficient to code such elements using thergpulse statement.
rgpulse generates several extraHighSpeedLINES Acode instructions that can
be avoided by using constructs like

txphase(phase);
delay(delta);
xmtron(); delay(length); xmtroff();

which is much more economic in terms of Acode space and execution (see also
Section 20.2, “Sideband Suppression in MAS Experiments,” on page 230).

• If you have a waveform generator, use that for modulated spin locking instead of
programming it explicitly.

01-999014-00 A0398 VNMR Pulse Sequences 85

Chapter 9. Pulse Programmers

In earlier chapters, we have shown out how a pulse programmer could be constructed
in the context of a Varian spectrometer. Of course, this was a rough sketch, showing
only the general working aspect, rather than a detailed picture of its internal
functionality. In this chapter, we look at thereal functionality of this board, which is
the most central piece of hardware for the execution of a pulse sequence.

9.1 Layout of the Pulse Programmer

Figure 18shows a functional diagram of the pulse programmer. The pulse programmer
gets its input via the CPU I/O bus from the acquisition CPU (see alsoChapter 7,
“Digital Components,” on page 65). This information is fed into a FIFO buffer, a
memory buffer into which information is fed sequentially and which releases the

CPU I/O bus

acquisition CPU

bus decoder

preloop FIFO

multiplexer

loop FIFO

width

depth (length)

fast bits
(states)

sec

loop control

timers
msec

µsec

“nsec”

times

AP bus

times / AP bus words

times / AP bus wordsfast bits (states)

spectrometer / rf external trigger

Figure 18. Structure of the pulse programmer

Chapter 9. Pulse Programmers

86 VNMR Pulse Sequences 01-999014-00 A0398

information in the same sequence through the second port1. It is a special kind of dual-
port memory containing words of a certain width. The number of words in a FIFO
buffer is often called thedepth or thelength of the FIFO.

Since the width of the CPU I/O bus (16-bits parallel) is not the same as the width of the
FIFO (28, 36, or 54 bits), the input logic (bus decoder) composes FIFO words from
several I/O bus words.

There are actually two FIFO buffers in sequence. Normally, the information (FIFO
words) “falls through” to the end of the second FIFO, or (if there is already information
in the buffer) down to the position behind the last word that was fed into the buffer
previously—until both buffers fill up. At that point, the pulse programmer signals
“FIFO full” to the acquisition CPU, which then temporarily stops producing FIFO
words until free space is again available in the FIFO.

The information that comes out at the end of the buffer can be fed back into the second
FIFO: a multiplexer (a parallel “Y switch” with two inputs and one output) determines
whether the information going into the second FIFO is taken from the first FIFO (the
normal case) or from the output. The latter is used for thehardware looping, in which
the information in the second FIFO (the loop FIFO) is circulating for a predefined
number of cycles. At the beginning of the last loop pass, the loop control circuitry (a
16-bit loop counter) switches the input (the multiplexer) back to the preloop FIFO.

A part of every FIFO word is state-related information, often calledfast bits(because
they can be switched instantaneously with any FIFO word. At the output, these bits
directly drive rf gates and switches, set phases in 90-degree increments, and blank (or
unblank) amplifiers.

From the remaining bits in the FIFO word, 16 are used to define the time; out of these,
12 define thetime count(1 to 212; i.e., 1 to 4096 units), the remaining four are used to
define the time base(seconds, milliseconds, microseconds, “nanoseconds”). The
timing information is fed into the timing circuitry, which activates the corresponding
timer. When the timer has counted down to zero, a trigger signal is given to the FIFO,
causing it to release the next FIFO word. Alternatively, the newer versions of the pulse
programmer board can disable the timers for specific FIFO words and cause the
following FIFO word to be released upon sensing an external trigger signal. This
allows synchronizing a pulse sequence with external events (such as a rotor period for
solids experiments, or the heart beat or a respiration cycle for imaging experiments).

Because there are only four different time bases, only two bits are needed to select the
time base. The four control bits at the same time canredefinethe timing part of a FIFO
word to be information that is fed into the AP bus by which 16 devices can be
addressed directly (i.e., a part of the 16 timing bits serves as address). The rest is
numeric information that is transferred to the addressed device (e.g., the small-angle
phase shifters).

Alternatively, the AP bus can be used in indirect mode, in which the address is first
transmitted in a separate AP word, followed by AP words containing the numeric
information. This way, an unlimited number of devices (several thousand) can be
addressed, and numeric information of arbitrary precision can be transmitted (e.g.,

1 This differs greatly from the way information is stored and recalled randomly in RAM. In a FIFO,
no addressing is involved: only one word at a time can be read out, and the read-out sequence is given
by the order of the input.

9.1 Layout of the Pulse Programmer

01-999014-00 A0398 VNMR Pulse Sequences 87

frequency information for the PTS synthesizer). During AP bus traffic, the timing
circuitry is still activated, ensuring that every AP bus word remains on the bus for a
specific, well-defined time (1.15 microseconds for UNITYplus systems, 2.15
microseconds on earlier systems), such that there is sufficient time for the addressed
devices to decode the address and read the information off the bus.

The last four bits in the FIFO word include the “command to convert” (CTC) bit that
triggers the ADC. Unlike all other bits, this bit is not held up during an entire time
event, but is electronically reformed to a short trigger pulse. The remaining three bits
are used for loop and FIFO control.

All Varian pulse programmers have essentially the same layout—be it the output board
used in XLs and VXRs, the acquisition control board used in VXRs and UNITY
spectrometers, the pulse sequence control board used in UNITYplusspectrometers, or
similar boards in other Varian spectrometers. With few exceptions, the differences are
only quantitative: both the depth and the width of the FIFO has changed over the years
(adding more fast bits), the timing resolution has been improved, and the external
trigger has been added.

In summary, the various pulse programmers can be characterized as shown inTable 1.
The differences can be summarized as follows:

• The FIFO width varies from 28 bits (Gemini) and 36 bits (XL, VXR, and UNITY)
to 54 bits (UNITYplus); the number of fast bits in essence is equal to the total
number of bits per FIFO word minus 20.

• The length of the loop FIFO has been increased from 63 words (Gemini, XL, and
VXR) to 1024 words (VXR-S and UNITY) and 2048 words (UNITYplus).

• The preloop FIFO does not exist on the Gemini output board. It was half the size
of the loop FIFO in the output board and is of the same depth as the loop FIFO in
newer systems.

• On the acquisition control board, the timing resolution has been improved to 25
nanoseconds (100 nanoseconds in earlier boards).

• In the UNITYplus, the AP bus has been speeded up by almost a factor of two (see
Chapter 12, “AP Bus Traffic,” on page 137).

Table 1. Pulse programmer characteristics

Output Board
(GEMINI)

Output Board
Acquisition

Control Board
Pulse Sequence
Control Board

Use Gemini
XL, VXR,

early VXR-S
late VXR-S,

UNITY
UNITYplus

FIFO width (fast bits) 28 (8) bits 36 (16) bits 36 (16) bits 54 (34) bits

Pre-loop FIFO none 32 words 1024 words 2048 words

Loop FIFO 63 words 63 words 1024 words 2048 words

Timing Resolution 100 nsec 100 nsec 25 nsec 25 nsec

AP Bus Speed 2.15µsec/word 2.15µsec/word 2.15µsec/word 1.15µsec/word

External Trigger no no yes yes

Chapter 9. Pulse Programmers

88 VNMR Pulse Sequences 01-999014-00 A0398

• The external trigger only became available with the acquisition control board.

Fast bits are covered in the next section, and timing characteristics are considered in
more detail at the end of this chapter. The consequences of various preloop and loop
FIFO lengths are discussed more inSection 14.3, “Hardware Loops,” on page 150.

9.2 Fast Bits

Fast bits have been provided for those states that possibly need to be changed with
every time event, even as short as 0.2 microseconds, such as transmitter gates, 90-
degree phase shifts, receiver gates, and amplifier blanking, plus eventually external
devices, such as a laser for CIDNP experiments; also waveform generators need to be
triggered with a fast bit.

The demand for fast bits has been growing over the years. The Gemini had only very
modest needs in terms of fast bits (using only two rf channels), a UNITYplus
spectrometer with up to six rf channels is much more demanding in terms of the
number of fast-switching lines. For a long time, systems (all except Gemini and
UNITYplus) were equipped with a fixed number of 16 fast bits—with the consequence
that in systems with third rf channel and waveform generators (particularly UNITY
systems) some of the fast bits had to be reassigned by shifting some of the fast bit
functionality (the decoupler modulation modedmm in particular) to the AP bus. This
cut-over happened with the transition from AP interface board type 2 to type 3 of the
same board (only type 3 permits controllingdmm via the AP bus).

Table 2lists the assignment for the fast bits in pulse programmers with 16 fast bits. The
hexadecimal number in the first row describes the numeric value of the corresponding

Table 2. Fast bit assignments, output boards and acquisition control boards

HEX Value AP Interface Type 2 AP Interface Type 3

0x1 VAR1 (Varian-reserved line 1) WFG1 (fast line for WFG #1)

0x2 VAR2 (Varian-reserved line 2) WFG2 (fast line for WFG #2)

0x4 SP1 (spare bit 1) SP1 (spare bit 1)

0x8 SP2 (spare bit 2) SP2 (spare bit 2)

0x10 DECLVL (decoupler level switching) DECUPLR2 (decoupler 2, gate)

0x20 MODMA (dmm, bit 1) DC2_90 (decoupler 2, 90 deg. phase)

0x40 MODMB (dmm, bit 2) DC2_180 (decoupler 2, 180 deg. phase)

0x80 HomoSpoilON (homospoil gate) HomoSpoilON (homospoil gate)

0x100 DECPP (homodecoupler gating) WFG3 (fast line for WFG #3)

0x200 DC90 (decoupler, 90 deg. phase) DC90 (decoupler, 90 deg. phase)

0x400 DC180 (decoupler, 180 deg. phase) DC180 (decoupler, 180 deg. phase)

0x800 DECUPLR (decoupler gate) DECUPLR (decoupler gate)

0x1000 RFP90 (observe xmtr. 90 deg. phase) RFP90 (observe xmtr. 90 deg. phase)

0x2000 RFP180 (observe xmtr. 180 deg. phase)RFP180 (observe xmtr. 180 deg. phase)

0x4000 TXON (observer xmtr. gate) TXON (observer xmtr. gate)

0x8000 RXOFF (receiver off gate) RXOFF (receiver off gate)

9.3 Timers and Timer Words

01-999014-00 A0398 VNMR Pulse Sequences 89

bit within the 16-bit “fast-bit word” or within the “quiescent states” word in theLC
structure. This information is taken from the header filerfconst.h found in
/vnmr/psg . The CTC (command-to-convert) bit does not count as a regular fast bit,
because it behaves differently (see above).

Evidently, it is a bad idea to try addressing the ambiguous bits (DECLVL/DECUPLR2,
MODMA/DC2_90, MODMB/DC2_180, andDECPP/WFG3) directly (using low-level
statements taken from/vnmr/psg), because this would generate code that is only
correct for one particular type of hardware and could create havoc when executed on a
different system. Actually,no fast bit should be addressed directly (in the UNITYplus,
the assignments changed altogether, and in fact, thegate statement for manipulating
fast bits directly no longer exists in VNMR 4.3 or later.)

The pulse sequence control board in the UNITYplushas a totally different fast bit
assignment, as can be seen fromTable 3. The fast bits are organized in groups of five
bits per rf channel; each channel has its own “receiver gate” (the amplifier blanking),
a transmitter gate, a gate for the waveform generator, and two gates for the 90-degree
phase shifts. The observe is switched together with the blanking line for the observe
channel amplifier. Four additional bits control the homospoil pulse, the rotor
synchronization hardware, and the two spare gating lines (for triggering external
devices). The latter two are no longer part ofLC->squi (the 32-bit “quiescent states”
word in the LC structure), but are handled separately.

9.3 Timers and Timer Words

All pulse programmers use four different timers, and the time count (the number of
time units to be counted down by the timer) is a 12-bit binary number, resulting in
values between 1 and 4096. The four timers include:

• Seconds timer (1 to 4096 seconds)
• Milliseconds timer (1 to 4096 milliseconds)
• Microseconds timer (1 to 4096 microseconds)
• “Nanosecond” timer, which is in units of 100 nanoseconds for output boards and

on the Gemini (resulting in a theoretical range of 0.1 to 409.6 microseconds), or in
units of 25 nanoseconds for acquisition control boards and pulse sequence control
boards (resulting in a theoretical range of 0.025 to 102.4 microseconds).

The minimum timer word is 0.2 microseconds on all pulse programmers. Timer words
shorter than that cannot be executed and are suppressed already at C level in the pulse
sequence software (they would result in a pulse programmer error message).

A problem seems to exist with the timers listed above, in that it seems that time events
above 4 seconds can only be executed in steps of 1 second, time events between 4
milliseconds and 4 seconds can be executed with a precision of 1 milliseconds, and
time events between 102 microseconds (409 microseconds on older boards) and 4
milliseconds can be performed with a precision of 1 microsecond only. This seems
rather limited and would in fact have a severe impact on multidimensional experiments,
because most likely the 2D increments could probably not be spaced properly due to
the “granularity” of the duration of time events. The same limitation would apply to the
1D dwell time, which would impose severe restrictions to the settability of thesw
parameter. All this is clearly unacceptable.

Chapter 9. Pulse Programmers

90 VNMR Pulse Sequences 01-999014-00 A0398

Table 3. Fast-bit assignments on pulse sequence control boards

HEX Value RF channel Function

0x1 channel 1 amplifier blanking / receiver gating

0x2 channel 1 transmitter gate

0x4 channel 1 waveform generator gate

0x8 channel 1 90 degrees phase shift

0x10 channel 1 180 degrees phase shift

0x20 channel 2 amplifier blanking (“receiver”)

0x40 channel 2 transmitter gate

0x80 channel 2 waveform generator gate

0x100 channel 2 90 degrees phase shift

0x200 channel 2 180 degrees phase shift

0x400 channel 3 amplifier blanking (“receiver”)

0x800 channel 3 transmitter gate

0x1000 channel 3 waveform generator gate

0x2000 channel 3 90 degrees phase shift

0x4000 channel 3 180 degrees phase shift

0x8000 channel 4 amplifier blanking (“receiver”)

0x10000 channel 4 transmitter gate

0x20000 channel 4 waveform generator gate

0x40000 channel 4 90 degrees phase shift

0x80000 channel 4 180 degrees phase shift

0x100000 channel 5 amplifier blanking (“receiver”)

0x200000 channel 5 transmitter gate

0x400000 channel 5 waveform generator gate

0x800000 channel 5 90 degrees phase shift

0x1000000 channel 5 180 degrees phase shift

0x2000000 channel 6 amplifier blanking (“receiver”)

0x4000000 channel 6 transmitter gate

0x8000000 channel 6 waveform generator gate

0x10000000 channel 6 90 degrees phase shift

0x20000000 channel 6 180 degrees phase shift

0x40000000 homospoil gate

0x80000000 rotor synchronization

[0x10] spare gate 1

[0x20] spare gate 2

9.3 Timers and Timer Words

01-999014-00 A0398 VNMR Pulse Sequences 91

The solution is to performdouble-precision timer words,where necessary. If there is a
remainder after performing the major part of a time event in one unit (e.g., seconds for
time events above 4.096 seconds), asecond time event is included that performs the
remainder of the time event in the next smaller unit. Single-precision timer words are
used only if there is no remainder from a single time unit. With these two options for
time events, we get the following possibilities:

• Time events above 4100 seconds are performed as a double timer word with the
seconds timer; the maximum time event is 8192 seconds. The round-off error (up
to 0.5 seconds) is less than 0.012% for this range of durations.

• Time events above 4.1 seconds can be performed with millisecond precision, with
a round-off error of less than 0.012% (up to 0.5 milliseconds absolute).

• Time events between 4.2 milliseconds (4.5 milliseconds on boards with 100
nanoseconds resolution) and 4.1 seconds are performed with microsecond
precision, the maximum round-off error being again below 0.012% (up to 0.5
microseconds absolute).

• Time events smaller than 4.2 milliseconds (4.5 milliseconds on boards with 100
nanoseconds resolution) are performed with the timing resolution of the pulse
programmer (100 or 25 nanoseconds). By nature, the round-off error can be
considerable in this range: for the output board it is up to 50 nanoseconds absolute,
or 12 ppm at the upper end, and 25% at the lower end (0.2 microseconds). With
newer boards, it is up to 12.5 nanoseconds in absolute terms, or up to 3 ppm at the
upper limit and below 6% for the shortest time intervals.

The reality is somewhat more complicated. On all pulse programmers it takes 150
nanoseconds for the hardware to decode the time base, store the time count in the time
counter, and start the corresponding timer. Consequently, there is a 150 nanoseconds
dead-time involved with every timer word (300 nanoseconds with double-precision
time events). For small time events, the software corrects for this error by adjusting the
nanosecond count, for larger durations this error remains uncorrected, but is negligible
(0.007% maximum).

One more thing was neglected up to now: the numeric range of a 12-bit binary number
is actually from 0 to 4095, but the timers, on the other hand, always perform at least
one time count to begin with (0 input results in a count of 1). Thus, the 12-bit input
range translates to a count range of 1 to 4096 units.

Table 4 summarizes the various possibilities with single- and double-precision time
events. Single precision (except for those with the smallest units) is, of course, only
performed if there is no remainder. The somewhat “odd” lower limits are due to the fact
that smaller delays will be performed with the next smaller time base (and because
there is some overlap in the ranges of the individual time bases). Whenever the
“nanoseconds” time base is involved on boards with 25-nanosecond resolution, 6 or 12
counts are subtracted from the “nanoseconds” part for single- and double-precision
time events, respectively; these time events will be accurate to 25 nanoseconds.

On the output board (63-word loop FIFO), short time events have slightly different
characteristics, because the timing resolution is 100 nanoseconds only and timing
errors are not corrected for this hardware.Table 5 covers output boards.

It is not necessary to fully understand all of the tables shown here, but this information
should help in understanding how certain events are translated into single- or double-
precision timer words. The question whether double-precision timer words are used or
not isn’t relevant for most cases either, but may play an important role in the execution

Chapter 9. Pulse Programmers

92 VNMR Pulse Sequences 01-999014-00 A0398

of hardware loops, especially on systems with 63-word loop FIFO (see alsoSection
14.3, “Hardware Loops,” on page 150).

9.4 Problems with Timer Word Errors

Compared with the total duration of a timer word, the possible timing errors seem small
and, overall, the timer word precision seems more than sufficient for the common
NMR experiments. There is one important exception, however: innD experiments the
evolution delay is performed as a single time event that is calculated for every
increment (see alsoSection 19.1, “Indirect Time Domain Incrementation,” on page

Table 4. Single- and double-precision timer word characteristics

Type Time Base(s)
[Counts (min/max)]
Duration range

Resolution Timing Error

double sec / sec [4096 + 1 up to 4096 + 4096]
4097 sec - 8192 sec

1 sec 300 nsec longer

single sec 5 sec - 4096 sec 1 sec 150 nsec longer

double sec / msec [4 + 97 up to 4096 + 4096]
4.097 sec - 4100.096 sec

1 msec 300 nsec longer

single msec 5 msec - 4096 msec 1 msec 150 nsec longer

double msec /µsec [4 + 97 up to 4096 + 4096]
4.097 msec - 4.100096 sec

1 µsec 300 nsec longer

single µsec a “nsec” time event is always added to correct for dead times

double µsec / 25 nsec [102 + 11 (+ 12) / 4096 + 4096 (+ 12)]
102.575µsec - 4198.7µsec

0.025µsec accurate

single 25 nsec [2 (+ 6) - 4096 (+ 6)]
0.2µsec - 102.55µsec

0.025µsec accurate

Table 5. Single- and double-precision timer word characteristics, output boards

Type Time Base(s)
[Counts (min/max)]
Duration range

Resolution Timing Error

double sec / sec [4096 + 1 up to 4096 + 4096]
4097 sec - 8192 sec

1 sec 300 nsec longer

single sec 5 sec - 4096 sec 1 sec 150 nsec longer

double sec / msec [4 + 97 up to 4096 + 4096]
4.097 sec - 4100.096 sec

1 msec 300 nsec longer

single msec 5 msec - 4096 msec 1 msec 150 nsec longer

double msec /µsec [4 + 97 up to 4096 + 4096]
4.097 msec - 4.100096 sec

1 µsec 300 nsec longer

single µsec 411µsec - 4096µsec 1 µsec 150 nsec longer

double µsec / 100 nsec [409 + 7 up to 4096 + 4096]
409.7µsec - 4505.6µsec

0.1µsec 300 nsec longer

single 100 nsec [2 up to 4096]
0.2µsec - 409.6µsec

0.1µsec 150 nsec longer

9.5 Timer Words and Fast Bits in the Acode

01-999014-00 A0398 VNMR Pulse Sequences 93

215). What counts in the end is thedifference between the increments, which should
be as equal as the dwell times during the standard acquisition. Any random variation
in the “evolution dwell time” will translate to noise in the indirect dimension of the
final spectrum and, much worse, any periodic variation will lead to extra signals
(sidebands) in the indirect domain.

What is the nature of these timing errors innD experiments? Typically (with spectral
windows of a few kHz) the evolution time for first increments on annD experiment is
below 4 msec (i.e., it is performed accurately with the full timing precision of the pulse
programmer, 25 nsec on most systems). But for those increments that have an
evolution timegreater than 4 msec (see the above tables) two errors occur:

• The delays are rounded off to fullµsec time events. This will lead to a periodic
error in the course of the evolution time incrementation.

• The timer word overhead is no longer corrected for (i.e., evolution times larger
than 4.097 msec are 300 nsec too long, or 150 nsec for single-precision
millisecond time events).

We could set the spectral window in the indirect dimensions such that the evolution
time is always a multiple of a fullµsec (which certainly would be inconvenient), but
then still there would be a single incrementation discontinuity when crossing the 4.097
msec limit, beyond which the timing overhead is not corrected. This alone probably
wouldn’t be too bad, but worse is that when the evolution time happens to “fall onto”
a full msec duration, which will occur periodically, the timing overhead would only be
half of what it is for the other time events above 4.097 msec. This can translate to
visible artifacts (sidebands) in nD spectra with a large dynamic range.

To correct for these problems, as of VNMR 5.1 the module/vnmr/psg/delay.c
has been modified such that any time event above 4 msec and below 4 sec is performed
in three timer words:

• a (single) msec timer word, with the msec portion of the durationminus 2 msec.
• a double (usec/nsec) timer word of 2 msec,plusthe sub-msec fraction,minus the

timing overhead of the first timer word.

This change has the effect of producing triple-precision timer words for durations
between 4 msec and 4 sec, and with thisall time events up to 4 sec are performed at
the full precision of the pulse programmer (25 nsec on most systems). These “triple-
precision time events” will, of course, lead to extra FIFO words in the pulse
programmer; however, this only affects delays above 4 msec, and hence should not lead
to problems such as having too many events in a hardloop, etc.

9.5 Timer Words and Fast Bits in the Acode

For acquisition control boards and pulse sequence control boards, time events are
encoded with the instructions151 and152 , EVENT1_TWRD andEVENT2_TWRD.
EVENT1_TWRDinstructions are followed by a 16-bit timer word (the time base is in the
4 most-significant bits),EVENT2_TWRD are followed by two 16-bit timer words.

Chapter 9. Pulse Programmers

94 VNMR Pulse Sequences 01-999014-00 A0398

Fast bits are set by separate instructions: gate-related information (excluding the 90-
degree phase shifts) is set by instruction150 (HighSpeedLINES , followed by a 32-
bit pattern), 90-degree phase shifts are set with the instruction16 (SETPHAS90,
followed by a channel identifier and the address of a location in theLC structure):

362 356 250 150 HighSpeedLINES (void)
365 359 253 150 HighSpeedLINES (void)
368 362 256 150 HighSpeedLINES (void)
371 365 259 16 SETPHAS90 CH1 zero
374 368 262 150 HighSpeedLINES RXOFF
377 371 265 150 HighSpeedLINES RXOFF
380 374 268 151 EVENT1_TWRD 10.000 usec
382 376 270 150 HighSpeedLINES RXOFF TXON
385 379 273 151 EVENT1_TWRD 7.000 usec
387 381 275 150 HighSpeedLINES RXOFF
390 384 278 151 EVENT1_TWRD 10.000 usec
392 386 280 150 HighSpeedLINES (void)

Any pulse sequence statement that can possibly alter the fast bits (likestatus or the
various gating instructions within theG_pulse statement, even if the pulse duration
is zero) produces aHighSpeedLINES instruction in the Acode. Because many time
events in a pulse sequence may be set to zero (like in the above example using the
s2pul pulse sequence), it is not unusual to find a series ofHighSpeedLINES with
identical arguments and no time events in-between. Of course, only instructions151
and152 (EVENT1_TWRDandEVENT2_TWRD) actually produce FIFO words (1 and 2,
respectively); theHighSpeedLINES andSETPHAS90 only change specific bits in
the “quiescent states” registerLC->squi .

For pulse programmers with 16 fast bits (output boards and acquisition control boards),
the two spare lines (set and unset in the pulse sequence code by the statements
sp1on() , sp1off() , sp2on() , andsp2off()) are part of the standard fast bit
pattern and are set the same as the other gating bits, through theHighSpeedLINES
instruction. For the pulse sequence control board, the two spare lines are set with a
special instruction156 (SPARE12), followed by a 16-bit word containing the numeric
equivalent to the two fast bits (0x10 for spare line 1, 0x20 for the spare line 2), because
these two bits are not part of the standard 32-bit fast bit wordLC->squi .

Earlier software releases (prior to UNITYplusand the pulse sequence controller board)
did not have the Acode instructions150 to 156 ; at that time, the high-speed lines
(including the two spare lines) were set together with the time event instructions
EVENT1 andEVENT2 (46 and47). These instructions were followed by one or two
timer words, plus an extra 16-bit word with the fast bits. AHighSpeedLINES
instruction was not required; only the 90-degree phase shifts were set by the same
instructionSETPHAS90 (16) as today.

01-999014-00 A0398 VNMR Pulse Sequences 95

Chapter 10. Phase Calculations

Phase cycling in pulsed NMR experiments is the alteration of rf phases as a function
of the scan number, thereby co-adding experiments with different rf phases, by altering
the phases in a pulse sequence as a function of the transient counter variablect . There
are many reasons to do phase cycling, including:

• Coherence pathway selection, such as multiple-quantum filtering, f1 or f2
quadrature selection, etc.

• Cancellation of artifacts arising from spectrometer imperfections, such as channel
imbalance (quadrature images), dc offsets (center glitch), phase errors, pulse
imperfections (off-resonance effects).

• Cancellation of phase errors due to J-coupling.

• Cancellation of phase errors due to (sometimes deliberately) improper refocusing.

10.1 How Do Phase Calculations Work?

The most natural thing seems to be to calculate the phases directly from thect counter
via some mathematical algorithm. Of course, this presumes that such an algorithm
exists: we need a mathematical prescription that generates a given vector (a one-
dimensional array of scalar numbers; for 90-degree phase shifting typically integer
numbers between 0 and 3) from the vector of natural numbers (i.e., thect counter). It
can be shown that for anyrepetitivesequence of numbers, such an algorithm exists.

Phase cycles by nature are repetitive; therefore, the calculation is feasible, supposing
we have the necessary mathematical tools. The complexity of the mathematical
procedure (the number of mathematical operations and the storage requirements for
intermediate results) heavily depends on the (repetitive) sequence of numbers (the
target vector) that is to be created; the means that VNMR provides should actually be
sufficient for creatingany phase cycle used in NMR experiments.

True random sequences of numbers cannot be generated this way, but pseudo-random
sequences of sufficient length and quality can be generated using integer math (using
modulo functions, seeSection 10.8, “Real-Time Random Numbers,” on page 112).

The Tools

The basis for phase mathematics is formed by two main ingredients:operators(the
math operations themselves) andoperands (the objects—numbers and storage
locations—that are used and manipulated by the operators). A third ingredient,real-
time logical decisions, is sometimes also used for the construction of more complex
phase cycles. Also,C constructsare often used to make phase calculations dependent
on certain VNMR parameters likephase .

C constructs can only happen on aper-FID basis, because after the Acode generation
C constructs can have no effect on the execution of real-time math. Also, C math
operators cannot be used for real-time math: phase math operators are interpreted by
the acquisition CPU in “real time”; operands are addresses (offsets in theLCstructure),
on which the real-time math operations are performed.

Chapter 10. Phase Calculations

96 VNMR Pulse Sequences 01-999014-00 A0398

Real-Time Operands

The operands for real-time math can be divided into constants and variables:

• Simple numeric constants:zero , one . two , three (LC elements with numeric
values 0, 1, 2 and 3, respectively).

• Constantsssval andbsval , holding the number of steady-state and blocksize
transients.

• Predefined variablesct , ssctr , andbsctr , holding the transient counter (least-
significant half only, see“LC Data Structure” on page 75), the steady-state
transient counter, and the block size transient counter, respectively.

• True real-time variablesv1 , v2 , . . . v14 .

It obviously doesn’t make sense to change the values of the numeric constants and,
with very few exceptions, to modify other constants and predefined variables.
Therefore, results are normally placed only in the true real-time variablesv1 to v14 .

Real-Time Operators

A full set of basic math operators exists for the construction of phase cycles. These
include unary operators (one argument only), and operators with two and three
arguments. Always the last argument is thetarget operandand that contains the result
of the calculation (it is thereforemodifiedby the operator), preceding operands are not
modified by the calculation.Table 6 shows the set of real-time math operators (ph1 ,
ph2 , etc. are real-time operands, see above.

With all these operators, the last argument is the target operand and is modified by the
real-time calculation. Math results can, of course, be used in subsequent calculations.
Complex algorithms are built by chaining a series of simple operations.

All calculations are integer operations. Divisions always result in an integer, and
fractional numbers are truncated to the next lower integer number. All operations are

Table 6. Real-time math operators

Type Syntax Meaning

assignment assign(ph1,ph2); ph2 = ph1

increment /
decrement

incr(ph1);
decr(ph1);

ph1 = ph1 + 1
ph1 = ph1 - 1

addition /
subtraction

add(ph1,ph2,ph3);
sub(ph1,ph2,ph3);

ph3 = ph1 + ph2
ph3 = ph1 - ph2

multiplication
dbl(ph1,ph2);
mult(ph1,ph2,ph3);

ph2 = 2 * ph1
ph3 = ph1 * ph2

division
hlv(ph1,ph2);
divn(ph1,ph2,ph3);

ph2 = ph1 / 2
ph3 = ph1 / ph2

modulo
mod2(ph1,ph2);
mod4(ph1,ph2);
modn(ph1,ph2,ph3);

ph2 = ph1 % 2
ph2 = ph1 % 4
ph3 = ph1 % ph2

10.1 How Do Phase Calculations Work?

01-999014-00 A0398 VNMR Pulse Sequences 97

performed in 16-bit integer format with a range of –32768 up to 32767. Integer
overflow is suppressed—results are subjected to an implicit (mod 32768) operation.

Variable operands can contain positive as well as negative numbers. In most of the
typical applications for phase calculations (e.g., the calculation of 90-degree or small-
angle phase shift steps, the use of a real-time variable is as a table index) the function
for which the result is used has a very limited numeric range, such as 0 to 3 for 90-
degree phase shifts, or 0 to 7 for 45-degree phase steps. In these cases, the value in the
variable undergoes an implicit modulo function (without altering the variable itself):
for 90-degree phase shifts, the two least-significant bits are extracted (-1 mod 4 is 3),
for 45-degree phase steps, the three least-significant bits are taken (-1 mod 8 is 7). In
other words, as long as the number of possible (phase) values is a power of two (2, 4,
8, ...), a negative numbern in phase cycling behaves like 32768 – |n|.

As mentioned above, in most cases the result of a real-time calculation is subject to
some modulo function in the end (either implicitly or explicitly). For instance, with 90-
degree phase shifting it normally does not matter whether a variable contains the
numbers 3, 7, 11, or –1. In fact, many people tend to think that in such situations “4 is
the same as 0” and mentally apply a modulo function to every intermediate result in a
phase calculation. This thinking is certainly not correct, but it still leads to the proper
result,as long as no division (divn , hlv) is involved.

New Real-Time Numeric Constants

The real-time numeric constantszero , one , two , andthree exist for calculations.
In principle, three of those could be calculated from a single value, for example:

assign(zero,v1); /* 0 */
incr(v1); /* 1 */
dbl(v1,v2); /* 2 */
add(v1,v2,v3); /* 3 */

In other words, three of the four constants are not really a necessity, but are a pure
convenience for the programmer (actually, we save some Acode space because saving
three more constants costs three 16-bit words, while the above calculations take up 12
AP words). Sometimes we would like to make calculations with much higher numeric
values, the value 127 perhaps (for an example seeSection 10.8, “Real-Time Random
Numbers,” on page 112). Again, such numbers can be calculated:

dbl(two,v1); /* 4 */
dbl(v1,v1); /* 8 */
mult(v1,v1,v1); /* 64 */
dbl(v1,v1); /* 128 */
decr(v1); /* 127 */

On the other hand, it would seem convenient if we could just create a new numeric
constant. This is in fact possible, using theinitval statement:

initval(127.0,v1);

This initializesv1 (LC->v1) with the numeric value 127 (instead of 0). This way we
haven’t wasted a single word of Acode! However, there is a bigcaveatin this method:
v1 in fact contains the value 127 when the above statement is used, but this happens
only once: upon typinggo , when the Acode is generated (better: when theLCstructure
is created and initialized). Ifanyreal-time calculation overwrites the value ofv1 (i.e.,
if v1 is used as target operand), the initial value is lost for the current transient and any

Chapter 10. Phase Calculations

98 VNMR Pulse Sequences 01-999014-00 A0398

subsequent transients for that FID! The consequence is that the variable that is
initialized usinginitval is lost as a real-time variable for that pulse sequence.

There is also a potential danger that the programmer usesinitval at the beginning
of a pulse sequence and then by mistake overwrites the value. This leads to very subtle
pulse sequence errors that can be hard to find and debug (certainly, the syntax checker
does not find such errors!).

The conclusion is thatinitval allows simplifying the pulse sequence code, but in
general it is probably better to avoid using it, thus saving real-time variables and
avoiding pulse sequence errors. We should be careful when usinginitval to store
power levels in real-time variables (this practice was common in Varian pulse
sequences for a long time). If by mistake power levels are altered by real-time
calculations, excessive rf load and heating may damage the probe and precious
samples. It is better to avoid setting power levels through real-time variables (see also
Chapter 12, “AP Bus Traffic,” on page 137).

The fact thatinitval happens atgo time and not at real time means that it doesn’t
matter where theinitval statement is placed. It can be the last statement in the pulse
sequence, but the value can be used in the first real-time calculation.

Phase Calculations in the Acode

Phase calculations are the part of the pulse sequence program that is transferred into
Acode almost directly. Every statement creates one Acode instruction, and every real-
time math argument translates to an Acode word (LC address pointer). The following
example is generated from a slightly modified version of the standardinadqt.c pulse
sequence in VNMR 4.3:

384 378 272 37 MOD4FUNC ct v3
387 381 275 34 HLVFUNC ct v9
390 384 278 34 HLVFUNC v9 v9
393 387 281 39 ASSIGNFUNC zero v10
396 390 284 39 ASSIGNFUNC v9 v1
399 393 287 34 HLVFUNC v9 v9
402 396 290 39 ASSIGNFUNC v9 v2
405 399 293 34 HLVFUNC v9 v9
408 402 296 34 HLVFUNC v9 v9
411 405 299 36 MOD2FUNC v9 v9
414 408 302 33 DBLFUNC v1 v1
417 411 305 29 ADDFUNC v9 v1 v1
421 415 309 39 ASSIGNFUNC v1 oph
424 418 312 33 DBLFUNC v2 v8
427 421 315 29 ADDFUNC v9 v2 v2
431 425 319 29 ADDFUNC v8 oph oph
435 429 323 33 DBLFUNC v3 v4
438 432 326 29 ADDFUNC v3 v4 v4
442 436 330 29 ADDFUNC v3 v9 v3
446 440 334 29 ADDFUNC v4 oph oph
450 444 338 29 ADDFUNC v10 oph oph

Considering the fact that this code generates several phase cycles that are 64 steps long,
the above code can be regarded as being quite efficient: only 70 Acode words (21
instructions) are used to generate these phase cycles (and this isn’t even the shortest
possible coding!).

10.2 Case 1: Decoding Phase Calculations

01-999014-00 A0398 VNMR Pulse Sequences 99

10.2 Case 1: Decoding Phase Calculations

Anyone programming sequences with real-time math has two hurdles to overcome in
connection with the real-time math: to understand how a sequence with real-time math
works, and then to find an appropriate real-time math algorithm that generates the
desired phase cycle. The understanding part is the easier of the two tasks and is
therefore discussed first.

If we take the above example, we might find a phase cycling (calculation) section in
the pulse sequence that looks as follows (assuming that there are no comments):

mod4(ct,v3);
hlv(ct,v9); hlv(v9,v9);
assign(v9,v1);
hlv(v9,v9); assign(v9,v2);
hlv(v9,v9); hlv(v9,v9); mod2(v9,v9);
dbl(v1,v1); add(v9,v1,v1);
assign(v1,oph);
dbl(v2,v8);
add(v9,v2,v2);
add(v8,oph,oph);
dbl(v3,v4); add(v3,v4,v4);
add(v3,v9,v3);
add(v4,oph,oph);

The only safe way (apart from using a computer program) to evaluate the resulting
phase cycles is to write down the result of every single calculation step. For the
beginner, an easy method is to write the vectors in columns (at least for shorter and less
complex phase cycles):

mod4
(ct,v3)

hlv
(ct,v9)

hlv
(v9,v9)

assign
(v9,v1)

hlv
(v9,v9)

assign
(v9,v2)

hlv
(v9,v9)

ct v3 v9 v9 v1 v9 v2 v9

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

2 2 1 0 0 0 0 0

3 3 1 0 0 0 0 0

4 0 2 1 1 0 0 0

5 1 2 1 1 0 0 0

6 2 3 1 1 0 0 0

7 3 3 1 1 0 0 0

8 0 4 2 2 1 1 0

9 1 4 2 2 1 1 0

10 2 5 2 2 1 1 0

11 3 5 2 2 1 1 0

12 0 6 3 3 1 1 0

13 1 6 3 3 1 1 0

14 2 7 3 3 1 1 0

15 3 7 3 3 1 1 0

16 0 8 4 4 2 2 1

17 1 8 4 4 2 2 1

18 2 9 4 4 2 2 1

Chapter 10. Phase Calculations

100 VNMR Pulse Sequences 01-999014-00 A0398

For more complex phase cycles, the vectors are better written in rows instead of
columns, either on a piece of paper or, even better, directly in the pulse sequence as a
comment behind every single function call:

mod4(ct,v3); /* v3 = 01230123 */
hlv(ct,v9); /* v9 = 001122334455 ... */
hlv(v9,v9); /* v9 = 000011112222333344 ... = ct/4 */
assign(v9,v1); /* v1 = ct/4 */
hlv(v9,v9); /* v9 = ct/8 */
assign(v9,v2); /* v2 = ct/8 */
hlv(v9,v9); /* v9 = ct/16 */
hlv(v9,v9); /* v9 = ct/32 */
mod2(v9,v9); /* v9 = (32*0) (32*1) */
dbl(v1,v1); /* v1 = 0000222244446666 ... */

/* = 0000222200002222 (quadrature phases) */
add(v9,v1,v1); /* v1 = 00002222000022220000222200002222

11113333111133331111333311113333 */
assign(v1,oph); /* oph = v1 */
dbl(v2,v8); /* v8 = 0000000022222222 */
add(v9,v2,v2); /* v9 = 00000000222222220000000022222222

11111111333333331111111133333333 */
add(v8,oph,oph); /* oph = 00002222222200000000222222220000

11113333333311111111333333331111 */
dbl(v3,v4); /* v4 = 02460246 */
add(v3,v4,v4) /* v4 = 03690369 = 03210321 */
add(v3,v9,v3); /* v3 = 01230123230123010123012323012301

12301230301230121230123030123012 */
add(v4,oph,oph); /* oph = 03212103210303210321210321030321

10323210321010321032321032101032 */

19 3 9 4 4 2 2 1

20 0 10 5 5 2 2 1

21 1 10 5 5 2 2 1

22 2 11 5 5 2 2 1

23 3 11 5 5 2 2 1

24 0 12 6 6 3 3 1

25 1 12 6 6 3 3 1

26 2 13 6 6 3 3 1

27 3 13 6 6 3 3 1

28 0 14 7 7 3 3 1

29 1 14 7 7 3 3 1

30 2 15 7 7 3 3 1

31 3 15 7 7 3 3 1

32 0 16 8 8 4 4 2

33 1 16 8 8 4 4 2

34 1 17 8 8 4 4 2

35 2 17 8 8 4 4 2

mod4
(ct,v3)

hlv
(ct,v9)

hlv
(v9,v9)

assign
(v9,v1)

hlv
(v9,v9)

assign
(v9,v2)

hlv
(v9,v9)

ct v3 v9 v9 v1 v9 v2 v9

10.3 Case 2: Creating Phase Math for Given Phase Tables

01-999014-00 A0398 VNMR Pulse Sequences 101

Phase cycles can be rather long. To avoid excessive typing, a shorthand syntax is very
helpful (although it makes addition of phase vectors more difficult). It is recommended
to use the shorthand syntax that is also used in the definition of phase tables (covered
in the section“Shorthand Notation” on page 116):

(a b c d)n repeat the entire sequence within the parenthesesn times
(e.g., forn=2 : a b c d a b c d)

[a b c d]n repeat each individual element within the bracketsn times
(e.g., forn=2 : a a b b c c d d)

Such a simplified comment would look as follows:

mod4(ct,v3); /* v3 = 0 1 2 3 */
hlv(ct,v9); /* v9 = [0 1 2 3]2 */
hlv(v9,v9); /* v9 = [0 1 2 3]4 */
assign(v9,v1); /* v1 = [0 1 2 3]4 */
hlv(v9,v9); /* v9 = [0 1 2 3]8 */
assign(v9,v2); /* v2 = [0 1 2 3]8 */
hlv(v9,v9); /* v9 = [0 1 2 3]16 */
hlv(v9,v9); /* v9 = [0 1 2 3]32 */
mod2(v9,v9); /* v9 = [0 1]32 */
dbl(v1,v1); /* v1 = [0 2]4 */
add(v9,v1,v1); /* v1 = [0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3]4 */
assign(v1,oph); /* oph = [0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3]4 */
dbl(v2,v8); /* v8 = [0 2]8 */
add(v9,v2,v2); /* v9 = [0 2 0 2 1 3 1 3]8 */
add(v8,oph,oph); /* oph = [0 2 2 0 0 2 2 0 1 3 3 1 1 3 3 1]4 */
dbl(v3,v4); /* v4 = 0 2 0 2 */
add(v3,v4,v4); /* v4 = 0 3 2 1 */
add(v3,v9,v3); /* v3 = (0 1 2 3 0 1 2 3 2 3 0 1 2 3 0 1)2

(1 2 3 0 1 2 3 0 3 0 1 2 3 0 1 2)2 */
add(v4,oph,oph); /* oph = (0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1)2

(1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2)2 */

10.3 Case 2: Creating Phase Math for Given Phase Tables

While the reconstruction of phase cycles from real-time math statements is not very
difficult and can be solved by applying pure logic (e.g., in a computer program), the
opposite task is quite different: nobody has yet come up with a simple logical approach
for the construction of real-time math statements for a given phase cycle. The problem
of creating a real-time math algorithm is largely a question of intuition, experience, and
(mental) pattern recognition. Generating phase cycling math is also not an “exact
science” in the sense that for any phase cycle there are many algorithms that lead to the
correct result. The general goal is to create short and understandable algorithms, but
what finally counts is the resulting phase cycle. For the execution of the pulse sequence
in the pulse programmer, it normally doesn’t matterhowa phase cycle was generated.

Simple Phase Cycles

As we shall see later, most phase cycles (except perhaps the most simple ones) can be
constructed by co-adding simpler (sub-)cycles: simple phase cycles can form the tools
from which we can construct complex cycles. We should, therefore, first learn how to
construct some simple phase cycles fromct .

Chapter 10. Phase Calculations

102 VNMR Pulse Sequences 01-999014-00 A0398

Phase Incrementation

Incrementing phases are generated either fromct directly or by using division
operation to slowct down (the finalmod4 operations are optional for quadrature
phases):

assign(ct,v1); /* 0 1 2 3 */

mod4(ct,v1); /* 0 1 2 3 */

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 4 4 5 5 ... */
mod4(v1,v1); /* 0 0 1 1 2 2 3 3 */

hlv(ct,v1); /* [0 1 2 3]2 */
hlv(v1,v1); /* [0 1 2 3]4 */
hlv(v1,v1); /* [0 1 2 3]8 */

divn(ct,three,v1); /* [0 1 2 3]3 */

Alternating Phases

Alternating phases are obtained by doubling an incrementing sequence (of 90-degree
phase shifts). Again, for quadrature phases, the finalmod4 operations are optional:

dbl(ct,v1); /* 0 2 0 2 */

add(ct,ct,v1); /* 0 2 0 2 */

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 4 4 ... */
dbl(v1,v1); /* 0 0 2 2 4 4 6 6 8 8 ... */
mod4(v1,v1); /* 0 0 2 2 */

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 4 4 ... */
mod2(v1,v1); /* 0 0 1 1 0 0 1 1 */
dbl(v1,v1); /* 0 0 2 2 0 0 2 2 */

hlv(ct,v1); /* [0 1 2 3]2 */
hlv(v1,v1); /* [0 1 2 3]4 */
dbl(v1,v2); /* [0 2]4 */
hlv(v1,v1); /* [0 1 2 3]8 */
dbl(v1,v1); /* [0 2]8 */

divn(ct,three,v1); /* [0 1 2 3 ...]3 */
dbl(v1,v1); /* [0 2 4 6 ...]3 */
mod4(v1,v1); /* [0 2]3 */

Decrementing Phases

Decrementing phase cycles can be obtained by adding three copies of an incrementing
phase cycle (multiplying an incrementing cycle by the constantthree) or by
subtracting an incrementing phase from a fixed phase:

add(ct,ct,v1); /* 0 2 4 6 ... */
add(ct,v1,v1); /* 0 3 6 9 ... */
mod4(v1,v1); /* 0 3 2 1 0 3 2 1 */

mult(ct,three,v1); /* 0 3 6 9 ... = 0 3 2 1 */

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 ... */

10.3 Case 2: Creating Phase Math for Given Phase Tables

01-999014-00 A0398 VNMR Pulse Sequences 103

add(three,one,v2); /* 4 (= 0) */
sub(v2,v1,v1); /* 4 4 3 3 2 2 1 1 0 0 -1 -1 */
mod4(v1,v1); /* [0 3 2 1]2 */

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 4 ... */
sub(zero,v1,v1); /* 0 0 -1 -1 -2 -2 -3 -3 -4 ... */
mod4(v1,v1); /* 0 0 3 3 2 2 1 1 0 ... */

Shifted Pattern

Shifted patterns “look like” simple patterns but are “not positioned right” (e.g.,
(0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0) looks like (0 0 0 0 1 1 1 1), but
its values are shifted by two positions). Such phase cycles can be obtained by altering
ct first:

add(ct,two,v1); /* 2 3 4 5 6 7 8 9 ... */
hlv(v1,v1); /* 1 1 2 2 3 3 4 4 ... */
hlv(v1,v1); /* 0 0 1 1 1 1 2 2 ... */
mod2(v1,v1); /* 0 0 1 1 1 1 0 0 */
sub(one,v1,v1); /* 1 1 0 0 0 0 1 1 */
mult(v1,three,v3); /* 0 0 3 3 3 3 0 0 */

add(ct,one,v1); /* 1 2 3 4 5 6 7 8 ... */
hlv(v1,v1); /* 0 1 1 2 2 3 3 4 ... */
dbl(v1,v1); /* 0 2 2 0 0 2 2 0 */

Complex Phase Cycles

The trick for generating complex phase cycles with real-time math is to recognize
“internal periodicities,” or repeating patternswithin a phase cycle, and (more difficult)
a shifted pattern in a phase cycle. The target is to “decompose” a complex phase cycle
into statements that can either be generated directly or through one of the short
algorithms presented above (“reverse synthesis”). In the pulse sequence, we can then
compose the complex phase cycle simply by adding up the elements. We now look at
a few examples (all used for quadrature phase shifting with a range of 0 to 3).

0 0 2 2 2 2 0 0 Pattern

This phase cycle can either be regarded as a shifted pattern (see above) or it can be
thought of as being identical to (0 0 2 2 2 2 4 4). We can split that into two groups
of four phases, within which the phase is alternated: (0 0 2 2), (2 2 4 4). The
second of these groups is shifted by two units compared to the first group. This leads
to the following decomposition:

0 0 2 2 2 2 4 4 = 0 0 2 2 0 0 2 2 + 0 0 0 0 2 2 2 2

We can, therefore, generate this phase cycle from two simple cycles. Note that an
intermediate result from the second part can be used for the first part:

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 */
hlv(v1,v2); /* 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 */
dbl(v1,v1); /* 0 0 2 2 */
dbl(v2,v2); /* 0 0 0 0 2 2 2 2 */
add(v1,v2,v1); /* 0 0 2 2 2 2 4 4 */
mod4(v1,v1); /* 0 0 2 2 2 2 0 0 */

Chapter 10. Phase Calculations

104 VNMR Pulse Sequences 01-999014-00 A0398

The treatment as shifted pattern (as shown previously) is slightly more efficient:

add(ct,two,v1); /* 2 3 4 5 6 7 8 9 ... */
hlv(v1,v1); /* 1 1 2 2 3 3 4 4 ... */
hlv(v1,v1); /* 0 0 1 1 1 1 2 2 ... */
dbl(v1,v1); /* 0 0 2 2 2 2 4 4 ... */

0 2 1 3 Pattern

This phase cycle can be interpreted as being composed from two subcycles (0 2) and
(0 0 1 1), with the second two pulses shifted by one unit (90 degrees) against the
first two. This leads to the following algorithm:

dbl(ct,v2); /* 0 2 0 2 */
hlv(ct,v1); /* 0 0 1 1 2 2 3 3 */
mod2(v1,v1); /* 0 0 1 1 */
add(v1,v2,v1); /* 0 2 1 3 */

0 2 3 1 Pattern

Exchanging the last two phases in the previous pattern changes things completely. We
get a cycle composed of the simple cycle (0 0 1 1) and a shifted pattern (0 2 2 0):

add(ct,one,v2); /* 1 2 3 4 */
hlv(v2,v2); /* 0 1 1 0 */
dbl(v2,v2); /* 0 2 2 0 */
hlv(ct,v1); /* 0 0 1 1 2 2 3 3 */
mod2(v1,v1); /* 0 0 1 1 */
add(v1,v2,v1); /* 0 2 3 1 */

0 2 1 3 2 0 3 1 Pattern

Splitting this cycle, which is equivalent to (0 2 1 3 2 4 3 5), into two groups of
four leads to the two subcycles, (0 0 0 0 2 2 2 2) and (0 2 1 3 0 2 1 3),
with the (0 2 1 3) part of the second subcycle being composed from two more
subcycles, (0 2) and (0 0 1 1).

dbl(ct,v2); /* 0 2 0 2 */
hlv(ct,v1); /* 0 0 1 1 2 2 3 3 */
hlv(v1,v3); /* [0 1 2 3]4 */
dbl(v3,v3); /* [0 2]4 */
mod2(v1,v1); /* 0 0 1 1 */
add(v1,v2,v1); /* 0 2 1 3 */
add(v1,v3,v1); /* 0 2 1 3 2 0 3 1 */

It turns out that there is a much simpler solution if we take four groups of two phases,
in which case the elements are (0 2) and (0 0 1 1 2 2 3 3):

hlv(ct,v1); /* 0 0 1 1 2 2 3 3 */
dbl(ct,v2); /* 0 2 */
add(v1,v2,v1); /* 0 2 1 3 2 0 3 1 */

10.3 Case 2: Creating Phase Math for Given Phase Tables

01-999014-00 A0398 VNMR Pulse Sequences 105

0 2 3 1 2 0 1 3 2 0 1 3 0 2 3 1 Pattern

Splitting this phase cycle into four groups of four phases we get an A-B-B-A pattern
with A=(0 2 3 1) and B=(2 0 1 3). B is phase-shifted by 180 degrees (2 units);
this becomes obvious if we think about the equivalent of 4 and 0 or 5 and 1 for
quadrature phase shifting: B is (2 4 5 3). The decomposition of phase cycle
(0 2 3 1 2 0 1 3 2 0 1 3 0 2 3 1) is equal to (0 2 3 1) plus
(0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0), a simple shifted pattern,[0 2]8
left-shifted by four steps.

add(ct,one,v2); /* v2 = 1 2 3 4 */
hlv(v2,v2); /* v2 = 0 1 1 0 */
dbl(v2,v2); /* v2 = 0 2 2 0 */
hlv(ct,v1); /* v1 = 0 0 1 1 2 2 3 3 */
mod2(v1,v1); /* v1 = 0 0 1 1 */
add(v1,v2,v1); /* v1 = 0 2 3 1 */
dbl(two,v3); /* v3 = 4 */
add(ct,v3,v4); /* v4 = 4 5 6 7 8 9 10 11 12 13 .. */
dbl(v3,v3); /* v3 = 8 */
divn(v4,v3,v4); /* v4 = 0 0 0 0 1 1 1 1 1 1 1 1 2 .. */
dbl(v4,v4); /* v4 = [0 2 2 4 4 6 6 8 8 10 ...]4

v4 = [0 2 2 0]4 */
add(v1,v4,v1); /* v1 = 0 2 3 1 2 4 5 3 2 4 5 3 0 2 3 1

v1 = 0 2 3 1 2 0 1 3 2 0 1 3 0 2 3 1 */

Note that even for quadrature phases the “implicitmod4 function” can only be applied
if no division is involved (after a division it is all right again)!

0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2 Pattern

The best approach for this phase cycle is to start by splitting into two groups, and then
splitting the resulting 16-step cycle into four groups of four steps each:

0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2 =

0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 +
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 =
0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 +
0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0

These are all subcycles we have discussed previously: (0 3 2 1) is a simple
decrementing cycle,[0 2 2 0]4 was used in the previous phase calculation, and the
subcycle[0 1]16 can be calculated as (ct /16) mod 2:

dbl(two,v1); /* v1 = 4 */
add(ct,v1,v2); /* v2 = 4 5 6 7 8 9 10 11 12 13 .. */
dbl(v1,v1); /* v1 = 8 */
divn(v2,v1,v2); /* v2 = 0 0 0 0 1 1 1 1 1 1 1 1 2 .. */
dbl(v2,v2); /* v2 = [0 2 2 4 4 6 6 8 8 10 ...]4

v2 = [0 2 2 0]4 */
dbl(v1,v1); /* v1 = 16 */
divn(ct,v1,v3); /* v3 = ct/16 = [0 1 2 3]16
mod2(v3,v3); /* v3 = [0 1]16
sub(zero,ct,v4); /* v4 = 0 -1 -2 -3 = 0 3 2 1 */
add(v4,v2,v4); /* v4 = 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 */
add(v4,v3,v4); /* v4 = 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1

1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2 */

Chapter 10. Phase Calculations

106 VNMR Pulse Sequences 01-999014-00 A0398

This phase cycle is longer than the previous one, but it requires fewer math statements.
If we skip themod2 step, we would even obtain a phase cycle of 64 steps, which uses
less Acode (39 words) than if we would store the resulting phase table in the Acode (as
16-bit numbers)! Divisions normally multiply the phase cycle length by the divisor,
multiplications and modulo steps usually shorten the length of a phase cycle.

Phase Cycles for Many Pulses

By tradition, Varian pulse sequences were mostly written with a code section
containing the real-time phase math for all pulses (and the receiver), followed by the
actual pulse sequence. This has the advantage of keeping things apart for more clarity,
and also it often permits using intermediate results or the final phase cycle for one pulse
also for the calculation of other phase cycles, reducing the total number of math
statements for the entire pulse sequence. On the other hand, if there are many pulses
with many different phase cycles, there may be a problem with the limited number of
real-time variables (14 total). There may be more phase cycles in a single pulse
sequence than real-time variables. Also, such a convoluted, complex phase cycling
section is often difficult to decode.

The other extreme would be to calculate each phasejust before using it. This keeps the
individual phase calculations simpler and avoids conflicts with the number of real-time
variables (after having calculated and used one phase cycle, all variables can be reused
for the next calculation). On the other hand, this method may dramatically increase the
total number of math statements in a pulse sequence, can make it difficult to read
(pulses and delays are interspersed with phase calculations), and blows up the Acode.
In particular, this method also neglects the phaserelations within a pulse sequence—
the fact that intermediate results and entire phase cycles can often be reused for other
phase calculations is not incidental, but due to the close relationship between all phases
in a pulse sequence! More about that inChapter 11, “Phase Tables,” on page 115.

10.4 Real-Time Logical Decisions

The Acode interpreter not only has the ability of performing a linear interpretation, but
it can also make decisions and perform branching based on the contents of real-time
variables (a looping capability is also built in, seeChapter 14, “Repeating Events,” on
page 147). The use of real-time decisions for the conditional creation of FIFO words
(conditional pulses or pulse sequence fragments) is discussed in more detail inSection
15.2, “Real-Time Decisions,” on page 160. Here, we just discuss the application of
real-time decisions to the construction of phase cycles using real-time math.

Let’s look at a phase cycle used in a phase-cycling-based implementation of the
E.COSY experiment (basically a linear combination of different double-quantum
filtered COSY experiments). In this experiment, the first two pulses undergo a
complicated scheme of 45-degree phase shifts:

0 1 0 7 0 1 2 7 0 1 4 7 0 1 6 7 0 1 0 7 0 1 2 7 0 1 4 7 0 3 6 5

10.4 Real-Time Logical Decisions

01-999014-00 A0398 VNMR Pulse Sequences 107

There must be a direct mathematical way to construct this kind of phase cycle, but that
algorithm would be excessively complicated. Instead, let us take a different approach
by separating the phases for the even and odd scans (the phases are in 45-degree
increments, the range of values therefore is 0 to 7) :

0 1 0 7 0 1 2 7 0 1 4 7 0 1 6 7 0 1 0 7 0 1 2 7 0 1 4 7 0 3 6 5 =

0 0 0 2 0 4 0 6 0 0 0 2 0 4 0 6
1 7 1 7 1 7 1 7 1 7 1 7 1 7 3 5

The new (sub-)phase cycles look much more manageable than the original one, at least
the subcycle for the odd pulses (for the even scans we need some exception handling,
because the last two phases behave differently from the others).

What we now need is some construct that can be described as follows:

if (odd scan)
(use phase cycle a); /* 0 0 0 2 0 4 0 6 */

else
(use phase cycle b); /* 1 7 1 7 1 7 1 7 */

Fortunately, this is very easy to do. We just use a real-time variable that is zero for all
the odd transients by applyingmod2 to ct , and then we can use real-time branching to
calculate specific phases for both the odd and even transients (for more information in
real-time decisions, seeSection 15.2, “Real-Time Decisions,” on page 160):

mod2(ct,v1); /* 0101 */
ifzero(v1);

... /* phase selection for odd transients */
elsenz(v1);

... /* phase selection for even transients */
endif(v1);

Using this mechanism, we can switch between two phase cycles with every scan.
Unlike shown above, the partial phase cycles do not have gaps, but the “empty
positions” are filled with suitable numbers (such that the partial phase cycles are easy
to calculate).

Full cycle: 0 1 0 7 0 1 2 7 0 1 4 7 0 1 6 7 0 1 0 7 0 1 2 7 0 1 4 7 0 3 6 5

Cycle A: 0 0 0 0 0 0 2 2 0 0 4 4 0 0 6 6 0 0 0 0 0 0 2 2 0 0 4 4 0 0 6 6
Cycle B: 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 3 3 5 5
Flag A/B: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The two resulting subcycles are definitely easier, but still not trivial to construct using
standard math—but we can use exactly the same algorithm to construct the two
subcycles:

Cycle A: 0 0 0 0 0 0 2 2 0 0 4 4 0 0 6 6 0 0 0 0 0 0 2 2 0 0 4 4 0 0 6 6

Cycle C: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cycle D: 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6
Flag C/D: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Chapter 10. Phase Calculations

108 VNMR Pulse Sequences 01-999014-00 A0398

Subcycle A can be derived from two trivial phase cycles by switching between the two
secondary subcycles with every pair of scans. Subcycle B can be constructed in a
similar way (x stands for a non-zero value in the flag variable):

Cycle B: 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 3 3 5 5

Cycle E: 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5
Cycle F: 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7
Flag E/F: x 0 0 0 0

In the actual coding, we first construct the four secondary subcycles (one of them—
subcycle C—is trivial) and the three flag variables, and then construct the final phase
cycle with a series of nested real-timeif statements (this allows bypassing the
intermediate construction of the subcycles A and B). The flag variable “E/F ” is best
created as a shifted incrementing cycle:

Flag E/F: 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 0 0 0 0

This is constructed usingmodulo 8 of ct/4+1 . The entire phase “calculation” can
be coded as follows:

mod2(ct,v10); /* v10 = 0 1 = flag A/B */
hlv(ct,v1); /* v1 = ct/2 */
mod2(v1,v11); /* v11 = 0 0 1 1 = flag C/D */
hlv(v1,v12); /* v12 = ct/4 */
incr(v12); /* v12 = ct/4 + 1 */
dbl(two,v13); /* 4 */
dbl(v13,v13); /* 8 */
modn(v12,v13,v12) /* [1 2 3 4 5 6 7 0]2 = flag E/F */

mod2(v1,v2); /* v2 = 0 0 1 1 */
dbl(v2,v2); /* v2 = 0 0 2 2 */
mult(v2,three,v3); /* v3 = 0 0 6 6 */
add(v2,three,v2); /* v2 = 3 3 5 5 = subcycle E */
incr(v3); /* v3 = 1 1 7 7 = subcycle F */
hlv(v1,v1); /* v1 = ct/4 */
dbl(v1,v1); /* v1 = [0 2 4 6 8 10 12 ...]4 */
modn(v1,v13,v1); /* v1 = [0 2 4 6]4 = subcycle D */

ifzero(v10); /* odd scans */
ifzero(v11); /* scans 1(,2),5(,6),etc. */

assign(zero,v1); /* subcycle C */
endif(v11); /* (subcycle D is default in v1) */

elsenz(v10); /* even scans */
ifzero(v12); /* scans 30,32 */

assign(v2,v1); /* select subcycle E */
elsenz(v12); /* scans 2,4,8,...,28 */

assign(v3,v1); /* select subcycle F */
endif(v12);

endif(v10);
stepsize(45.0, TODEV);
xmtrphase(v1);
...

The full E.COSY phase cycle is six times longer than the one shown above, with yet
another “exception” in the sixth loop. Although it is obviously simpler to generate such
phase cycles using tables, the main intention here was to demonstrate the possibility of
generating “arbitrary” phase cycles using real-time math in combination with real-time
decisions.

10.5 Steady-State Phase Cycling

01-999014-00 A0398 VNMR Pulse Sequences 109

10.5 Steady-State Phase Cycling

All phase calculations up to now were based on thect real-time variable. This works
fine for all standard pulses up tont=32768 . After that many transients, the phase
cycling continues as ifct would restart at 0, because the real-time variablect is only
the low-order half ofLC->ct . For scan 32768,LC->ct is set to 32768, which is 1 in
the high-order half (word) and 0 in the low-order word. This should be fine, because
the number of steps in most phase cycling schemes is in powers of two anyway; even
if this is not the case. After that many scans, a disruption in the phase cycling has no
noticeable effect on the final spectrum.

Nevertheless it is abad idea to usect as exclusive basis for phase cycling. During
steady-state pulses, thect counter remains at 0, and therefore no phase cycling
occurred during steady-state transients! This means that no matter how big a number
of steady-state scans is selected, the steady state during thess pulses isdifferentfrom
the steady state reached after the first few real scans. In all but the most primitive
experiments (s2pul with cp='n'), the true steady state is only reached after the first
“real” scans! This is particularly bad with cancellation experiments, unless some
presaturation scheme (homospoil-90-homospoil, or two long orthogonal spin locking
pulses at the beginning of each scan) is used to erase all residual coherence from
previous scans.

The proper solution isnot to usect directly for phase calculations, but to construct a
counter that varies though the steady-state pulses. This is possible by using thessctr
real-time variable.ssctr is equal to the value ofssval for the first steady-state scan
and is decremented after eachss scan. When thessctr variable is zero, the real scans
start. Various schemes have been proposed to combine thect andssctr counters,
like the following:

ifzero(ssctr);
assign(ct,v9); /* 0, 1, 2, ... nt-1 */

elsenz(ssctr);
sub(ssval,ssctr,v9); /* 0, 1, 2, ... ss-1 */

endif(ssctr);

After this,v9 would be used instead ofct for all phase calculations. This scheme takes
into account the fact thatssctr “counts backwards” (it is decremented, instead of
incremented likect) so phase cycling starts the same way as with the “real” scans.

This scheme is certainly better than usingct only, but it still has some deficiencies.
After the steady-state scans, the phase cycling counter jumps back to zero and may,
therefore, disrupt the steady state. This can again be particularly bad with cancellation
experiments (e.g., using an odd number of steady-state scans with double-quantum
filtered experiments). In principle, this scheme requires settingss to the total length of
the phase cycle! The idea behind steady-state scans is to “make the spins believe that
we have been performing an infinite number of scans in the past,” before the “real”
scans start. This can be achieved by performingthe last elements of the phase cycle
rather than the beginning elements during the steady-state scans. This can be achieved
in a very simple way:

sub(ct,ssctr,v9); /* -ss,-ss+1,.. -1,0,1,.. nt-1 */

This works fine, because the signed binary value -1 is equivalent to the unsigned binary
value 1,111,111,111,111,111 (decimal 65535) or 2n-1. As long as the length of the
phase cycle is a power of two, this will execute the last elements of a phase cycle. As
there are only very few examples of pulse sequences where the phase cycle length is

Chapter 10. Phase Calculations

110 VNMR Pulse Sequences 01-999014-00 A0398

not a power of two (COSY-3 is one of them), this should be made the default way to
generate a base counter for phase cycling.

10.6 C Constructs and Phase Calculations

C constructs are used to implement parameter-dependent phase cycling. The most
frequently used parameter-dependent phase cycling is the type for phase-sensitive
multidimensional NMR, where a coding similar to the type below is applied. A pseudo-
variablephase is used to differentiate between the TPPI (time-proportional phase
incrementation) and hypercomplex (States-Haberkorn-Ruben) types of phase-sensitive
2D (nD) spectra. The Varian convention is to usephase=3 for TPPI spectra (adding
90 degrees to the phase shift of the first pulse with every time increment) and
phase=1,2 for hypercomplex experiments, wherephase=1 is unshifted,phase=2
has 90 degrees added to the pulses prior to the evolution phase (and relevant to the
phase of the observed signal), as well as to the observe phase. In the coding below,v1
is supposed to be the phase of the pulse prior to the evolution (e.g., in a NOESY
experiment):

int t1_counter = (int) (d2 * sw1 + 0.1);
int phase1 = (int) getval("phase");
if (phase1 == 2)

incr(v1);
else if (phase1 == 3);
{

initval((double) t1_counter), v10);
add(v1,v10,v1);

}

This is only the most basic implementation for phase-sensitive NMR. Modern
sequences use refinements for the hypercomplex method that are discussed in more
detail inChapter 19, “Multidimensional Experiments,” on page 215.

There is another nice example of the use of C constructs for implementing variable
phase cycles: in therelayh sequence’s relayed COSY variant (relay greater than
0), in which the number of refocusing elements is determined by the parameterrelay .
The refocusing pulses cannot (or at least should not) be cycled only synchronously,
because this would lead to an accumulation of the errors due to imperfections in the
refocusing pulses. In the Varian implementation of this sequence, C constructs are used
in two places to adjust the phase cycling to the actual setting of therelay parameter:

• The length of the00112233 phase cycling is calculated in a Cfor loop.

• The phase cycling for the refocusing periods is calculated “on the fly”, while
coding the relay (refocusing) intervals such that the 90- degree pulse after the first
relay has the fastest phase alternation and the phase inversion of 90-degree pulses
following subsequent relay periods is slowed down progressively (by a factor of
two per relay period).

This is a slightly simplified version of this pulse sequence:

/* relayh - relayed cosy, including regular cosy */

pulsesequence()
{

int i, relay = (int) (getval("relay") + 0.5);
double tau = getval("tau");

10.7 Why Phase Calculations?

01-999014-00 A0398 VNMR Pulse Sequences 111

hlv(ct, v1); /* v1 = 00112233 */
for (i = 0; i < relay + 1; i++)

hlv(v1,v1); /* [0 1 2 3]2**(relay+2) */
dbl(ct,oph); /* oph = 0202 0202 */
add(ct,v1,v2); /* v2 = 0123 0123 + 00112233 */
add(oph,v1,oph) /* oph = 0202 0202 + 00112233 */
hlv(ct,v3); /* v3 = 0011 2233 4455 ... */

status(A);
hsdelay(d1); /* preparation period */

status(B);
pulse(pw,v1);
delay(d2); /* evolution period */
pulse(pw,v2); /* start of mixing period */
for (i = 0; i<relay; i++) /* relay coherence */
{

delay(tau/2);
pulse(2.0*pw,v2);
delay(tau/2);
hlv(v3,v3); /* v3 = [0 1 2 3]2**(relay+1) */
dbl(v3,v4); /* v4 = [0 2]2**(relay+1) */
add(v2,v4,v5); /* v5 = v4+v2 (with 00112233) */
pulse(pw,v5);

}
status(C);

}

10.7 Why Phase Calculations?

There is no doubt that real-time phase calculations are not the simplest way to generate
phase cycling in pulse sequences, because it may be difficult (some users may even call
it painful) for inexperienced users to decode phase calculations, or even more to
generate a real time calculation algorithm for a given phase table if a pulse sequence is
published with the phase cycles in the form of numeric tables. On the other hand, there
are definitely also arguments for phase calculations (as opposed to using tables):

• For very long phase cycles, the calculations are more efficient in terms of Acode
space (see alsoChapter 11, “Phase Tables,” on page 115).

• Scientists who generate new pulse sequences donotthink in phase tables but rather
in algorithms (like phase cycling individual pulses and/or the observe phase for a
specific coherence level selection, multiple-quantum filtering, etc.). Real-time
phase calculations offer a way to directly implement such algorithms.

• Understanding the internal phase cycling mechanisms from long numeric tables
may be as difficult (if not more difficult) than trying to understand real-time math.
Changing the phase cycling order with tables may be more difficult than with real-
time math.

Chapter 10. Phase Calculations

112 VNMR Pulse Sequences 01-999014-00 A0398

10.8 Real-Time Random Numbers

There are many examples of a systematic variation of a variable during the execution
of a pulse sequence, such as:

• Incrementation of the evolution time as function of the increment number.

• Systematic incrementation or decrementation of the mixing time or associated
time intervals in some NOESY-type experiments.

• Time-proportional phase incrementation for phase-sensitivenD experiments.

There are also examples of random variation of variables, like the variation of the
mixing time in some (other) types of NOESY experiments. In this case, the
randomization happens from increment to increment, and a C construct can be used to
generate individual random numbers for every code segment:

#define CONSTANT 1073741824
double rv;
if (ix == 1)

srandom(getpid());
rv = ((double) (random() - CONSTANT))/((double) CONSTANT);
mix = mix * (1.0 + rv * getval("mixvar"))

The randomizer must be initialized once (with the first increment) by calling the
srandom function (calling it with the current process-ID ensures true randomization,
also between subsequent calls of the same pulse sequence). The functionrandom then
generates a random number between 0 and 2,147,483,647 (the maximum positive 32-
bit integer).mixvar is a scaling factor (between 0 and 1.0 in this case, some
implementation may use a scaling between 0 and 100.0) that allows controlling the
degree of randomization (the proportion of the variation range and the total duration of
the delay. The implementation above varies the delay in both directions.

In some rare cases—like some Z-filters, or randomization ofd1 for avoiding phasing
problems in the case of longT2-relaxation (sharp lines) and short repetition rates—
such a randomization should occur within a single increment, and systematic variation
is not desired or not possible. This is a tricky issue, because the acquisition operating
system (the Acode interpreter) does not provide a random number generator.

This problem has two solutions: randomization using a table of random numbers (see
alsoSection 11.7, “Using Tables as Source for Random Numbers,” on page 135) and
randomization using a real-time pseudo-random number generator.

An algorithm for the second solution has been presented inMagnetic Moments1; the
coding below is adapted from that article:

double random = getval("random");
if ((d1 - random/2.0) > 0.2e-6)

delay(d1 - random/2.0);
if (random > 0.0)
{

initval((double) ((ix*13) % 511),v14); /* seed */
initval(4.0,v13); /* v13 = 4 = phasecycle */
dbl(two,v7); dbl(v7,v7); /* v7 = 8 */
mult(v7,v7,v7); /* v7 = 64 */
dbl(v7,v8); /* v8 = 128 */
decr(v7); /* v7 = 63 */

1 R. Boyko, B. Sykes & G. Gray,Magnetic Moments, III.3 , p.4.

10.8 Real-Time Random Numbers

01-999014-00 A0398 VNMR Pulse Sequences 113

decr(v8); /* v7 = 127 */
modn(ct,v13,v6); /* v6 = 0 1 2 .. phasecycle-1 */
ifzero(v5);

divn(ct,v13,v6); /* v6 = ct/phasecycle */
mult(v7,v14,v14); /* v14 = (seed*63) */
add(v14,v6,v14); /* v14 = (seed*63 + ct/phasecycle) */
modn(v14,v8,v14); /* v14 = (seed*63 + ct/phasecycle)%127 */

endif(v6);
loop(v14,v6);

delay(random/126.0);
endloop(v6);

}

This method generates random numbers in the range of 0 to 126. The authors of the
algorithm verified that this mechanism generates nearly ideally distributed numbers
within the specified range. The initialization ofv14 (the random seed) with a function
of the increment numberix also ensures true randomization between different traces.
Unlike the variation using a C randomization based on the process-ID, this type of
randomizer generates thesame random numbers with everygo command. Ultimately,
the real-time random number is used to determine the (real-time) loop cycles over a
small delay (1/126 of the total variation range). Loops are discussed in detail inChapter
14, “Repeating Events,” on page 147.

Note that in the above code, the real-time variablev14 (the random seed) is initialized
using theinitval statement. This number is then modifiedby purpose (in the vast
majority of the cases this is “forbidden”). The random variation occurs at the beginning
of every phase cycle. It is a good idea to complete every phase cycle under identical
conditions in order to ensure proper subtraction and cancellation.

Chapter 10. Phase Calculations

114 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 115

Chapter 11. Phase Tables

The basic syntax and the mechanisms of using phase tables are simple and easy to
understand, construct, and use.

11.1 Basic Syntax

A simple, external ASCII file, such as the file/vnmr/tablib/sample of
~/vnmrsys/tablib/sample , takes up the actual phase tables:

/* sample phase table file */
t1 = 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 /* 1st pulse */
t2 = 0 2 1 3 1 3 2 0 2 0 3 1 3 1 0 2 /* 2nd pulse, oph */

The table file syntax is nearly trivial. Comments are defined the same way as in a C
program:

• Tables have names betweent1 andt60 .
• Table values are positive integer numbers (16-bit, range between 0 and 32767),

separated by spaces.
• Table values are separated from the table name by anequal sign (=) that must be

surrounded by spaces.
• Table length is arbitrary. If necessary, tables can be extended over several lines.

In the pulse sequence, the table file must be loaded explicitly (specifying its name);
thereafter, the specified tables (t1 , t2 in the above example) can be used directly:

#include "standard.h"
pulsesequence()
{

loadtable("sample");
status(A);

hsdelay(d1);
status(B);

pulse(p1,t1);
hsdelay(d2);

status(C);
pulse(pw,t2);
setreceiver(t2);

}

The table file name is relative. In this example~/vnmrsys/tablib/sample has
preference over/vnmr/tablib/sample . The table namest1 andt2 are used like
real-time variables. They are of typecodeint , but unlike real-time variables donot
point to some element in theLCstructure. As we will see later, the table names are used
in the C code only to differentiate between the various tables (the table names are lost
in the Acode, see below). The receiver phase is defined in the real-time variableoph .
If the receiver phase should be taken from a phase table,oph must be set from a table.
This is usually done with thesetreceiver statement, but the same can also be
achieved by thegetelem statement:

getelem(t2,ct,oph);

Chapter 11. Phase Tables

116 VNMR Pulse Sequences 01-999014-00 A0398

This explicitly extracts element numberct from the tablet2 . getelem can also be
used to extract phases from tables into other real-time variables, for example:

getelem(t1,ct,v10);

This way, real-time math can be performed on phases from phase tables (real-time
math does not work with table names). Applications for this feature will be discussed
in detail inSection 11.6, “Combining the Best of the Two Worlds,” on page 129.

Shorthand Notation

Two types of shorthand notation exist for external phase table files: repeated table
sequences and repeated table elements.

Repeated Table Sequences

By definition, any table is a repeated sequence. If the table index (the pointer to the
current table element) is larger than the number of elements in the table, the table look-
up automatically restarts at the beginning of the table. Thus, the table index is
automatically takenmodulo of the table length. This occurs individually for each table.
For example, even if the total phase cycle length (in a pulse sequence) is 16, it is not
necessary to define:

t1 = 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

This would be a waste of Acode space. The much shorter table

t1 = 1 3

defines exactly the same table, but requires much less space. We don’t need a shorthand
notation for this case1. On the other hand, a shorthand notation is useful in the case of
a table like:

t1 = 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

In shorthand notation this would be written as

t1 = (0 2)8 (1 3)8 (2 0)8 (3 1)8

The sequence between the parentheses is repeated as many times as indicated by the
repetition number that must follow the closing parenthesiswithout space (the spaces
between parentheses and the numbers inside are optional).

Repeated Table Elements

Very often tables consist of repeated elements, such as

t1 = 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

In shorthand notation, this can be dramatically simplified and written as

t1 = [0 2 1 3]8

1 There is an exception: table-to-table math functions (ttadd , ttsub , ttmult , ttdiv) require
that the target table (which is also one of the two operand tables) is at least as long as the second
operand table. For this reason, we may have to write down a table sequence more than once (usually
done using shorthand notation). See the manualVNMR User Programming for more information.

11.1 Basic Syntax

01-999014-00 A0398 VNMR Pulse Sequences 117

The syntax around the brackets is the same as with the parentheses, except that the
index after the brackets indicates the number of repetitions for each table element
between the brackets.

Brackets and parentheses can be used sequentially in within the same table but cannot
be nested. Note that the shorthand notation is just an easy and simple way ofdefining
and enteringlong phase tables—the tables are internally generated at full length(i.e.,
no Acode space is saved by using shorthand notation, see also below).

Advanced Features

Several advanced features, including the division factor and an automatically
incrementing index, make working with tables easier.

Division Factor

The last table described above can also be written differently:

t1 = { 0 2 1 3 }8

Again, the same syntax as with the parentheses and the brackets applies to the braces
(“curly brackets”). This looks like exactly the same thing as the shorthand syntax using
the brackets and, from a superficial point-of-view, this is true. The index after the
braces defines how many times each element is repeated before passing to the next
element in the table. However, internally the braces work differently. In the case of the
braces, the table generated internally is only the table elements between the braces.

The index after the braces defines what is called thedivision factor (sometimes also
called thedivision return factor). Before reading a table element, the table index (the
pointer to the current table element) isdividedby the division factor, before the modulo
function (modulo the table length) is performed and the table element is extracted.
Every table has a division factor. The default setting for the division factor is 1, and the
braces simply alter that value.

In other words, the braces not only are a shorthand notation for tables with repeated
elements, they also define a “shorthand table” internally (i.e., different from the
brackets, the braces also save Acode space, see below).Therefore, it is recommended
to use braces instead of brackets wherever possible2.

Brackets and parentheses cannot be nested within themselves, but they can be nested
within braces, as seen in the following examples:

t1 = { (0 2)4 (1 3)4 }4
t2 = { [0 2]4 (1 3)4 }4

In conventional syntax, these tables would be written as follows:

t1 = 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3
1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3

2 There is an exception to this as well. Table-to-table math operations (ttadd , ttsub , ttmult ,
andttdiv) directly operate on the vectors as they are defined internally, without taking into
consideration any division factors. This can lead to unexpected results if division factors different
from 1 are used, apart from complications due to the restrictions with respect to the table lengths in
such operations (see the previous footnote).

Chapter 11. Phase Tables

118 VNMR Pulse Sequences 01-999014-00 A0398

t2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3
1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3

Note that the division factor always applies to the entire table; whereas, brackets (and
parentheses) can also be used on parts of a table only:

t1 = [0 2]4 2 0 2 0 2 0 2 0

This table is perfectly acceptable, but the same line with braces instead of bracketsis
not.

The maximum division factor is 64. For tables with a higher number of repetitions on
the individual table elements, the following definitions can be used:

t1 = { 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 }64
t1 = { [0 2 1 3]4 }64

The division factor can not only be defined in the table file, but it can also be defined
or altered within the pulse sequence, using thesetdivnfactor statement, for
example:

setdivnfactor(t1,16);

This feature is used frequently in the type of coding described inChapter 19,
“Multidimensional Experiments,” on page 215.

Tables with Automatically Incrementing Index

The table index (the pointer to the current table element) is normally either specified
explicitly (using thegetelem statement), or the transient counterct is automatically
(implicitly) taken as index (when specifying a table addresst1 . . . t60 as phase
argument to statements likepulse , txphase , etc.). This way, the table index is
incremented automatically with every transient (implicit use) or set as specified by the
index argument togetelem .

However, there are applications where we would like to “scan” through a entire table
(or parts of it) during a single transient, for instance, when the table defines the
amplitudes of a pulse shape or the phases of an explicitly programmed decoupling
pattern. Using table features discussed up to now, this could be programmed in the
following manner:

assign(one,v9); /* table index */
initval(32.0,v10); /* loop cycles (no. of table elements) */
loop(v10,v11);

getelem(t1,v9,v1); /* extract table value */
rgpulse(pw,v1,0.0,0.0); /* perform one pulse element */
incr(v9); /* increment table index */

endloop(v10);

Much of the code above is for the pointer generation and incrementation after reading
an using each table element in turn (note that the number of loop cycles isnot
necessarilyequal to the number of table elements). To make it easier to use tables for
reading out successive amplitude and phase elements from tables within a single pulse
sequence pass, phase tables have been equipped with anautoincrement attribute. This
attribute is unset by default. It can be set in the table file by using “+=” instead of the
simple equals sign “=” between the table name and the table elements:

t1 += { 0 2 2 0 2 0 0 2 }4

11.1 Basic Syntax

01-999014-00 A0398 VNMR Pulse Sequences 119

Alternatively, the autoincrement attribute can be set with thesetautoincrement
statement (there is no function to unset the autoincrement attribute):

setautoincrement(t1);

With this feature, a “scan through a phase table” can be realized in a much simpler way:

initval(32.0,v10); /* loop cycles (no. of table elements) */
loop(v10,v11);

rgpulse(pw,t1,0.0,0.0); /* perform one pulse element */
endloop(v10);

Note that with the autoincrement attribute the table index is resetonce per FID(when
creating the code). If a table is not read out completely during one scan, the table index
is incremented fromsomewhere within the table with the next scan.

Autoincrementing tables can be used not only directly (e.g., as phase argument to a
pulse or txphase statement) but also through thesetreceiver andgetelem
statements; however, in the case ofsetreceiver andgetelem , the specified table
index isdisregarded.

How Does a Table Work?

To the user, a table consists of a tablename, tablevalues, and thedivision factor and
autoincrement attributes (autoincrement is a flag). At the C level, each table has two
more attributes: the current tableindex and the tablelength. The table index is only
used in connection with the autoincrement attribute. Both the table length and the
division factor are used to extract a table element either from an implicit or a specified
table index:

extract_index=((index / division_factor) % table_length)

If the extraction index isnot specified (“direct use” of phase tables as argument to
statements likepulse , txphase , etc.),ct is used as table index (unless the table has
the autoincrement attribute set). The variablect is the default table index.

With thegetelem statement, the table value is extracted into the specified real-time
variable. With thesetreceiver function, it is extracted into theoph real-time
variable. Where tables are used “directly,” the table value is extracted into a dedicated
real-time variabletablert (the address ofLC->tablert):

txphase(t3);

is equivalent to

getelem(t3,ct,tablert);
txphase(tablert);

In other words, statements that take a real-time variable as an argument check whether
the real-time variable is a table name or a normal variable, and then take the
corresponding actions.

For example, thetxphase statement can be written as follows3:

(void) txphase(ph)
codeint ph;
{

if ((ph >= t1) && (ph <= t60))

3 The actual coding is quite different (asetquadphase statement does not actually exist), but the
equivalent to this construct is still used in the real software (the statementsetphase90 in
/vnmr/psg/rfchan_device.c).

Chapter 11. Phase Tables

120 VNMR Pulse Sequences 01-999014-00 A0398

{
getelem(ph,ct,tablert);
setquadphase(tablert, TODEV);

}
else

setquadphase(ph, TODEV);
}

This also works with autoincrementing tables, because this simply causes thect index
to be disregarded at a lower level (in the Acode interpreter).

Note that with the standard VNMR software the default table index isct (e.g.,
whenever a table that is not autoincrementing is used directly). Therefore, there isno
phase cycling during steady-state pulses. It is strongly recommended to not use the
table variables directly, but to usegetelem with a pseudoct counter:

sub(ct,ssctr,v13);
getelem(t1,v13,v1);
getelem(t2,v13,t2);

Extracting table values into thecorresponding real-time variables (t1 -> v1 ,
t2 -> v2 , etc.) makes it easier to read and understand the sequence.

11.2 Inline Phase Tables

It is possible to avoid a separate file for tables by defining the tables as (static) arrays
in the pulse sequence source file itself between the header (include lines) and the
functionpulsesequence :

static int table1[8] = {0,2,1,3,3,1,2,0};
static int table2[16] = {0,0,0,0,1,1,1,1,2,2,2,2,2,3,3,3,3};

The name of the static variable is arbitrary. This static array of integers is then
converted to a table using thesettable statement:

settable(t1,8,table1);
settable(t4,16,table2);

In contrast to the table definition using external files, tables defined throughsettable
can also contain negative numbers (i.e., numbers in the full range of signed 16-bit
integers, from -32768 to 32767). Division factors and the autoincrement attribute have
to be set separately (after the call tosettable), using thesetautoincrement and
setdivnfactor statements.

With the exception of cases where negative numbers are required in a table (e.g., if the
table is used to set the amplitude of pulsed field gradients), using inline tables in
general is not recommended because of the following reasons:

• The definition syntax is more complicated (there islint checking on it, though),
• No shorthand syntax is available.
• Division factors and autoincrement attribute cannot be set together with the table

definition (it is less obvious what the tables actually are if division factors are
involved).

• Changing phase tables requires recompiling the pulse sequence.

11.3 Table Math

01-999014-00 A0398 VNMR Pulse Sequences 121

11.3 Table Math

Tables cannot be created or defined only as static objects. Scalar and vector math are
possible with tables. Four statements are provided for scalar operations on tables:

tsadd(tablename,scalarvalue,modulovGalue);
tssub(tablename,scalarvalue,modulovalue);
tsmult(tablename,scalarvalue,modulovalue);
tsdiv(tablename,scalarvalue,modulovalue);

The argumenttablename is one of the table addresses,t1 to t60 . The operation
(addition, subtraction, multiplication, division) is applied to every value in the table. At
the end, a modulo function is applied to the result, unless the last argument
(moduloval) is set to zero, in which case the numeric range of the resulting table
often exceeds the numeric range of the table prior to the execution of the scalar
operation (in the vast majority of the cases, this has no adverse effects due to the
implicit modulo operation that occurs when using the table). Obviously, the divisor
(second argument) totsdiv cannot be zero, because division by zero would lead to
mathematical overflow.

There is also a set of table-to-table (vector-to-vector) statements available for more
complex math with tables:

ttadd(target_table,operand_table,modulovalue);
ttsub(target_table,operand_table,modulovalue);
ttmult(target_table,operand_table,modulovalue);
ttdiv(target_table,operand_table,modulovalue);

The mathematical operation in these statements is applied to each “equivalent” pair of
numbers in two tables, and the result is stored in one of the two specified tables. It is
not possible to generate new tables using table math. Also, the operand table cannot be
longer than the target table, because table math cannot alter the length of tables.

The following example should illustrate the functionality of table-to-table math. Let’s
assume we have defined the following two tables:

t1 = 0 0 0 0 2 2 2 2
t2 = 0 1 2 3

In the pulse sequence, we now apply the following function:

ttadd(t1, t2, 0);

This causes each element in tablet2 to be added to the corresponding element in table
t1 . If the operand table is shorter than the target table, the shorter table is expanded to
the same length before performing the operation. The result of the above function is the
following tablet1 :

t1 = 0 1 2 3 2 3 4 5

(no modulo value was specified; therefore, values above 3 are obtained). The other
table-to-table operations use the same working principle. Forttdiv , the operand table
must not contain zeroes, of course, because this would lead to math overflow.

There is a fundamental difference between table math and real-time math using
variables. Different from the real-time variables, table math occurs in the host
computer, when executing the pulse sequence code. That means that a table may not be
changedwithin a pulse sequence. Once a table has been built into the Acode (see
below), it cannot be modified. In fact, a table cannot be modified using table math after

Chapter 11. Phase Tables

122 VNMR Pulse Sequences 01-999014-00 A0398

it has been used the first time (be it as argument to a pulse or phasing function, through
getelem or setreceiver calls)—this will lead to a run-time error message.

This precludes the alteration of tables within composite pulses and similar pulse
sequence elements (like BIRD pulses) that use multiple closely related (“parallel”)
phase cycles. For such cases it is either necessary to define separate tables or to use
real-time math to derive the related phases (see alsoSection 11.6, “Combining the Best
of the Two Worlds,” on page 129).

11.4 Phase Tables in the Acode

Tables are incorporated into the instruction segment of the Acodeat the point where
they are used for the first time. Unused tables are discarded. The table values are stored
as 16-bit integers. Evidently, long tables can occupy a lot of Acode space.

Besides the table values, four more 16-bit integers per table define the table length, the
autoincrement flag, the division factor, and the table index. The table name itself is not
at Acode level. Tables are identified by their address in the instruction segment
(actually the offset of the first attribute). The table size attribute also permits the Acode
interpreter to calculate the offset to the next instruction after the table.

Let’s first have a look at the code generated by agetelem statement (extracted from
the Acode for anoesy experiment):
369 36325739 ASSIGNFUNC zero v5
372 366260105TABLE 261size 2, autoinc 0, divn_ret 1, ptr 0

0 2
379 373267106TASSIGN table 261 ct v1
383 377271105TABLE 272size 2, autoinc 0, divn_ret 16, ptr 0

0 2
390 384278106TASSIGN table 272 ct v2
394 388282105TABLE 283size 4, autoinc 0, divn_ret 2, ptr 0

0 1 2 3
403 397291106TASSIGN table 283 ct v3
407 40129529 ADDFUNC v1 v5 v1
411 40529929 ADDFUNC v1 v2 oph
415 40930329 ADDFUNC v3 oph oph
419 413307105TABLE 308size 2, autoinc 0, divn_ret 8, ptr 0

0 1
426 420314106TASSIGN table 308 ct v4
430 42431829 ADDFUNCo ph v4 oph
434 42832229 ADDFUNC v1 v4 v1
438 43232629 ADDFUNC v2 v4 v2
442 43633029 ADDFUNC v3 v4 v3

Each of the fourgetelem calls in this part of the pulse sequence generates aTABLE
instruction (code105) , which inserts the table into the Acode as described above,
followed by aTASSIGN instruction (code106), which extracts a table value into a
real-time variable.TASSIGN is followed by the table address, the table index (ct in
this case), and the target address (a real-time variable inLC). For each of the tables, the
TABLE instruction is inserted at the point where a table is first referred to.

Thesetreceiver statement generates the same kind of Acode (except that the target
address isLC->oph):

846 840 734 105 TABLE 735 size 4, autoinc 0, divn_ret 1, ptr 0
0 1 2 3

855 849 743 106 TASSIGN table 735 ct oph

11.5 Tables vs. Real-Time Calculations

01-999014-00 A0398 VNMR Pulse Sequences 123

Even using tables directly (here as phase arguments to asimpulse statement) does
not require a new Acode instruction. The target address isLC->tablert in this case.

603 597 491 150 HighSpeedLINES (void)
606 600 494 105 TABLE 495 size 4, autoinc 0, divn_ret 8, ptr 0

1 2 3 0
615 609 503 106 TASSIGN table 495 ct tblrt
619 613 507 16 SETPHAS90 CH1 tblrt
622 616 510 105 TABLE 511 size 4, autoinc 0, divn_ret 1, ptr 0

0 1 2 3
631 625 519 106 TASSIGN table 511 ct tblrt
635 629 523 16 SETPHAS90 CH2 tblrt
638 632 526 150 HighSpeedLINES (void)
641 635 529 150 HighSpeedLINES XOFF
644 638 532 150 HighSpeedLINES RXOFF DECRG
647 641 535 150 HighSpeedLINES RXOFF DECRG
650 644 538 151 EVENT1_TWRD 1.000 usec
652 646 540 150 HighSpeedLINES RXOFF DECRG DEC
655 649 543 151 EVENT1_TWRD 7.925 usec
657 651 545 150 HighSpeedLINES RXOFF TXON DECRG DEC
660 654 548 151 EVENT1_TWRD 27.725 usec
662 656 550 150 HighSpeedLINES RXOFF DECRG DEC
665 659 553 151 EVENT1_TWRD 7.925 usec
667 661 555 150 HighSpeedLINES RXOFF DECRG
670 664 558 150 HighSpeedLINES DECRG
673 667 561 150 HighSpeedLINES (void)

11.5 Tables vs. Real-Time Calculations

In this section, we make a point-by-point comparison of tables and real-time
calculations. The comparison is illustrated by examples.

Point-to-Point Comparison

Tables and real-time calculations can be compared on length, complexity, Acode space
required, understandability, constructionally, and changeability.

Possible Length, Complexity

Real-time calculations permit calculating phase cycles that are virtually unlimited in
length (a phase cycle with 1024*1024 steps is no problem!), but limited in complexity
(“arbitrary” phase cycles may require an enormous amount of real-time calculations
that are difficult to construct and understand).Tablesare limited in length (up to 8192
steps per table, or about 9500 steps maximum per pulse sequence in total, excluding
division factors), but of unlimited complexity.

Acode Space Consumption

Real-time calculationsare inefficient for relatively short and simple phase cycles like
0 2 1 3 3 1 2 0 , but long phase cycles can often be constructed with relatively few math
statements.Tablesare efficient as long as they are short. Long tables can consume a lot
of Acode space. Acode space efficiency can be crucial in 3D and 4D experiments
(although these normally have very short phase cycles).

Chapter 11. Phase Tables

124 VNMR Pulse Sequences 01-999014-00 A0398

Easy to Understand? Easy to Construct?

Finding out the phase cycle generated byreal-time calculations is often not easy.
Constructing a real-time math algorithm for a given, non-trivial phase table is definitely
a difficult task for non-specialists. Given a complete (phase) table in literature, atable
file is trivial to construct, and it also is trivial to see what the actual numeric sequence
is. On the other hand, with longer tables it can bemore difficultto understand what the
underlying phase cycling algorithms are than with real-time math, because with the
latter such algorithms can often be directly coded. For the designer of a new pulse
sequence, real-time math may be the more adequate choice. NMR scientists often think
more in terms of phase-cycling algorithms, rather than final phase tables (of course, in
publications it is easier to simply print out phase tables rather than having to explain
the various phase cycling elements and algorithms).

Easy to Change?

Changing a phase cycle generated byreal-time mathnormally requires analyzing and
rebuilding the entire algorithm and can be time-consuming. Changing a phase cycle
from full tablesfirst requires understanding and analyzing the underlying algorithms,
and then changing (all) the tables. With long tables, this can be as complicated as
changing real-time calculations, maybe even more difficult sometimes.

Comparison by Examples

To emphasize the differences, and in particular the advantages and disadvantages of
the two methods for generating phase cycles, a pulse sequence with relatively long
phase cycles (not excessive, though),inadqt.c , has been selected for the following
comparison (the sequence was simplified for the purpose of this chapter).

Using Calculations Only

Let’s first have a look at a sequence that is written with phase calculations only:

pulsesequence()
{

double tau = 1.0 / (4.0 * getval("jcc"));
int phase = (int) (getval("phase") + 0.5);

mod4(ct, v3);
hlv(ct, v9);
hlv(v9, v9);
assign(v9, v1);
hlv(v9, v9);
assign(v9, v2);
hlv(v9, v9);
hlv(v9, v9);
mod2(v9, v9);/* v9 = F2 quad. image suppression */
dbl(v1, v1);/* v1 = suppresses artifacts from

imperfections in 1st 90 deg. pulse */
add(v9, v1, v1);
assign(v1, oph);
dbl(v2, v8);

 add(v9, v2, v2);/* v2 = suppresses artifacts from
imperfect 180 refocusing pulse */

add(v8, oph, oph);
dbl(v3, v4);

11.5 Tables vs. Real-Time Calculations

01-999014-00 A0398 VNMR Pulse Sequences 125

add(v3, v4, v4);
add(v3, v9, v3);
add(v4, oph, oph);/* v3 = selects DQC during t1

evolution period */
assign(zero, v10);/* v10 = F1 quadrature */
if (phase == 2)

incr(v10);
add(v10, oph, oph);

status(A);
hsdelay(d1);

status(B);
stepsize(45.0, TODEV);
xmtrphase(v10);
rgpulse(pw, v1, rof1, 0.0);
delay(tau);
rgpulse(2.0*pw, v2, rof1, 0.0);
delay(tau);

status(C);
rgpulse(pw, v9, rof1, 0.0);
xmtrphase(zero);
delay(d2);
pulse(pw, v3);

status(D);
}

The phase calculation section is rather long. There are five different phases, and the
phase cycle length is 64 steps. Even an experienced spectroscopist could spend many
minutes figuring out what the phase cycle is for the various pulses. In the Acode, the
phase calculations occupy 70 words, which isn’t too bad for phase cycles of this length.

275 26916398 NextSCan
276 27016437 MOD4FUNCct v3
279 27316734 HLVFUNCct v9
282 27617034 HLVFUNCv9 v9
285 27917339 ASSIGNFUNCv9 v1
288 28217634 HLVFUNCv9 v9
291 28517939 ASSIGNFUNCv9 v2
294 28818234 HLVFUNCv9 v9
297 29118534 HLVFUNCv9 v9
300 29418836 MOD2FUNCv9 v9
303 29719133 DBLFUNCv1 v1
306 30019429 ADDFUNCv9 v1 v1
310 30419839 ASSIGNFUNCv1 oph
313 30720133 DBLFUNCv2 v8
316 31020429 ADDFUNCv9 v2 v2
320 31420829 ADDFUNCv8 oph oph
324 31821233 DBLFUNCv3 v4
327 32121529 ADDFUNCv3 v4 v4
331 32521929 ADDFUNCv3 v9 v3
335 32922329 ADDFUNCv4 oph oph
339 33322739 ASSIGNFUNCzero v10
342 33623029 ADDFUNCv10 oph oph
346 340234 6 APBOUT2 items 0xa511 0xb57c
350 344238150HighSpeedLINESDECUP
353 347241151EVENT1_TWRD1500 msec
355 349243150HighSpeedLINESDECUP
358 35224668 PHASESTEP CH190 units (45.00 degrees)
361 35524965 SETPHASE CH1v10
364 35825216 SETPHAS90 CH1v1
367 361255150HighSpeedLINESRXOFF DECUP
370 364258151EVENT1_TWRD40.000 usec

Chapter 11. Phase Tables

126 VNMR Pulse Sequences 01-999014-00 A0398

372 366260150HighSpeedLINESRXOFF TXON DECUP
375 369263151EVENT1_TWRD10.400 usec
377 371265150HighSpeedLINESRXOFF DECUP
380 374268150HighSpeedLINESDECUP
383 377271152EVENT2_TWRD6 msec + 250 usec
386 38027416 SETPHAS90CH1 v2
389 383277150HighSpeedLINERXOFF DECUP
392 386280151EVENT1_TWRD40.000 usec
394 388282150HighSpeedLINESRXOFF TXON DECUP
397 391285151EVENT1_TWRD20.800 usec
399 393287150HighSpeedLINESRXOFF DECUP
402 396290150HighSpeedLINESDECUP
405 399293152EVENT2_TWRD6 msec + 250 usec
408 402296150HighSpeedLINESDECUP
411 40529916 SETPHAS90CH1 v9
414 408302150HighSpeedLINESRXOFF DECUP
417 411305151EVENT1_TWRD40.000 usec
419 413307150HighSpeedLINESRXOFF TXON DECUP
422 416310151EVENT1_TWRD10.400 usec
424 418312150HighSpeedLINESRXOFF DECUP
427 421315150HighSpeedLINESDECUP
430 42431865 SETPHASECH1 zero
433 42732116 SETPHAS90CH1 v3
436 430324150HighSpeedLINESRXOFF DECUP
439 433327151EVENT1_TWRD10.000 usec
441 435329150HighSpeedLINESRXOFF TXON DECUP
444 438332151EVENT1_TWRD10.400 usec
446 440334150HighSpeedLINESRXOFF DECUP
449 443337150HighSpeedLINESDECUP
452 446340150HighSpeedLINESDECUP
455 44934316 SETPHAS90CH1 zero
458 45234616 SETPHAS90CH2 zero
461 455349150HighSpeedLINESRXOFF DECUP
464 458352151EVENT1_TWRD10.000 usec
466 460354150HighSpeedLINESDECUP
469 463357152EVENT2_TWRD122 usec + 350 nsec
472 46636090 SETInputCardMode
476 47036499 ACQXX loop np=4096, dwell 80.000 usec
479 473367 7 STartFIFO
480 47436897 HouseKEEPing
481 47536920 BRANCH Offset 159

==
Total code size 483 words / 966 Bytes / 0.9 KB
==

The Acode segment for the first FID is 477 words or 954 bytes. We now want to
compare this with another version of the same pulse sequence, where all the math
statements have been replaced by phase tables.

Using “Pure Tables”

If we remove all the phase calculations and write a table file instead, the pulse sequence
text is dramatically simplified. The only phase-related statements left are those that
deal with the f1 quadrature detection (see alsoChapter 19, “Multidimensional
Experiments,” on page 215). Apart from the fact that tables are used instead of phase
calculations, the functionality of the following version is exactly the same as with the
version above (at least as far as the pulse programmer is concerned).

11.5 Tables vs. Real-Time Calculations

01-999014-00 A0398 VNMR Pulse Sequences 127

pulsesequence()
{

double tau = 1.0 / (4.0 * getval("jcc"));
int phase = (int) (getval("phase") + 0.5);

loadtable("inadqt");
setreceiver(t5);
assign(zero,v6);
if (phase == 2)
{

incr(v6);
incr(oph);

}

status(A);
hsdelay(d1);

status(B);
stepsize(45.0, TODEV);
xmtrphase(v6);
rgpulse(pw, t1, rof1, 0.0);
delay(tau);
rgpulse(2.0*pw, t2, rof1, 0.0);
delay(tau);

status(C);
rgpulse(pw, t3, rof1, 0.0);
xmtrphase(zero);
delay(d2);
pulse(pw, t4);

status(D);
}

Shorthand syntax allows us to simplify the coding of all the phase tables involved.
Unfortunately, only three of the five tables can be shortened using division factors—
two tables must be left at full length. These tables also reveal a potential disadvantage
of the shorthand syntax: in order to correlate the different phase tables, we have to
(mentally) translate the tables back to full length!

Very rarely phase cycling occurs isolated in one table only. Changing the phase of a
pulse most likely causes the observe phase, if not also the phase of other pulses, to
change as well. It would, therefore, help if the tables were written at full length, on a
single line per table, such that the phase cycles could be vertically correlated. This
would of course prohibit any shorthand syntax and division factors and would,
therefore, make the tables even less efficient (in terms of Acode space consumption).
Also, long (full) tables aren’t necessarily more readable due to their length (each of
them would fill two or four lines if the line length is limited to less than 80 characters).

t1 = { (0 2)4 (1 3)4 }4 /* 1st 90 */
t2 = { 0 1 2 3 1 2 3 0 }8 /* 180 */
t3 = { 0 1 }32 /* 2nd 90 */
t4 = (0 3 2 1)8 (1 0 3 2)8 /* 3rd 90 */
t5 = (0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1)2
 (1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2)2 /* oph */

Chapter 11. Phase Tables

128 VNMR Pulse Sequences 01-999014-00 A0398

In the Acode, the phase tables (at least those with a division factor of 1) occupy a
considerable number of words:

275 269 163 98 NextSCan
276 270 164 105 TABLE 165size 64, autoinc 0, divn_ret 1, ptr 0

0 3 2 1 2 1 0 3
 2 1 0 3 0 3 2 1
 0 3 2 1 2 1 0 3
 2 1 0 3 0 3 2 1
 1 0 3 2 3 2 1 0
 3 2 1 0 1 0 3 2
 1 0 3 2 3 2 1 0
 3 2 1 0 1 0 3 2
345 339 233 106 TASSIGN table 165 ct oph
349 343 237 39 ASSIGNFUNC zero v6
352 346 240 6 APBOUT 2 items 0xa511 0xb57c
356 350 244 150 HighSpeedLINES DECUP
359 353 247 151 EVENT1_TWRD 1500 msec
361 355 249 150 HighSpeedLINES DECUP
364 358 252 68 PHASESTEP CH1 90 units (45.00 degrees)
367 361 255 65 SETPHASE CH1 v6
370 364 258 105 TABLE 259 size 16,autoinc 0,divn_ret 4,ptr 0

0 2 0 2 0 2 0 2
 1 3 1 3 1 3 1 3
391 385 279 106 TASSIGN table 259 ct tblrt
395 389 283 16 SETPHAS90 CH1 tblrt
398 392 286 150 HighSpeedLINES RXOFF DECUP
401 395 289 151 EVENT1_TWRD 40.000 usec
403 397 291 150 HighSpeedLINES RXOFF TXON DECUP
406 400 294 151 EVENT1_TWRD 10.400 usec
408 402 296 150 HighSpeedLINES RXOFF DECUP
411 405 299 150 HighSpeedLINES DECUP
414 408 302 152 EVENT2_TWRD 6 msec + 250 usec
417 411 305 105 TABLE 306 size 8, autoinc 0,divn_ret 8, ptr 0

0 1 2 3 1 2 3 0
430 424 318 106 TASSIGN table 306 ct tblrt
434 428 322 16 SETPHAS90 CH1 tblrt
437 431 325 150 HighSpeedLINES RXOFF DECUP
440 434 328 151 EVENT1_TWRD 40.000 usec
442 436 330 150 HighSpeedLINES RXOFF TXON DECUP
445 439 333 151 EVENT1_TWRD 20.800 usec
447 441 335 150 HighSpeedLINES RXOFF DECUP
450 444 338 150 HighSpeedLINES DECUP
453 447 341 152 EVENT2_TWRD 6 msec + 250 usec
456 450 344 150 HighSpeedLINES DECUP
459 453 347 105 TABLE 348 size 2, autoinc 0,divn_ret 32,ptr 0

0 1
466 460 354 106 TASSIGN table 348 ct tblrt
470 464 358 16 SETPHAS90 CH1 tblrt
473 467 361 150 HighSpeedLINES RXOFF DECUP
476 470 364 151 EVENT1_TWRD 40.000 usec
478 472 366 150 HighSpeedLINES RXOFF TXON DECUP
481 475 369 151 EVENT1_TWRD 10.400 usec
483 477 371 150 HighSpeedLINES RXOFF DECUP
486 480 374 150 HighSpeedLINES DECUP
489 483 377 65 SETPHASE CH1 zero
492 486 380 105 TABLE 381 size 64, autoinc 0,divn_ret 1,ptr 0

0 3 2 1 0 3 2 1
 0 3 2 1 0 3 2 1
 0 3 2 1 0 3 2 1
 0 3 2 1 0 3 2 1
 1 0 3 2 1 0 3 2
 1 0 3 2 1 0 3 2
 1 0 3 2 1 0 3 2
 1 0 3 2 1 0 3 2

11.6 Combining the Best of the Two Worlds

01-999014-00 A0398 VNMR Pulse Sequences 129

561 555 449 106 TASSIGN table 381 ct tblrt
565 559 453 16 SETPHAS90 CH1 tblrt
568 562 456 150 HighSpeedLINES RXOFF DECUP
571 565 459 151 EVENT1_TWRD 10.000 usec
573 567 461 150 HighSpeedLINES RXOFF TXON DECUP
576 570 464 151 EVENT1_TWRD 10.400 usec
578 572 466 150 HighSpeedLINES RXOFF DECUP
581 575 469 150 HighSpeedLINES DECUP
584 578 472 150 HighSpeedLINES DECUP
587 581 475 16 SETPHAS90 CH1 zero
590 584 478 16 SETPHAS90 CH2 zero
593 587 481 150 HighSpeedLINES RXOFF DECUP
596 590 484 151 EVENT1_TWRD 10.000 usec
598 592 486 150 HighSpeedLINES DECUP
601 595 489 152 EVENT2_TWRD 22 usec + 350 nsec
604 598 492 90 SETInputCardMode
608 602 496 99 ACQXX loop np=4096, dwell 80.000 usec
611 605 499 7 STartFIFO
612 606 500 97 HouseKEEPing
613 607 501 20 BRANCH Offset 159

==
Total code size 615 words / 1230 Bytes / 1.2 KB
==

In this case, the Acode segment for the first FID is 609 words or 1218 bytes (compared
to 477 words or 954 bytes with phase calculations). The Acode size is increased by 254
bytes per FID (28%). This may seem rather marginal, however, we should also
consider 2D and 3D experiments.

Furthermore, there are certainly cases of complex pulse sequences that generate a lot
of Acode by themselves. In such cases, it is not impossible that phase tables can cause
the Acode size to exceed the upper limit (10000 words), in which case a sequence
would not execute at all. There are also 1D pulse sequences such ascccc.c
(composite pulse inadequate) with a large number of different phase cycles of 256 or
even up to 1024 steps each. We can certainly imagine cases where the tables
themselves would not fit into the available Acode space unless they can be abbreviated.

11.6 Combining the Best of the Two Worlds

Obviously, neither pure calculations nor pure phase tables provide an optimum
solution for programming phase cycles. What we are looking for is a way of defining
the phase cycling that is at the same time all of the following:

• Easy to understand and analyze.
• Easy to create and compose.
• Easy to change the phase cycling scheme (this is mostly a feature for pulse

sequence developers).
• Visualizes the internal phase cycling algorithms.
• Does not use excessive Acode space.

A possible solution to this problem is to use a combination of phase tables and real-
time calculations. Why not use phase tables to define the (simple)phase cycling
elements and real-time math to realizephase cycling algorithms(i.e., phase
dependencies, synchronous phase variation, etc.)?

Chapter 11. Phase Tables

130 VNMR Pulse Sequences 01-999014-00 A0398

It turns out that most phase cycling elements are simple—the most common elements
are the following:4

{ 0 1 2 3 }n
{ 0 2 }n
{ 0 3 2 1 }n
{ 0 1 }n
{ 0 2 1 3 }n

Furthermore, most phase cycling algorithms (in the sense of phase cyclingrelations)
are almost trivial. In most sequences, it simply involves adding up certain phases in
order to obtain the observe phase and to add some “macroscopic” phase cycling to all
phase cycles (at least for pulses on the observe channel).

The most striking case for using this solution is in the area of composite pulses. These
pulses use phases that are normally simply orthogonal or anti-phase relative to each
other, and it would be a real waste to define phase table for each of the pulses. It is much
simpler to extract one phase and to calculate the others from that one.

How can we realize this concept? Let’s take the same pulse sequence as used above,
inadqt.c , analyze it, and see whether the new concept is feasible. We first start with
the full phase table file from the last version:

t1 = { (0 2)4 (1 3)4 }4 /* 1st 90 */
t2 = { 0 1 2 3 1 2 3 0 }8 /* 180 */
t3 = { 0 1 }32 /* 2nd 90 */
t4 = (0 3 2 1)8 (1 0 3 2)8 /* 3rd 90 */
t5 = (0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1)2
 (1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2)2 /* oph */

In order to find out about phase relations, it is best (at least for beginners) to first write
out the full phase cycles:

t1 = 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3 1 1 1 1 3 3 3 3

t2 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0

t3 = 0
1 1

t4 = 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1
1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2

t5 = 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1
1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2 3 2 1 0 3 2 1 0 1 0 3 2

The one fact common toall these phase tables is that after 32 steps all phase cycles,
including the observe phaset5 , are repeated with a phase shift of 90 degrees (all tables
are incremented by 1). This is the quad image suppression in f2 (the observed
dimension)5 and is the slowest of the phase cycles in this sequence. It turns out thatt3

4 One could even further simplify this list, saying that the most frequently used phase cycling
elements are just{ 0 1 }n and{ 0 2 }n ; { 0 1 2 3 }n and{ 0 2 1 3 }n are just
combinations of the two simpler ones:{ 0 1 2 3 }n = { 0 1 }n + { 0 2 }(2n) , and
{ 0 2 1 3 }n = { 0 2 }n + { 0 1 }(2n) . The cycle{ 0 3 2 1 }n is just the reversal
of { 0 1 2 3 }n .
5 This forms part of a CYCLOPS phase cycling (A.D. Bain,J. Magn. Reson. 56, 418 (1984); D.I.
Hoult, R.E. Richards,Proc. Roy. Soc. London Ser.A 344, 311 (1975)), which is present only partially
in this pulse sequence. The “other half” of the full cycle ({ 0 2 }64), which would reduce any
axial signal (“center glitch”) in f2, is not present (nor required) in this case.

11.6 Combining the Best of the Two Worlds

01-999014-00 A0398 VNMR Pulse Sequences 131

consists of only this phase cycle. It can, therefore, be regarded as constant phase (0),
with quad image suppression added. If we “subtract” (isolate) that phase cycle from all
tables, we end up with a much simpler list of tables. The subtracted phase cycle is
stored in a new table that we can add to all the other tables using real-time math:

t1 = 0 0 0 0 2 2 2 2
t2 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
t3 = 0
t4 = 0 3 2 1
t5 = 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1
t6 = { 0 1 }32 /* macroscopic phase cycling (f2 quad image

suppression) to be added to t1 - t5 */

You might think that we have already reached a sufficient degree of simplification (t1
andt2 can be shortened dramatically using division factors), but this is not the end.
The observe phase often is simply a function of some (or all) of the pulse phases. In
this case, it is obvious that botht1 andt4 (andt3 ?) are contained in the observe phase
cycle. If we subtract these phases from the observe phase, we obtain

t5 = 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

If we then write this cycle as

t5 = 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6

we recognize that it is in fact twice the values oft2 ! This mechanism has been called
EXORCYCLE6. Each time the phase of a refocusing pulse is altered by 90 degrees, the
phase of the observed signal (and hence the receiver phase) changes by 180 degrees.
Therefore, the observe phase in theinadqt experiment can be expressed as

t5 = t1 + 2*t2 + t4

In fact, we don’t need to define the long observe phase cycle as a table at all. This phase
will be calculated in the pulse sequence. The phase table can, therefore, be reduced to
the following list:

/* inadqt phase tables */

t1 = { 0 2 }4 /* 1st 90 */
t2 = { 0 1 2 3 }8 /* 180 */
t3 = 0 /* 2nd 90 */
t4 = 0 3 2 1 /* 3rd 90 */
t6 = { 0 1 }32 /* macroscopic phase cycling */

/* phase cycling is performed in the following order:
1) t4 (nt=4): double-quantum coherence selection (4-step cycle)
2) t1 (nt=8): suppression of artifacts due to imperfections in

the first 90 (2-step cycle)
3) t2 (nt=32): EXORCYCLE phase cycling to remove artifacts from

imperfect spin refocusing (4-step cycle)
4) t6 (nt=64): f2 quad image suppression through macroscopic phase

cycling (2-step cycle) */

In the pulse sequence, we first create a pseudoct counter to also obtain steady-state
phase cycling. With this counter as index, we then extract all phases from the tables,
calculate the observe phase using the formula we have obtained from the analysis, add
the “macroscopic”{ 0 1 }32 phase cycle (t6), and finally adjust the phases for f1
quadrature detection.7

6 G. Bodenhausen, R. Freeman, and D.L. Turner,J. Magn. Reson.27, 511 (1977).

Chapter 11. Phase Tables

132 VNMR Pulse Sequences 01-999014-00 A0398

pulsesequence()
{
 double tau = 1.0 / (4.0 * getval("jcc"));
 int phase = (int) (getval("phase") + 0.5);

 loadtable("inadqt");
 sub(ct, ssctr, v10); /* pseudo ct counter */
 getelem(t1, v10, v1); /* extract phases from tables */
 getelem(t2, v10, v2);
 getelem(t3, v10, v3);
 getelem(t4, v10, v4);
 getelem(t6, v10, v6);
 dbl(v2, oph); /* calculate observe phase */
 add(oph, v1, oph);
 add(oph, v4, oph);
 add(v1, v6, v1); /* add macroscopic phase cycling */
 add(v2, v6, v2);
 add(v3, v6, v3);
 add(v4, v6, v4);
 add(oph, v6, oph);
 assign(zero, v5); /* f1 quadrature (phase=1,2) */
 if (phase == 2) incr(v5);
 add(oph, v5, oph);

 status(A);
 hsdelay(d1);
 status(B);
 stepsize(45.0, TODEV);
 xmtrphase(v5);
 rgpulse(pw, v1, rof1, 0.0);
 delay(tau);
 rgpulse(2.0*pw, v2, rof1, 0.0);
 delay(tau);
 status(C);
 rgpulse(pw, v3, rof1, 0.0);
 xmtrphase(zero);
 delay(d2);
 pulse(pw, v4);
 status(D);
}

You might argue that the new calculation section complicates the sequence again
(compared to the version with “pure tables”). Also, we again are using what you might
call “real-time calculations that are difficult to understand.” However, a closer
inspection of the above code shows that there is no black magic in the real-time math
statements used here. We simply add up the various phases—the math operations
involved are almost trivial. Also, you have to realize that (with the exception of some
pulsed field gradient and some trivial 1D experiments) the phase cycling to a pulse
sequence is usually as important as the pulses and the delays themselves. A phase
cycling section as long as the example above (especially if it also nicely visualizes the
internal phase cycling algorithms and relations involved) is certainly justified.

7 Remember that this pulse sequence has been simplified for this chapter. More explanation on how
to manipulate the phase cycles in order to achieve quadrature detection in various modes in nD
spectra is given inChapter 19, “Multidimensional Experiments,” on page 215.

11.6 Combining the Best of the Two Worlds

01-999014-00 A0398 VNMR Pulse Sequences 133

Finally, we can double-check how much Acode we are using by combining phase
tables and real-time calculations:

275 269 163 98 NextSCan
276 270 164 30 SUBFUNC ct ssctr v10
280 274 168 105 TABLE 169 size 2, autoinc 0,divn_ret 4, ptr 0

0 2
287 281 175 106 TASSIGN table 169 v10 v1
291 285 179 105 TABLE 180 size 4, autoinc 0,divn_ret 8,ptr 0

0 1 2 3
300 294 188 106 TASSIGN table 180 v10 v2
304 298 192 105 TABLE 193 size 1, autoinc 0, divn_ret 1, ptr 0 0
310 304 198 106 TASSIGN table 193 v10 v3
314 308 202 105 TABLE 203 size 4, autoinc 0, divn_ret 1, ptr 0

0 3 2 1
323 317 211 106 TASSIGN table 203 v10 v4
327 321 215 105 TABLE 216 size 2, autoinc 0,divn_ret 32,ptr 0

0 1
334 328 222 106 TASSIGN table 216 v10 v6
338 332 226 33 DBLFUNC v2 oph
341 335 229 29 ADDFUNC oph v1 oph
345 339 233 29 ADDFUNC oph v4 oph
349 343 237 29 ADDFUNC v1 v6 v1
353 347 241 29 ADDFUNC v2 v6 v2
357 351 245 29 ADDFUNC v3 v6 v3
361 355 249 29 ADDFUNC v4 v6 v4
365 359 253 29 ADDFUNC oph v6 oph
369 363 257 39 ASSIGNFUNC zero v5
372 366 260 29 ADDFUNC oph v5 oph
376 370 264 6 APBOUT 2 items 0xa511 0xb57c
380 374 268 150 HighSpeedLINES DECUP
383 377 271 151 EVENT1_TWRD 1500 msec
385 379 273 150 HighSpeedLINES DECUP
388 382 276 68 PHASESTEP CH1 90 units (45.00 degrees)
391 385 279 65 SETPHASE CH1 v5
394 388 282 16 SETPHAS90 CH1 v1
397 391 285 150 HighSpeedLINES RXOFF DECUP
400 394 288 151 EVENT1_TWRD 40.000 usec
402 396 290 150 HighSpeedLINES RXOFF TXON DECUP
405 399 293 151 EVENT1_TWRD 10.400 usec
407 401 295 150 HighSpeedLINES RXOFF DECUP
410 404 298 150 HighSpeedLINES DECUP
413 407 301 152 EVENT2_TWRD 6 msec + 250 usec
416 410 304 16 SETPHAS90 CH1 v2
419 413 307 150 HighSpeedLINES RXOFF DECUP
422 416 310 151 EVENT1_TWRD 40.000 usec
424 418 312 150 HighSpeedLINES RXOFF TXON DECUP
427 421 315 151 EVENT1_TWRD 20.800 usec
429 423 317 150 HighSpeedLINES RXOFF DECUP
432 426 320 150 HighSpeedLINES DECUP
435 429 323 152 EVENT2_TWRD 6 msec + 250 usec
438 432 326 150 HighSpeedLINES DECUP
441 435 329 16 SETPHAS90 CH1 v3
444 438 332 150 HighSpeedLINES RXOFF DECUP
447 441 335 151 EVENT1_TWRD 40.000 usec
449 443 337 150 HighSpeedLINES RXOFF TXON DECUP
452 446 340 151 EVENT1_TWRD 10.400 usec
454 448 342 150 HighSpeedLINES RXOFF DECUP
457 451 345 150 HighSpeedLINES DECUP
460 454 348 65 SETPHASE CH1 zero
463 457 351 16 SETPHAS90 CH1 v4
466 460 354 150 HighSpeedLINES RXOFF DECUP
469 463 357 151 EVENT1_TWRD 1.000 usec
471 465 359 150 HighSpeedLINES RXOFF TXON DECUP
474 468 362 151 EVENT1_TWRD 10.400 usec

Chapter 11. Phase Tables

134 VNMR Pulse Sequences 01-999014-00 A0398

476 470 364 150 HighSpeedLINES RXOFF DECUP
479 473 367 150 HighSpeedLINES DECUP
482 476 370 150 HighSpeedLINES DECUP
485 479 373 16 SETPHAS90 CH1 zero
488 482 376 16 SETPHAS90 CH2 zero
491 485 379 150 HighSpeedLINES RXOFF DECUP
494 488 382 151 EVENT1_TWRD 10.000 usec
496 490 384 150 HighSpeedLINES DECUP
499 493 387 152 EVENT2_TWRD 122 usec + 350 nsec
502 496 390 90 SETInputCardMode
506 500 394 99 ACQXX loop np=4096, dwell 80.000 usec
509 503 397 7 STartFIFO
510 504 398 97 HouseKEEPing
511 505 399 20 BRANCH Offset 159

==
Total code size 513 words / 1026 Bytes / 1.0 KB
==

Here, the Acode segment for the first FID is 507 words (1014 bytes), compared to 477
words, 954 bytes, with pure real-time calculations, and 609 words, 1218 bytes, with
“pure tables”: we have almost reached the Acode space efficiency of real-time math,
while providing a C code that is superior to both other approaches in terms of clarity
and simplicity, while making it easier to change things and experiment with different
versions of the phase cycling.

Supposing we decided that the phase cycling on the first pulse is less important than
the EXORCYCLE (on the refocusing pulse); therefore, we wanted to cycle the phase
of the refocusing pulse before alternating the phase of the first pulse. Instead of
changing complex phase tables or rebuilding complicated real-time math, we could
simply supply an alternate phase table file:

t1 = { 0 2 }16 /* 1st 90 */
t2 = { 0 1 2 3 }4 /* 180 */
t3 = 0 /* 2nd 90 */
t4 = 0 3 2 1 /* 3rd 90 */
t6 = { 0 1 }32 /* macroscopic phase cycling */

We wouldn’t even have to change the text of the pulse sequence.

This is, of course, mostly a point for pulse sequence designers; “standard” users seldom
alter the phase cycling of a pulse sequence. Also, the sequence of importance and
relative order of phase cycling certainly is a non-trivial issue. In cancellation
experiments (like double-quantum filtering or double-quantum spectroscopy like the
inadqt experiment shown above), we always do the main cancellation first, then we
would like to start cancelling the biggest artifacts (like the artifacts from off-resonance
effects, pulse missettings and imperfections, rf inhomogeneity) and gradually proceed
to the minor artifacts (like f2 quadrature images and axial signals).

The reason for this order is that in the case of changing conditions (such as
environmental or instrumental instabilities, or a decaying sample), the cancellation
quality suffers if excessive time passes between the two scans that are supposed to
subtract the artifact from itself (by alternating its phase). The best chance for a good
cancellation is if the two scans follow each other immediately; hence, double-quantum
filters and the like are performed with first priority. Minor artifacts leave only very
small residual signals, even if they are imperfectly cancelled8.

11.7 Using Tables as Source for Random Numbers

01-999014-00 A0398 VNMR Pulse Sequences 135

Obviously, changing existing pulse sequences (whether they are written with real-time
math or with full phase tables) to the new style would require first analyzing the phase
cycling, which (as mentioned before) may be a non-trivial task for many users;
however, we do not suggest that people rewrite all existing (working) pulse sequences.
It’s more the idea to provide a new, powerful concept for people that generatenew
pulse sequences.

11.7 Using Tables as Source for Random Numbers

As an alternative to generating random numbers within a single FID using real-time
calculations (e.g., for Z-filtering, or ford1-randomization, see alsoSection 10.8,
“Real-Time Random Numbers,” on page 112), such random numbers can, of course,
also be taken from a table. The table solution provides the option of using a fairly large
range of random numbers (up to the full or positive range of 16-bit integers, depending
on the method of definition). The length of the sequence of random numbers from
tables is almost unlimited (up to 8192 numbers), but this length has to be “paid” in
Acode space (2 bytes per number). For small numeric values, the method using real-
time calculations is superior, because long sequences can be generated with a limited
number of math statements, but this solution is probably limited to a linear distribution
within a given range.

For non-linear (e.g., Gaussian) distributions or for random numbers with large numeric
ranges (e.g., values between 0 and 4095), the table approach is the preferable solution.
Linearly distributed random numbers are best generated using a suitable C construct,
such as the following for 1024 values between 0 and 4095:

static int randomtable[1024];
pulsesequence()
{

int i;
if (ix == 1) srandom(getpid());
for (i = 0; i < 1024; i++)

randomtable[i] = \
(int) (4095.999*((double) random())/2147483647.0);

settable(t1,1024,randomtable);
...

For non-linear distributions (like a Gaussian distribution of values), a suitable C
construct has to be found. For an approximate Gaussian distribution, the data can also
be taken from an FID with noise only (no signal). The corresponding procedure would
be as follows (1024 numbers, Gaussian distribution between 0 and 4095):

• In VNMR, set the following parameters and then acquire an FID:
pw=0 (avoid signal)
sw=100000 (the noise increases withsw)
np=n (wheren is the desired number of random numbers)
nt ≥1 (for 16-bit ADC) ornt ≥4 (for 15-bit ADC) ornt ≥256 (for 12-bit ADC)

8 The question of the optimum order in the phase cycling depends on the relative intensity of the
artifacts (which may be a question of parameter selection, or a question of rf and probe quality), and
on the environmental and instrumental stability. There is no global recipe for the phase cycling order.
It can be assumed that the VNMR pulse sequences have been optimized in this respect; however,
depending on the conditions and the instrument configuration, an alternate phase cycling order may
sometimes improve the results.

Chapter 11. Phase Tables

136 VNMR Pulse Sequences 01-999014-00 A0398

ss=0
increase thegain such that the ADC is almost filled

• In UNIX (Bourne shell script):
#!/bin/sh

cd

cd vnmrsys/expn/acqfil

echo -n "t50 = " > $HOME/vnmrsys/tablib/randomtable

od -iw2 fid +74 | awk ‘

{ if ((NR > 0) && (((NR - 1) % 8) == 0)) printf(“\n\t”)

printf(" %7d",($2+32768.0)/65535.0*4095.999)

}’ >> $HOME/vnmrsys/tablib/randomtable

This generates a table file (tablet50) with eight numbers per line.

01-999014-00 A0398 VNMR Pulse Sequences 137

Chapter 12. AP Bus Traffic

States that are driven by the fast bits can change instantaneously (at least as far as the
programming goes), they can be set and unset within time intervals as short as 200
nanoseconds, with a timing precision of 25 (or 100) nanoseconds. It would be nice if
all spectrometer states could be changed that quickly! Unfortunately, with instruments
and experiments becoming more and more complex, for a fully equipped modern
spectrometer this would require over a thousand fast lines. Also, pulse programming
would be rather inefficient considering the fact that with most time events only one or
two of the fast bits would be altered, and yet we would have to feed the pulse
programmer with over 100 bytes for every FIFO word (and mostly the same bytes over
and over again). The system designers, therefore, divided the devices into three classes:

• Devices that require very fast switching (down to 200 nanoseconds for switching
in both directions): typically rf gates and 90-degree phase shifts (seeSection 9.2,
“Fast Bits,” on page 88).

• Devices that need to be switched with accurate timing, but not necessarily at the
speed of the fast bits, devices that would take longer anyway to switch to another
state, and devices that are not switched on and off in rapid succession, but rather
keep their state for many time events (or the entire sequence). These are the units
for which the AP (analog port) bus was built.

• Devices that do not need to be synchronized with the pulse sequence, such as the
sample changer, spinner control, sample insert and eject, and the like (these aren’t
even handled by the pulse programmer, seeChapter 13, “Acquisition CPU
Communication,” on page 145).

It was decided to limit the fast bits to those devices that really need the speed of the
state bits. Most other devices are addressed by the AP bus.

12.1 What Is the AP Bus

As the name indicates, the AP bus is a true bus structure. In computer terminology, a
businvolves a linear structure (a cable, sometimes a computer backplane) with several
parallel lines (16 in the case of the AP bus). The lines are used to transmit address and
control information as well as data to a (potentially large) number of devices that are
all hooked up to the AP bus with special interface chips (the AP bus chip). Some
devices (like attenuators and the linear amplifiers on UNITY systems) share a common
interface to the AP bus, the AP interface card.

The information sent over the AP bus is mostly numeric; a maximum of 8 bits (1 byte)
of information can be transmitted per AP word. Depending on the device, two different
transmission modes can be used:

• Direct binary information, as used by attenuators, phase and amplitude
modulators, shim or pulsed field gradient DAC values, etc. Depending on the way
the hardware works (positive or negative logic), this can be normal or bit-inverted
(negated) binary information.

• BCD (binary coded decimal) information. Here, every digit of a decimal number
is transmitted in a separate binary AP word. This may sound inefficient (only 4 out

Chapter 12. AP Bus Traffic

138 VNMR Pulse Sequences 01-999014-00 A0398

of 8 data bits are used per AP word), but it is adequate for some devices like the
PTS frequency synthesizers and other similar devices (decoupler modulator [dmf],
offset synthesizers, etc.). These devices operate in (frequency)decadesand would
otherwise have to generate the decimal information internally.

Apart from numeric values, the information transmitted through the AP bus can also
be of simple binary nature, like the “command” or flag that sets a linear amplifier into
CW mode or back into pulsed mode, or a “strobe”, a command that causes devices to
carry out previously transmitted numeric information. The strobe is used for small-
angle phase shifting on the UNITYplus (where the phase value is transmitted in two
words but only carried out when the second word is received), or in the case of PTS
frequency synthesizers with latching: With these, all decades are first transmitted in
BCD mode, but the frequency only changes when the strobe is received in a separate
AP word1.

For the vast majority of the cases, the AP bus operates in “indirect” mode (i.e., the first
word sent over the AP bus contains the address and the following words contain the
information to be transferred to the device). In this mode, the address fills 12 bits of the
first AP word. Thanks to this long address, the number of devices that can be driven by
the AP bus is virtually unlimited (4096 addresses are available). In very few cases (e.g.,
small-angle phase shifting on UNITY and earlier systems), the AP bus is used in direct
addressing mode, where address and data are transmitted with the same AP word. This
mode is limited to 16 devices (4 address bits).2

The AP words pass the pulse programmer within normal FIFO words. The difference
to a time event is that the timing part of the FIFO word in this case contains the AP bus
bits instead of time and time base. This part of the FIFO word is fed either into the
timer(s) or into the AP bus, depending on a special bit within the FIFO word that
differentiates timer words and AP words. The definition of the AP bus is such that
every word must be held on the bus lines for 1 microsecond (UNITYplus) or 2
microseconds (UNITY and earlier systems) to allow for the devices to decode the
address and read the information off the bus. AP words are, therefore, timed
(accurately) by the pulse programmer. It takes 150 nanoseconds to decode the timer or
AP word and initialize the timer circuitry; the total time per AP word is therefore 1.15
microseconds on a UNITYplus and 2.15 microseconds on all earlier systems. This is
the AP bus cycle time.

The time to transmit information to any device is always a multiple of the bus cycle
time. For instance, it takes 9 AP words to change the frequency on a PTS synthesizer
on a UNITYplus. Therefore, it takes 10.35 microseconds to change a frequency with
theoffset statement. Complete tables for the number of FIFO and AP words
involved, as well as for time requirements are given in the manualVNMR User
Programming.

With respect to the fast bits, AP words behave like normal (fixed length) time events.
The fast bit part of the FIFO words is filled with the current settings of the fast bits.

1 On PTS synthesizers without latching, each decade changes (or keeps) its frequency value.
2 The addressing is actually more complex than that. There are 16 “board addresses” (4 bits) that are
shared between devices operating in direct mode (not used on UNITYplus) and devices that are
addressed via AP bus chip. For each of the board addresses (AP bus chips), there are 256 register
subaddresses, which allows for a variety of functions to be performed. Each AP bus chip can address
many devices.

12.2 What Devices are Driven by the AP Bus?

01-999014-00 A0398 VNMR Pulse Sequences 139

Fast bits are slightly different on older systems with anoutput board(63-word loop
FIFO). On these systems, the fast bits maintain the settings of thelast executed time
event. If an AP word would immediately follow a pulse without post-pulse delay, that
pulse would be prolonged by the duration of the AP bus event(s).

To avoid this, AP functions that generate AP words also generate a 200-nanosecond
delay preceding the AP words. The total duration of AP events on these systems (early
VXR systems) is, therefore, 0.2 microseconds longer than on systems with the
acquisition control board (UNITY). The programmer can use theapovrride
statement to turn off this additional 0.2-microsecond delay for thenextAP event (e.g.,
for the case of multiple AP events in sequence or if the fast bits were already set
correctly from the previous delay).

The AP bus overall is a fast transport medium: even in BCD mode, the equivalent of
over 3.5 million bits (UNITYplus) or 1.8 million bits (on earlier systems) can be
transmitted per second (in binary mode the transfer rate is twice as great).

12.2 What Devices are Driven by the AP Bus?

As instruments become more complex, the number of devices addressed by AP bus has
been growing constantly over the years. In VXR spectrometers, the following devices
were driven through the AP bus:

• PTS frequency synthesizers (not on fixed-frequency rf channels).

• Offset synthesizers with fixed frequency and broadband (as opposed to direct
synthesis) rf channels.

• Decoupler high-power level (class C decoupler amplifier).

• Decoupler low-power attenuator (class C decoupler amplifier).

• Decoupler modulator frequency.

• Audio filter bandwidth.

• Small-angle phase shifts (with direct synthesis rf only).

• Shim DAC values.

The UNITY spectrometer added a fair number of additional devices; including the
following:

• RF power attenuators (one per channel with linear amplifiers), 63 or 79 dB.

• Fine attenuators (optional, mostly used with systems having a solid-state module);
available for the first two channels only; the same port or AP words can be used to
drive an additional (“third”) 63-dB attenuator to facilitate pulse shaping without
waveform generators.

• Linear amplifier status (cw and pulse modes).

• Waveform generator shapes and pattern (see alsoChapter 16, “Waveform
Generators,” on page 163).

• Waveform generator shape selection and time scaling.

• Amplitude of a pulsed field gradient (PFG amplifier).

• Imaging gradient amplitudes.

Chapter 12. AP Bus Traffic

140 VNMR Pulse Sequences 01-999014-00 A0398

The AP interface board (of which several versions exist) interfaces rf coarse and fine
attenuators and AMT linear amplifiers with the AP bus. The last version of this board
(type 3) allow setting the decoupler modulation mode (dmmparameter) by the AP bus.

Finally, in the UNITYplusthe following devices were added to the list:
• Lock power, lock gain, and lock phase.
• Receiver gain.
• Linear amplitude modulator.

The AP interface board is not present in UNITYplus spectrometers.

12.3 AP Bus Words in the Acode

AP bus traffic is predominant in the initialization section of the instruction section in
the Acode, as can be seen from the following part of the (interpreted) Acode (note that
with the exception of rf attenuator commands, the contents of the AP bus words arenot
decoded with theapdecode command used here):

148 142 36 6 APBOUT 7 items 0xab40 0xbb0d 0x9b00 0xab54
0xbbec 0x9b2f 0x9b8f

157 151 45 6 APBOUT 9 items 0xa720 0xb700 0x97be 0xb7ef
0xb7ae 0xb7fb 0xb7be 0x9701
0xb700

168 162 56 159 TUNE_FREQ CH1 9 words 0xa720 0xb700 0x97be 0xb7ef
0xb7ae 0xb7fb 0xb7be 0x9701 0xb700

180 174 68 0 NO_OP
181 175 69 16 SETPHAS90 CH1c 0
184 178 72 68 PHASESTEP CH1 360 units (90.00 degrees)
187 181 75 65 SETPHASE CH1f 0
190 184 78 59 APChipOUT APaddr 11, reg 51, +logic, 1 byte

max 79, offset 16, value 55
196 190 84 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes

max 4095, offset 0, value 4095
202 196 90 6 APBOUT 4 items 0xab98 0xbbd2 0x9b00 0x9b00
208 202 96 6 APBOUT 2 items 0xab92 0xbba0
212 206 100 6 APBOUT 2 items 0xab9b 0xbb00
216 210 104 6 APBOUT 2 items 0xab91 0xbb80
220 214 108 6 APBOUT 2 items 0xab90 0xbb11
224 218 112 6 APBOUT 8 items 0x8201 0x8214 0x8220 0x8231

0x8241 0x8255 0x8264 0x8271
234 228 122 16 SETPHAS90 CH2c 0
237 231 125 59 APChipOUT APaddr 11, reg 50, +logic, 1 byte

max 79, offset 16, value 30
243 237 131 59 APChipOUT APaddr 11, reg 166, -logic, 2 bytes

max 4095, offset 0, value 4095
249 243 137 6 APBOUT 4 items 0xaba8 0xbb2a 0x9b00 0x9b00
255 249 143 6 APBOUT 2 items 0xaba2 0xbbc0
259 253 147 6 APBOUT 2 items 0xabab 0xbb00
263 257 151 6 APBOUT 2 items 0xaba1 0xbb80
267 261 155 6 APBOUT 2 items 0xaba0 0xbb12
271 265 159 6 APBOUT 2 items 0xab48 0xbb01
275 269 163 6 APBOUT 2 items 0xab34 0xbb55
279 273 167 6 APBOUT 2 items 0xab35 0xbb00
283 277 171 6 APBOUT 2 items 0xab4d 0xbb21
287 281 175 6 APBOUT 2 items 0xab43 0xbb01
291 285 179 6 APBOUT 2 items 0xab49 0xbb00
295 289 183 6 APBOUT 2 items 0xab36 0xbb06
299 293 187 6 APBOUT 2 items 0xab9b 0xbb88
303 297 191 6 APBOUT 2 items 0xabab 0xbb88

12.4 Timing Considerations

01-999014-00 A0398 VNMR Pulse Sequences 141

Mostly for AP bus traffic, the code6 (APBOUT) is used. This Acode instruction is
grouped with an Acode word describing the number of AP words that follow (actually,
the number of words minus one) and the AP bus part (shown here as hexadecimal
value) of each FIFO word that will be generated. The code59 (APCOUT) is used
specifically for rf attenuators and power modulators. The waveform generator
instructions (using the AP bus) have a special format.

12.4 Timing Considerations

The timing on the AP bus (or of AP bus FIFO words) is inherent and implicit. No delay
needs to be specified for the AP bus traffic to occur. Code like

delay(tau);
offset(getval("offset1"),TODEV);
pulse(pw,oph);

is acceptable and complete. In general, inherent (hidden) AP delays are negligible
compared to most delays (nD evolution, J-evolution, refocusing), which are mostly are
an order of milliseconds or longer. However, there is a danger of losing coherence due
to chemical shift evolution (precession) in (hypothetical) constructs like the following:

pulse(pw,v1);
delay(tau);
pulse(2.0*pw,v2);
delay(tau);
offset(getval("offset1"),TODEV);
rlpower(tpwr,TODEV);
pulse(pw,v3);

The AP bus delays after the second refocusing delay are over 26 microseconds on a
UNITY with latching in the frequency synthesis (8.05 microseconds on a UNITYplus).
This makes the second refocusing interval longer by an amount that can cause
considerable precession due to chemical shift evolution with large spectral windows.
With any refocusing, make sure the two refocusing delays areabsolutely equal.
Therefore, the hidden AP delays in the above construct should be added to the first
delay or (more correctly) be subtracted from the delay adjacent to the AP events. At
the same time, symmetry with respect to the pre- and post-pulse delays should be
ensured:

rgpulse(pw,v1,rof1,0.0);
delay(tau-rof1);
rgpulse(2.0*pw,v2,rof1,0.0);
delay(tau-rof1-15.05e-6-2.15e-6);
offset(getval("offset1"),TODEV);
rlpower(tpwr,TODEV);
rgpulse(pw,v3,rof1,0.0);

In this example, the programmer has looked up the length of the hidden AP delays in
the tables in the manualVNMR User Programming(note that at the level of the pulse
sequence, all time events are defined in seconds, irrespective of the VNMR parameter
definition involved). Because these delays are specific to certain types of hardware (a
UNITY without latching on the observe PTS synthesizer, in this case), this construct
(and with it the pulse sequence) becomes specific to an instrument and cannot be ported
to other systems without rechecking (and maybe adjusting) the delay corrections.

Chapter 12. AP Bus Traffic

142 VNMR Pulse Sequences 01-999014-00 A0398

Therefore, even if the example of code above is correct in every aspect, it should be
regarded as bad programming practice! VNMR software provides the tools for making
this correct code for every architecture:

rgpulse(pw,v1,rof1,0.0);
delay(tau-rof1);
rgpulse(2.0*pw,v2,rof1,0.0);
delay(tau-rof1-OFFSET_DELAY-POWER_DELAY);
offset(getval(“offset1”), TODEV);
rlpower(tpwr,TODEV);
rgpulse(pw,v3,rof1,0.0);

The file /vnmr/psg/apdelay.h defines a series of such (pseudo) constants
(macros that select the right constant for the current architecture) to be used instead of
fixed delays.Table 7gives a list of the predefined AP delay constants. The AP delays

Table 7. Predefined AP bus delay constants.

Constant Name Comments

POWER_DELAY coarse and fine attenuators with linear amplifiers (power , rlpower)

SAPS_DELAY small-angle phase shifting (xmtrphase , dcplrphase , dcplr2phase ,
dcplr3phase)

OFFSET_DELAY offset , obsoffset , decoffset , dec2offset , dec3offset
(PTS synthesizer without latching)

OFFSET_LTCH_DELAY offset , obsoffset , decoffset , dec2offset , dec3offset
(PTS synthesizer with latching)

WFG_START_DELAY starting one waveform generator (start ofshaped_pulse ,
decshaped_pulse , dec2shaped_pulse , dec3shaped_pulse)

WFG_STOP_DELAY stopping one waveform generator (at end ofshaped_pulse ,
decshaped_pulse , dec2shaped_pulse , dec3shaped_pulse
(0.0 on UNITYplus)

WFG2_START_DELAY starting two waveform generators (e.g., start ofsimshaped_pulse)

WFG2_STOP_DELAY stopping two waveform generators (e.g., at end ofsimshaped_pulse)
(0.0 on UNITYplus)

WFG3_START_DELAY starting three waveform generators (e.g., start ofsim3shaped_pulse)

WFG3_STOP_DELAY stopping three waveform generators (e.g., at end of
sim3shaped_pulse) (0.0 on UNITYplus)

PRG_START_DELAY obsprgon, decprgon , dec2prgon , prg_dec_on

PRG_STOP_DELAY obsprgoff , decprgoff , dec2prgoff , prg_dec_off (0.0 on
UNITYplus)

SPNLCK_START_DELAY start ofspinlock , decspinlock , dec2spinlock , genspinlock

SPNLCK_STOP_DELAY end ofspinlock , decspinlock , dec2spinlock , genspinlock
(0.0 on UNITYplus)

SPN2LCK_START_DELAY start ofgen2spinlock

SPN2LCK_STOP_DELAY end ofgen2spinlock (0.0 on UNITYplus)

GRADIENT_DELAY rgradient , vgradient ; start and end ofzgradpulse

12.4 Timing Considerations

01-999014-00 A0398 VNMR Pulse Sequences 143

associated with the setting of the fine attenuators using thepwrf andrlpwrf
statements (6.45 microseconds on UNITY, 4.6 microseconds on UNITYplussystems)
arenot covered by constants defined in/vnmr/psg/apdelay.h .

Another place it is strongly recommended to compensate for “hidden” AP bus delays
is in the evolution time innD experiments, where constructs like the following one can
be used (at the same time we compensate for the precession during two adjacent 90-
degree pulses):

rgpulse(pw,v1,rof1,0.0);
if ((d2- rof1-SAPS_DELAY-4.0*pw/3.14159) > MINDELAY)

delay(d2-rof1-SAPS_DELAY-4.0*pw/3.14159);
xmtrphase(zero);
rgpulse(pw,v2,rof1,0.0);

Note that UNITY and VXR systems were normally equipped with PTS synthesizers
without latching, and on UNITYplusandUNITYINOVAsystems, OFFSET_DELAY and
OFFSET_LTCH_DELAY have identical values; therefore, using OFFSET_DELAY
covers the vast majority of the hardware configurations.

Note also that status changes can cause hidden AP delays to occur (see the manual
VNMR User Programming).

Chapter 12. AP Bus Traffic

144 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 145

Chapter 13. Acquisition CPU Communication

Apart from the pulse programmer, the acquisition CPU has yet an other channel to
communicate with devices in the spectrometer. It can use one of its RS-232 ports, and
it can use the host I/O bus that is also used to transfer information to and from the pulse
programmer. For the latter, the CPU communicates with the automation control board
(seeChapter 7, “Digital Components,” on page 65).

Because it is not passing the pulse programmer, such communication with acquisition
devices can only be loosely coordinated with the timing of the acquisition. It has to
happen when the FIFO (the pulse programmer) is stopped (or hasn’t been started yet).
This is appropriate for devices that typically have to be set or regulated once per sample
(sample changer, magnet leg pneumatics, etc.), where the reaction time is seconds or
minutes rather than microseconds (VT controller) or that would not possibly change
during the pulse sequence (lock power, gain, phase).

13.1 Regular Pulse Sequence Communication

What exactly are the tasks that are achieved this way? Let’s first list the devices for
VXR and UNITY spectrometers:

• Communication to and from the VT controller is done from one of the two serial
(RS-232) ports of the acquisition CPU (the other port being used for acquisition
diagnostics purposes).

• The automation control board is the communication link to the sample changer
(ASM-100 or SMS), the magnet leg pneumatics (eject/insert, slow drop period,
bearing control), the spinner control circuitry, the lock parameters (power, gain,
phase), and finally the receiver gain setting. This board is connected with the
acquisition CPU via the same bus (the host I/O bus) as the pulse programmer.

On the UNITYplusspectrometer, the tasks that were achieved via these channels have
changed slightly:

• Communication with the VT controller has been moved to the new automation
control board.

• Lock parameters (power, gain, phase) and receiver gain are now set via the AP bus.

• The tasks left for the automation control board include the magnet leg pneumatics
control, and interaction with slow devices that involve two-way communication,
like the sample changer (ASM-100 or SMS) and the VT controller1.

1 The interfaces to the sample changer and the VT controller are standard serial (RS-232) ports. For
setup and diagnostics purposes, these devices can also be operated off-line, with a “dumb” terminal.
Both devices should not be disconnected as long as the software is configured for them; otherwise,
because of the two-way communication scheme, acquisitions can abort with error messages. Before
disconnecting or switching off either of these two devices, always reconfigure VNMR by either using
config , or by settingvttype=0 (to disable VT control) ortraymax='n' (to disable the sample
changer).

Chapter 13. Acquisition CPU Communication

146 VNMR Pulse Sequences 01-999014-00 A0398

13.2 Diagnostics and Error Output

One of the two serial (RS-232) ports on the acquisition CPU can be used for
diagnostics purposes by hooking up a terminal. Different types of information can be
obtained this way, depending on the acquisition bootup selector switch (a thumbwheel
beside the acquisition CPU cardcage on VXR and UNITY spectrometers, or a toggle
switch on the UNITYplus automation control board):

• If the switch is in position “0”, error output is obtained only for serious incidents
(CPU hangup and the like). This information may be valuable to software and
hardware engineers for debugging purposes, but is seldom used in the field.

• If the switch is in position “1” or “2”, continuous diagnostics output is made during
an experiment. Position “1” creates output for terminals with cursor addressing
(typically Televideo 915 or 925 terminals), position “2” is for “dumb” terminals.
With dumb terminals, the output appears line by line; with addressable terminals,
the output is organized as full-page display and is, therefore, easier to read and
follow.

It is important to know that diagnostics (as opposed to error) output is generated during
the housekeeping delay at the end of each scan. If the bootup selector switch is in non-
zero position, the diagnostics output is generated, regardless whether a terminal is
connected or not. This makes the length of the housekeeping delaysstrictly non-
deterministic!

Hooking up a terminal may cause a further slow-down if the communication speed or
the terminal are slow (low baud rate or handshaking, due to a slow terminal). Typically,
with non-zero setting on the bootup selector, only about 5 scans can be performed per
second, because of long housekeeping delays. Position “0” should, therefore, be the
normal setting2.

Even with the acquisition bootup selector switch in position “0”, the residual
housekeeping delay is still in the order of milliseconds. If an acquisition should be
faster than that, this is only possible by doing multi-FID scans (using multiple
acquire calls in the pulse sequence in connection with thenf andcf parameters).
This way, we can acquire several FIDs with a single housekeeping delay. This
technique is used extensively in multiecho imaging experiments.

2 The position of the bootup switch is checked with everygo ; therefore, it isnot required to reboot
the acquisition CPU when changing the bootup selector setting.

01-999014-00 A0398 VNMR Pulse Sequences 147

Chapter 14. Repeating Events

Repetitious events in a pulse sequence may be defined better by C loops, real-time
loops, or hardware loops. Each type of loop is discussed in this chapter.

14.1 C Loops

Any C construct can basically be used in a pulse sequence; therefore it isformally
correct to generate successive, repetitive real-time events in a pulse sequence using a
C loop:

int i;
for (i = 0; i < 1000; i++)
{

rgpulse(pw,zero,rof1,0.0);
rgpulse(pw,one,rof1,0.0);

}

This is not only correct C code, but it also creates correct Acodes that should execute
properly—maybe! What is the problem?

• This construct is extremely inefficient in that it creates huge amounts of Acode
(1000 copies of the same sequence of four time events withHSLINES instructions
in-between), such that there can easily be an Acode overflow (10000 Acode words
per FID maximum).

• Depending on the length of the time events involved (pw androf1 in the above
example), the Acode interpretation could become the rate-determining step, in
which case the sequence would abort with a “FIFO underflow” message.

This does not mean that C loops are “forbidden” in pulse sequences, but in general they
should not be used in sections that generate Acodes. A good example for an exception
to this rule is therelayh pulse sequence that adds a variable number of relay periods
(depending on the parameterrelay) to a standard COSY pulse sequence using a C
loop (seeSection 10.6, “C Constructs and Phase Calculations,” on page 110).

The following code from/vnmr/psg/shape_pulse.c is maybe an interesting
exception. Here, awhile loop construct is used to set a real-time variable (v12) to the
value of a C (integer) variable (npulses), without usinginitval . This is
particularly interesting for external procedures:initval statements reserve a
variable completely and also restrict its use. With this construct, the variable can still
be used elsewhere in the pulse sequence:

assign(zero,v12); /* v12 = 0 */
mult(three,three,v13); /* v13 = 9 (RT increment) */
i = 9; /* i = v13 (C increment) */
while (npulses) /* npulses > 0? */
{

if (npulses >= i) /* difference > increment? */
{

add(v12,v13,v12); /* add increment */
npulses -= i; /* calculate remainder */

}
else /* difference<increment */

Chapter 14. Repeating Events

148 VNMR Pulse Sequences 01-999014-00 A0398

{
divn(v13,three,v13); /* divide increment (RT) */
i /= 3; /* divide increment (C) */

}
}

This construct is not optimized for large numbers, but it shows a way to circumvent
initval calls even in cases where a real-time variable should be initialized to a value
that is parameter-based (i.e., not known prior to the function call).

14.2 Real-Time Loops

A much more adequate way to define repeating events is to usereal-time loops
(sometimes also called “software loops”). Different from C, where there are three
different looping mechanisms (thefor loop, thewhile loop, and thedo . . . while
loop), there is only one mechanisms for generating loops in the Acode interpretation,
as shown in the following example of an explicitly encoded decoupling sequence on
the transmitter channel (WALTZ-16, the text shown includes the table file and a part
of a hypothetical pulse sequence):

t1 += 2 2 0 0 2 0 2 0 2 2 0 2
0 0 2 2 0 2 0 2 0 0 2 0
0 0 2 2 0 2 0 2 0 0 2 0
2 2 0 0 2 0 2 0 2 2 0 2

initval(tau/(16.0*6.0*pw),v10); /* # WALTZ cycles */
dbl(two,v12); /* 4 */
mult(v12,v12,v12); /* 16 = composite pulses per cycle */
xmtron();
loop(v10,v11);

loop(v12,v13);
txphase(t1);
delay(pw);
txphase(t1);
delay(2.0*pw);
txphase(t1);
delay(3.0*pw);

endloop(v13);
endloop(v11);
xmtroff();

In this example, the number of WALTZ loop cycles (v10) is calculated first. The
WALTZ sequence itself is constructed using a nested loop of composite pulses,
whereby the pulse phases are taken from an autoincrementing table. Real-time loops
can easily be nested over to several levels. The corresponding Acode instruction
segment looks as follows:

314 308 202 33 DBLFUNC two v12
317 311 205 31 MULtFUNC v12 v12 v12
321 315 209 150 HighSpeedLINES TXON
324 318 212 39 ASSIGNFUNC zero v11
327 321 215 42 IFMInusFUNC v10 one Offset = 315
331 325 219 39 ASSIGNFUNC zero v13
334 328 222 42 IFMInusFUNC v12 one Offset = 309
338 332 226 105 TABLE 227 size 48,autoinc 1, divn ret 1,ptr 0

2 2 0 0 2 0 2 0
 2 2 0 2 0 0 2 2
 0 2 0 2 0 0 2 0

14.2 Real-Time Loops

01-999014-00 A0398 VNMR Pulse Sequences 149

 0 0 2 2 0 2 0 2
 0 0 2 0 2 2 0 0
 2 0 2 0 2 2 0 2
391 385 279 106 TASSIGN table 227 tblrt
394 388 282 16 SETPHAS90 CH1 tblrt
397 391 285 151 EVENT1_TWRD 8.000 usec
399 393 287 106 TASSIGN table 227 tblrt
402 396 290 16 SETPHAS90 CH1 tblrt
405 399 293 151 EVENT1_TWRD 16.000 usec
407 401 295 106 TASSIGN table 227 tblrt
410 404 298 16 SETPHAS90 CH1 tblrt
413 407 301 151 EVENT1_TWRD 24.000 usec
415 409 303 27 INCRFUNC v13
417 411 305 42 IFMInusFUNC v13 v12 Offset = 226
421 415 309 27 INCRFUNC v11
423 417 311 42 IFMInusFUNC v11 v10 Offset = 219
427 421 315 150 HighSpeedLINES (void)

The two arguments specified to theloop statement specify the loopcount (v10 and
v12 in this example) and the loopcounter (the variable that is used to count the loop
cycles). The loop count variable itself is not altered by the loop construct. The loop
counter variable is also supplied to theendloop statement—mainly to define which
loop statement theendloop call refers to (it also makes it easier to read the code and
helps avoiding mistakes). Strictly speaking, the argument toendloop isn’t really
necessary, because loops always must beeither sequential or hierarchically nested: it
doesn’t make sense to start a loop inside an other loop, but to terminate it outside.

The Acode interpreter works on a more primitive level than the pulse sequence
language itself. First, the loop counter (v11 for the outer loop,v13 for the inner loop)
is initialized to zero. Then, the system checks whether “loop counts - one” is negative
(i.e., the loop count is zero), in which case the entire loop segment is skipped (jump to
offset 315 for the outer loop, to offset 309 for the inner loop). At the end of each loop
cycle (supposing a non-zero loop count was specified), the loop counter is
incremented, and if “loop counter - loop count” is negative (i.e., “loop counter < loop
count”), abranch to the first instruction inside the loop is performed (jump to offset
226 for the inner loop, to offset 219 for the outer loop).

There are some principal limitations with the above implementation of a delay with
WALTZ decoupling. The length of the delay has a distinct “granularity”, in that it is a
multiple of the duration of a WALTZ cycle1. Also, the WALTZ modulation can only
run synchronously, and the only way to program events (e.g.: pulses) simultaneous to
this delay is to break up the delay into several segments, with the additional events in-
between. Of course, this would even increase problems with the “duration granularity”.

In general, the above implementation of an explicit modulation scheme is quite elegant
and efficient (in terms of Acode space usage); however, it may suffer from some
further limitation—through the software loop we feed the pulse programmer with a
large number of FIFO words. If the events inside the loop are now all very short (a few
microseconds only), the Acode interpretation may become the rate-determining step,
and the system may run into a FIFO underflow problem (the sequence would abort at
that point). The real-time loop is a very efficient, flexible and elegant tool, but it may
not be suited for very fast loops as they are needed in many cases like CRAMPS and

1One could in principle always round down the WALTZ loop cycles and perform an additional delay
to fill the remainder such that the total delay is accurate, but then that remainder would not be
properly modulated (unless more complex coding is used).

Chapter 14. Repeating Events

150 VNMR Pulse Sequences 01-999014-00 A0398

similar experiments. Note also that the loop count is a 16-bit real-time variable, and the
number of loop cycles is therefore limited to 32767.

As shown in the above example, a real-time loop cycle may include phase changes (and
phase calculations). It could even include real-timeif statements (seeSection 15.2,
“Real-Time Decisions,” on page 160). The loop cycles can therefore be variable not
only in the phase, but even in the number and kind of events inside the loop.

14.3 Hardware Loops

The hardware loop (i.e., the possibility to cycle words in the loop FIFO of the pulse
programmer) was created to compensate for the basic deficiency of real-time loops: the
lack of ultimate speed (i.e., to cover the difference between the speed of Acode
interpretation and the possible speed of propagation of FIFO words in the pulse
programmer). Typical examples for experiments that require the hardware looping
capability of the pulse programmer are multipulse and CRAMPS type of experiments
such as MREV-8 or BR-24 (a part of the MREV-8 sequence is shown here):

pulsesequence()
{

double tau = getval("tau"),
dtau = tau - pw - rof1 - rof2;

...
initval(np/2.0, v9);
...
delay(d1);
rgpulse(pw,v4,rof1,rof2); /* prep pulse */
starthardloop(v9);

delay(dtau);
rgpulse(pw,v4,rof1,rof2); /* x */
delay(dtau);
rgpulse(pw,v3,rof1,rof2); /* -y */
delay(tau+dtau);
rgpulse(pw,v1,rof1,rof2); /* y */
delay(dtau);
rgpulse(pw,v2,rof1,rof2); /* -x */
delay(tau+dtau-2.0e-7);
acquire(2.0,2.0e-7); /* acquire */
rgpulse(pw,v2,rof1,rof2); /* -x */
delay(dtau);
rgpulse(pw,v3,rof1,rof2); /* -y */
delay(tau+dtau);
rgpulse(pw,v1,rof1,rof2); /* y */
delay(dtau);
rgpulse(pw,v4,rof1,rof2); /* x */
delay(tau);

endhardloop();
}

In the case of the MREV-8 sequence, a series of 8 pulses and 9 delays (typically 25
single-precision time events in total, withrof2 set to zero) is insertedinto each
sampling interval(the dwell time being 10 to 100 microseconds). The BR-24 multi-
pulse experiment even asks for 24 pulses and 25 delays (73 time events in total) to be
squeezed into the same time interval. All these time events typically are on the order of
1 to a few microseconds. There would be no chance for this experiment to work with a
soft loop, but for the pulse programmer with its hardware looping capability this is no

14.3 Hardware Loops

01-999014-00 A0398 VNMR Pulse Sequences 151

problem, as long as the number of events in the loop doesn’t exceed the number of
words in the loop FIFO. Older systems with output boards (63-word FIFO) cannot
perform BR-24 experiments, but all newer systems (using acquisition control boards
and pulse sequence control boards) should have no limitation in the area of multipulse
experiments.

Hardware loops have some inherent limitations:
• The length of a hardware loop is limited to the size of the loop FIFO: 63 FIFO

words for output boards, 1024 FIFO words for acquisition control boards, and
2048 FIFO words for pulse sequence control boards (real-time or software loops
can be as big as an entire code segment). When calculating the number of FIFO
words in a hardware loop, be aware of double-precision time events. The manual
VNMR User Programmingcontains detailed lists on the number of FIFO words
involved in the statements that use the AP bus.

• All loop cycles are identical (in real-time or software loops, real-time decisions
can be made inside the loop, and phase can be altered either by real-time
calculations, by using auto-incrementing tables, or by recalculating table indices).

• Hardware loops can not be nested, because only one loop is implemented in real
hardware (the loop FIFO of the pulse programmer).

• The limitation in the number of loop cycles is the same as for real-time loops,
because the (hardware) loop counter is also a 16-bit number (i.e.,the maximum
number of loop cycles is 32767).

Multiple hardware loops can be used sequentially. If hardware loops are placed back-
to-back (no time event in-between), there is a restriction in the duration of all but the
last (back-to-back) hardware loops, in that the total duration of all FIFO words in a loop
must beat least0.4 microseconds for each FIFO word in the loop that follows.

With output boards, there are additional restrictions and limitations in that there must
be at least a single time event (e.g., a delay of 0.2 microseconds) between any two
hardware loops. A hardware loop cannot be shorter than 6.3 microseconds per cycle
(the “fall-through time” of the loop FIFO), and with multiple hardware loops following
each other, the length of all but the first loop cycles must be at least 80 to 100
microseconds. Also, try to limit the number of events between sequential hardware
loops (but keep at least one event in-between); otherwise, it is possible that the loop
FIFO runs empty when starting the second loop. Due to the limitation in pre-loop FIFO
size, there may not be enough space to pre-load the second loop. Explicit hardware
looping is not available on Gemini spectrometers2.

Note that also the implicit acquisition and an explicit acquisition over the full FID3 is
performed using hardware looping (seeChapter 18, “Acquiring Data,” on page 205).

There are also someprogramming restrictionswith respect to hardware loops: the use
of real-time math and of the use of autoincrementingtables is not permitted inside
hardware loops. This is mainly because it would make programmers believe that real-
time math and the incrementation of table pointers also continues during the execution
of hardware loops. In addition to that,real-time decisions (seeSection 15.2, “Real-

2 The Gemini pulse programmer is not equipped with a pre-loop FIFO; therefore, no events can be
pre-loaded after a hardware loop. The consequence is that only one hardware loop per pulse sequence
can be performed at the very end of the sequence. This almost by definition is the acquisition loop.
3 More exactly, theacquire statement for more than two data points (per call) outside a hardware
loop.

Chapter 14. Repeating Events

152 VNMR Pulse Sequences 01-999014-00 A0398

Time Decisions,” on page 160) andreal-time loopsare not permitted inside hardware
loops. This mostly has to do with the way hardware loops are programmed in Acode4.

Therefore, C constructs (loops and calls to statements) are the only way to simplify the
coding of hardware loops at C level. This also implies that hardware loops may not be
very efficient in terms of Acode space. Let’s see how the WALTZ-16 decoupling
sequence would be coded in a pulse sequence—the same or similar types of constructs
have been used in explicitly programmed MLEV-16, MLEV-17, and similar
modulation schemes.

#include <standard.h>

waltza()
{

txphase(two); delay(3.0*pw); txphase(zero); delay(4.0*pw);
txphase(two); delay(2.0*pw); txphase(zero); delay(3.0*pw);
txphase(two); delay(1.0*pw); txphase(zero); delay(2.0*pw);
txphase(two); delay(4.0*pw); txphase(zero); delay(2.0*pw);
txphase(two); delay(3.0*pw);

}

waltzb()
{

txphase(zero); delay(3.0*pw); txphase(two); delay(4.0*pw);
txphase(zero); delay(2.0*pw); txphase(two); delay(3.0*pw);
txphase(zero); delay(1.0*pw); txphase(two); delay(2.0*pw);
txphase(zero); delay(4.0*pw); txphase(two); delay(2.0*pw);
txphase(zero); delay(3.0*pw);

}

pulsesequence()
{

status(A);
delay(d1);

status(B);
rgpulse(pw,zero,rof1,0.0);
initval(getval("tau")/(16.0*6.0*pw),v10);
xmtron();
starthardloop(v10);

waltza(); waltzb(); waltzb(); waltza();
endhardloop();
xmtroff();

status(C);
pulse(pw,oph);

}

We could of course have followed the coding scheme of the real-time loop solution and
split up the sequence in simple composite (90-180-270) pulses. As mentioned before,
the hardware loop solution is not very efficient in Acode space usage, as you can see

4 The number of FIFO words inside a hardware loop (which is an argument to theHDLOOP Acode
instruction) is calculated by the time when the Acode is built (i.e., when typinggo), and not during
execution time.

14.3 Hardware Loops

01-999014-00 A0398 VNMR Pulse Sequences 153

from the printout below5 (what really counts, of course, is the experimental flexibility,
not the ultimate level of Acode economy):

317 311 205 0 NO_OP
321 315 206 67 HWLOOP with acq interrupt 36 words v10
322 316 210 16 SETPHAS90 CH1 two
325 319 213 151 EVENT1_TWRD 24.000 usec
327 321 215 16 SETPHAS90 CH1 zero
330 324 218 151 EVENT1_TWRD 32.000 usec
332 326 220 16 SETPHAS90 CH1 two
335 329 223 151 EVENT1_TWRD 16.000 usec
337 331 225 16 SETPHAS90 CH1 zero
340 334 228 151 EVENT1_TWRD 24.000 usec
342 336 230 16 SETPHAS90 CH1 two
345 339 233 151 EVENT1_TWRD 8.000 usec
347 341 235 16 SETPHAS90 CH1 zero
350 344 238 151 EVENT1_TWRD 16.000 usec
352 346 240 16 SETPHAS90 CH1 two
355 349 243 151 EVENT1_TWRD 32.000 usec
357 351 245 16 SETPHAS90 CH1 zero
360 354 248 151 EVENT1_TWRD 16.000 usec
362 356 250 16 SETPHAS90 CH1 two
365 359 253 151 EVENT1_TWRD 24.000 usec
367 361 255 16 SETPHAS90 CH1 zero
370 364 258 151 EVENT1_TWRD 24.000 usec
372 366 260 16 SETPHAS90 CH1 two
375 369 263 151 EVENT1_TWRD 32.000 usec
377 371 265 16 SETPHAS90 CH1 zero
380 374 268 151 EVENT1_TWRD 16.000 usec
382 376 270 16 SETPHAS90 CH1 two
385 379 273 151 EVENT1_TWRD 24.000 usec
387 381 275 16 SETPHAS90 CH1 zero
390 384 278 151 EVENT1_TWRD 8.000 usec
392 386 280 16 SETPHAS90 CH1 two
395 389 283 151 EVENT1_TWRD 16.000 usec
397 391 285 16 SETPHAS90 CH1 zero
400 394 288 151 EVENT1_TWRD 32.000 usec
402 396 290 16 SETPHAS90 CH1 two
405 399 293 151 EVENT1_TWRD 16.000 usec
407 401 295 16 SETPHAS90 CH1 zero
410 404 298 151 EVENT1_TWRD 24.000 usec
412 406 300 16 SETPHAS90 CH1 zero
415 409 303 151 EVENT1_TWRD 24.000 usec
417 411 305 16 SETPHAS90 CH1 two
420 414 308 151 EVENT1_TWRD 32.000 usec
422 416 310 16 SETPHAS90 CH1 zero
425 419 313 151 EVENT1_TWRD 16.000 usec
427 421 315 16 SETPHAS90 CH1 two
430 424 318 151 EVENT1_TWRD 24.000 usec
432 426 320 16 SETPHAS90 CH1 zero
435 429 323 151 EVENT1_TWRD 8.000 usec
437 431 325 16 SETPHAS90 CH1 two
440 434 328 151 EVENT1_TWRD 16.000 usec
442 436 330 16 SETPHAS90 CH1 zero
445 439 333 151 EVENT1_TWRD 32.000 usec
447 441 335 16 SETPHAS90 CH1 two
450 444 338 151 EVENT1_TWRD 16.000 usec
452 446 340 16 SETPHAS90 CH1 zero
455 449 343 151 EVENT1_TWRD 24.000 usec
457 451 345 16 SETPHAS90 CH1 two

5 The WALTZ-16 solution using real-time loops shown previously (seeSection 14.2, “Real-
Time Loops,” on page 148) required 113 Acode words (226 bytes). The coding with a hardware
loop shown here takes up 184 Acode words or 368 bytes. This isnot necessarily a typical example.

Chapter 14. Repeating Events

154 VNMR Pulse Sequences 01-999014-00 A0398

460 454 348 151 EVENT1_TWRD 24.000 usec
462 456 350 16 SETPHAS90 CH1 zero
465 459 353 151 EVENT1_TWRD 32.000 usec
467 461 355 16 SETPHAS90 CH1 two
470 464 358 151 EVENT1_TWRD 16.000 usec
472 466 360 16 SETPHAS90 CH1 zero
475 469 363 151 EVENT1_TWRD 24.000 usec
477 471 365 16 SETPHAS90 CH1 two
480 474 368 151 EVENT1_TWRD 8.000 usec
482 476 370 16 SETPHAS90 CH1 zero
485 479 373 151 EVENT1_TWRD 16.000 usec
487 481 375 16 SETPHAS90 CH1 two
490 484 378 151 EVENT1_TWRD 32.000 usec
492 486 380 16 SETPHAS90 CH1 zero
495 489 383 151 EVENT1_TWRD 16.000 usec
497 491 385 16 SETPHAS90 CH1 two
500 494 388 151 EVENT1_TWRD 24.000 usec
502 496 390 150 HighSpeedLINES (void)

TheHDLOOPinstruction that starts the hardware loop in the Acode is followed by the
number of FIFO words inside the loop (not the number of Acode words!), and the loop
count (a real-time variable). Theendhardloop statement does not generate an Acode
instruction by itself, but it causes the number of loop FIFO words to be written into the
HDLOOP instruction.

01-999014-00 A0398 VNMR Pulse Sequences 155

Chapter 15. Decisions

The use of C-based (or previously Pascal-based) decisions in pulse sequences has a
long tradition in Varian pulse sequences.

15.1 Decisions and Branchings in C

C-based decisions are based on both qualitative as well as quantitative checks. They
are used to increase the reliability of many pulse sequences, to make them easier to use,
and to increase their flexibility.

Aborting a Sequence in Case of a Improperly Set Parameter

Aborting a sequence can involve duty cycle calculations and checking, checks for
parameter settings that could possibly damage the spectrometer hardware (like rf coils
or amplifiers in the case of excessive rf power), and avoiding “impossible” parameter
settings (like trying to decouple a 2D spectrum with antiphase magnetization). The
following example is from the HMQC pulse sequence:

if ((dm[A] == 'y') || (dm[B] == 'y'))
{

printf("DM must be set to either 'nny' or 'nnn'.\n");
abort(1);

}

Standard output created by theprintf function shows up in the VNMR text window.
Theabort function terminates thego command and the Acode generation through
the compiled pulse sequence, and Acode generated up to that point is discarded.

Ensuring Compatibility with Spectrometer Hardware

Many pulse sequences contain statements that can only be used on certain types of
spectrometer hardware. Therefore, many sequences include constructs such as:

if (newtrans)
{

stepsize(base, TODEV);
xmtrphase(v1);

}
else

phaseshift(base,v1,TODEV);

Although programmers prefer to write “universal” pulse sequences, it would often
make a pulse sequence very complicated if we tried to cover the entire range of
spectrometers that can be driven by VNMR software. Thus, some sequences use
constructs such as the following:

if (!newdec)
{

printf("This sequence requires direct synthesis RF \
on DEC.\n");

abort(1);
}

Chapter 15. Decisions

156 VNMR Pulse Sequences 01-999014-00 A0398

As shown inTable 8, there are a number of predefined flag variables that can be used
in such constructs. Their definitions can be found in the header file
/vnmr/psg/acqparms.h .

Issuing Warning Messages in the Case of Questionable Parameter Settings

Sometimes it may not be necessary to abort the pulse sequence, but it is perhaps
adequate to have the sequence display a warning message:

if ((newtransamp) && (rof1 < 9.9e-6) && (ix == 1))
printf("Warning: ROF1 is less than 10 usec.\n");

In the case of arrayed and multidimensional experiments, it is strongly recommended
to only print a warning for the first increment; otherwise, the VNMR text window may
be flooded with error messages. Of course, there may be cases where a check should
be performed for each increment. The above example should just remind the operator
thatrof1 is below its normal value for linear amplifiers (which could result in pulse
amplitude instabilities).

Turning On or Off Pulse Sequence Features

A very popular and powerful feature in VNMR pulse sequences is the use offlagsfor
enabling and disabling individual pulse sequence statements. This allows combining
many pulse sequences (in the sense of a defined sequence of pulses and delays) into a
single pulse sequence program. There are numerous examples of pulse sequences with
additional experimental flexibility through C decisions, like the HMQC sequence with
its optional nulling of protonated signals through a BIRD inversion pulse (simplified
coding), such as the following:

if ((null > 0.0) && (mbond[A] == 'n'))
{

Table 8. PSG hardware flag and configuration variables

Flag Variable Meaning / Function

newtrans
True if system equipped with direct synthesis (as opposed to broadband
or fixed frequency) rf on observe channel.

newdec
True if system equipped with direct synthesis (as opposed to broadband
or fixed frequency) rf on (first) decoupler channel.

newtransamp
True if system equipped with linear (as opposed to class C) amplifiers on
observe channel.

newdecamp
True if system equipped with linear (as opposed to class C) amplifiers on
(first) decoupler channel.

vttype 0 = none, 1 = Varian, 2 = Oxford

H1freq Proton frequency of instrument: 200, 300, 400, 500, 600, 750

automated
True if system has computer-controlled lock, gain, and decoupler power.
This flag is left over from old software; all spectrometers running
VNMR are automatic.

fifolpsize
Size of loop FIFO: 63 (output board), 1024 (acquisition control board),
or 2048 (pulse sequence control board).

NUMch Number of rf channels that are configured: 2, 3, or 4.

15.1 Decisions and Branchings in C

01-999014-00 A0398 VNMR Pulse Sequences 157

rgpulse(pw,v1,rof1, 0.0);
delay(bird-rof1);
decrgpulse(pwx,v9,rof1,0.0);
simpulse(2.0*pw,2.0*pwx,v1,v1,1.0e-6,0.0);
decrgpulse(pwx,v9,1.0e-6,0.0);
delay(bird-rof1);
rgpulse(pw,v2,rof1,0.0);
hsdelay(null);

}

The second conditional in this example ensures than BIRD nulling is not used when
the long-range option (mbond='y') is used.

Other examples include sequences likehetcor (with a built-in long-range option and
the possibility to suppress proton multiplets using thehmult='n' , which causes an
inversion pulse to be replaced by a BIRD pulse), and many others. Sometimes, numeric
parameters are used to make decisions (like checking whether the delaynull is non-
zero in the above example), but mostly such switches are based on flag parameters
(such asmbond andhmult in the above examples).

Dynamically Arranging the Sequence of Events

Sometimes it is necessary to rearrange the sequence of events depending on the value
of a parameter. One example is found in the HMQC pulse sequence, where there is a
180-degree proton pulse in the middle of the evolution time. The principal sequence of
events is as follows:

decpulse(pwx,v3);
delay(d2/2.0-rof1);
pulse(2.0*pw,v4);
delay(d2/2.0-rof2);
decpulse(pwx,v5);

This constructlookscorrect, but it has several deficiencies. The duration of the central
pulse is not compensated for in the evolution time, and the precession during the 90-
degree pulses surrounding the evolution time is not taken into account (seeChapter 19,
“Multidimensional Experiments,” on page 215). Additionally, the first increment the
delayd2 is zero, giving an error message about negative delays.

Apart from that (which is just a programming problem), the first increment has a
considerable gap between the two 90-degree X-pulses, which causes problems in the
first trace and baseline distortions in the final 2D spectrum. In order to do it properly,
the pulses on both rf channels should be performed on top of each other for the first
increment. Unfortunately, the two X-pulses don’t have the same phase; therefore, a
singlesimpulse statement cannot be used. One can minimize interpulse dead times
by keeping the amplifiers unblanked for parts of a pulse sequence:

corr = 2.0*pwx/3.1416 + pw + 1.0e-6;
if (d2/2.0 > corr)
{

rcvroff();
decrgpulse(pwx,v3,rof1,0.0);
delay(d2/2.0-corr);
rgpulse(2.0*pw,v4,1.0e-6,0.0);
delay(d2/2.0- corr);
decrgpulse(pwx,v5,1.0e-6,0.0);
rcvron();

}
else

Chapter 15. Decisions

158 VNMR Pulse Sequences 01-999014-00 A0398

{
simpulse(pw,pwx,v4,v3,rof1,0.0);
simpulse(pw,pwx,v4,v5,1.0e-6,0.0);

}

This is a simplified solution: Strictly speaking, this is still not perfect. Ifpwx is less
thanpw, there is still a gap between the X-pulses, but with most configurations used for
this type of experiment, the X-pulses are longer than the proton pulses, and in this case
the above solution is accurate for the first increment. Also, increments other than the
first one can fall into a domain where the X pulses overlap with the proton 180, which
may require some modifications to the above algorithm.

An interesting example is the combination of two pulse sequences into a single one—
for the same experiment. The example shown here is a constant-time heteronuclear
correlation experiment, where a simultaneous inversion pulse moves within a fixed
time interval1. Such experiments often suffer from limited resolution because the
moving pulse at some point (increment) reaches the end of the fixed delay. In the
example shown here, the fixed interval contains a BIRD pulse, which would normally
set a limit to the number of increments. Thanks to use of C decisions (and to the fact
that an Acode segment is calculated individually for each 2D increment), we can apply
the trick of letting the simultaneous inversion “jump over the BIRD pulse” and
continue behind it up to the very end of the fixed delay, which doubles the achievable
resolution in f1 (only relevant parts of the pulse sequence are shown here):

decpulse(pp,t1); /* excitation pulse */
if (d2/2.0 < d3)
{

if (d2/2.0 > rof1) /* start of evolution time */
delay(d2/2.0-rof1);

rgpulse(pw,t1,rof1,0.0); /* 180 H + 180 X */
simpulse(2.0*pw,2.0*pp,t2,t3,1.0e-6,0.0);
rgpulse(pw,t1,1.0e-6,0.0);
if (d3 - d2/2.0 > rof1)

delay(d3-d2/2.0-rof1);
decrgpulse(pp,t1,rof1,0.0); /* BIRD-pulse */
delay(tau-rof1);
rgpulse(pw,t1,rof1,0.0);
simpulse(2.0*pw,2.0*pp,t2,t4,1.0e-6,0.0);
rgpulse(pw,t1,1.0e-6,0.0);
delay(tau-rof1);
decrgpulse(pp,t1,rof1,0.0);
delay(d3 -tau -rof1);

}

else
{

delay(d3-rof1);
decrgpulse(pp,t1,rof1,0.0); /* BIRD-Pulse */
delay(tau-rof1);
rgpulse(pw,t1,rof1,0.0);
simpulse(2.0*pw,2.0*pp,t2,t4,1.0e-6,0.0);
rgpulse(pw,t1,1.0e-6,0.0);
delay(tau-rof1);
decrgpulse(pp,t1,rof1,0.0);

1 M. Perpick-Dumont, W.F. Reynolds & R. Enriquez,Magn. Reson. Chem.26, 358 (1988); W.F.
Reynolds, S. McLean, M. Perpick-Dumont & R. Enriquez,Magn. Reson. Chem.26, 1068 (1988).

15.1 Decisions and Branchings in C

01-999014-00 A0398 VNMR Pulse Sequences 159

delay(d2/2.0-d3-rof1);
rgpulse(pw,t1,rof1,0.0); /* 180 H + 180 X */
simpulse(2.0*pw,2.0*pp,t2,t3,1.0e-6,0.0);
rgpulse(pw,t1,1.0e-6,0.0);
delay(2.0*d3-d2/2.0-tau-rof1);

}
simpulse(pw,pp,t1,t5,rof1,0.0); /* 90 H + 90 X */
delay(tau/2.0);

Implicit Decisions

Of course, decisions are not limited to the pulse sequence itself. Decisions are involved
internally in most pulse sequence statements, whether to do the right thing for the given
hardware or to avoid unnecessary Acode and FIFO words (like time events with zero
duration).

Decisions Set by the status Statement

Another class of decisions is hidden in thestatus statement (see also“Implicit
Gating” on page 53). Most pulse sequences are divided into several basic sections by
insertingstatus calls at suitable points in the pulse sequence:

...
status(A);

hsdelay(d1);
status(B);

pulse(p1,zero);
hsdelay(d2);
pulse(pw,oph);

status(C);
}

This is a simplified version of thes2pul pulse sequence. It is split into three basic
sections: statusA, which includes the relaxation period (d1); statusB, which includes
the two pulses and the evolution time (d2); and statusC, which is valid during the
acquisition time. The argument to the status function is a simple integer:A is defined
as 0,B is defined as 1, etc., up toZ, which is defined as 25.status(A) simply means
that during the following time events, the first (“0th” in C syntax) character in
predefined multifield flag variables (dm, dm2, dm3, dmm, dmm2, dmm3, homo, homo2,
homo3, andhs) is active up to the nextstatus call with a different value in the
argument. These flag variables can be up to 255 characters long (beyond the predefined
constantsA to Z), but in practice only 3 to 5 fields are used.

These multifield flags are a very easy way of controlling the gating of transmitters and
modulation modes, and enabling or disabling homospoil pulses inhsdelay calls,
which significantly enhances the flexibility of most pulse sequences.

The definition is that if more fields are addressed in the pulse sequence than there are
characters in a flag string, the last character is propagated as much as necessary (i.e.,
dm='ny' is the equivalent todm='nyyyyyyyyyyy...'). At the end of a scan (and
at the end of the experiment), the systemimplicitly returns tostatus(A) . This is
most relevant to experiments that use high-power decoupling, or decoupling during the
acquisition in general. For example, when usings2pul with decoupling, it is better not
to usedm='y' , but ratherdm='nyy' , even if delayd1 is not used. This switches off
the decoupler at the end of the experiment and avoids sample heating due to the rf
power fed into the probe continuously. If a relaxation delay is to be used withs2pul

Chapter 15. Decisions

160 VNMR Pulse Sequences 01-999014-00 A0398

(andp1=0), we can used2 instead ofd1 , anddm='nyy' for full decoupling or
dm='nyn' for gated decoupling.

Note that with some configurations (UNITYplus and UNITY spectrometers), the
status statement may not just change some fast bits (status lines), but may involve
AP bus FIFO words (depending on which flags change at that point) that take a finite
time (seeChapter 12, “AP Bus Traffic,” on page 137).

Checking Flag Parameters

Simple flag tests are easy. Constructs likeif (dm[A] == 'y') are adequate in most
cases and work also with flags that are newly created for a specific pulse sequence (like
if (mbond[A] == 'n') in a previous example in this chapter). Problems occur
when flag fieldsother than the firstshould be tested:if (dm[C] == 'y') sounds like
a correct test—but what if the parameterdmhas been set to'y' ? In this case,dm[C]
returns a random value (dm[B] would return a null character, but still not'y' !), and
the test would fail, because the test returnsFALSEinstead ofTRUE. A proper construct
for testing flag fields, other than the first one, is not that simple:

int flagsize,
index = statusindx;

char xflag[MAXSTR];
getstr("xflag",xflag);
...
flagsize = strlen(xflag);
if (index >= flagsize)

index = flagsize - 1;
if (xflag[index] == 'y')

...

The variablestatusindx is the currently active status, as set by thestatus
statement. Another solution would be to ensure (by means of a macro or parameter
entry restrictions) that this particular flag has the required length. Fortunately, the vast
majority of user-created flags use only one field.

15.2 Real-Time Decisions

Decisions that need to be made from transient to transient cannot be programmed in C,
because only one Acode segment is generated per FID, which performs all scans. In
such a case, we need real-time decisions—decisions made by the Acode interpreter.

Programming Real-Time Decisions

Suppose that in a particular sequence, with every odd scan we wanted to add a
refocusing period to a pulse sequence. This could be achieved as follows:

mod2(ct,v10); /* 0 1 0 1 */
ifzero(v10); /* every odd scan (ct=0,2,4...) */

delay(tau-rof1);
rgpulse(pw,v1,rof1,0.0);
delay(tau);

endif(v10);

There is only one logical test for real-time decisions: the test whether a real-time
variable (v10 in this case) is zero. To fulfil this condition for every odd scan, we

15.2 Real-Time Decisions

01-999014-00 A0398 VNMR Pulse Sequences 161

calculatect mod 2 . The above construct generates the following Acode (pw=7,
tau=1/140 , rof1=10):

298 292 186 36 MOD2FUNC ct v10
301 295 189 41 IFNotZeroFUNC v10 zero Offset = 218
305 299 193 152 EVENT2_TWRD 7 msec + 133 usec
308 302 196 16 SETPHAS90 CH1 v1
311 305 199 150 HighSpeedLINES RXOFF
314 308 202 151 EVENT1_TWRD 10.000 usec
316 310 204 150 HighSpeedLINES RXOFF TXON
319 313 207 151 EVENT1_TWRD 7.000 usec
321 315 209 150 HighSpeedLINES RXOFF
324 318 212 150 HighSpeedLINES (void)
327 321 215 152 EVENT2_TWRD 7 msec + 143 usec
330 324 218 150 HighSpeedLINES (void)

The ifzero statement generates anIFNotZeroFUNC instruction in the Acode,
which performs a jump to address 218 (i.e., after theendif statement) if the variable
(v10 in this case) is non-zero. Theendif statement itself does not generate Acode,
but it is used to determine the jump address in theIFNotZeroFUNC instruction.

The argument withendif is not used in the Acode, but it serves to associate the
endif with the correspondingifzero call: ifzero constructs can also be nested
(see also the last example inSection 10.4, “Real-Time Logical Decisions,” on page
106), and in such cases the argument is an easy way for the software to “know” in
which IFNonZeroFUNC instruction it has to set the jump address2.

Mostly in the case of such conditional events, we would like to ensure that all scans are
performed with exactly the same overall timing, to avoid adding up FIDs with different
phase and amplitude. In this case, theelsenz function is also used between the
ifzero and theendif calls:

mod2(ct,v10); /* 0 1 0 1 */
ifzero(v10); /* every odd scan (ct=0,2,4..) */

rgpulse(pw/2.0,v1,rof1,0.0);
elsenz(v10); /* every even scan (ct=1,3,5..) */

delay(pw/2.0+rof1);
endif(v10);

In this example, we are performing a 45-degree pulse with every odd scan, and with
the even scan numbers this pulse is replaced by a delay. Of course, the delay length
must not only include the pulse length, but also any pre- and post-pulse delay included
with thergpulse statement (beware of implicit delays in statements likepulse !)3.

In the Acode, the above construct looks as follows:

352 346 240 36 MOD2FUNC ct v10
355 349 243 41 IFNotZeroFUNC v10 zero Offset = 268
359 353 247 16 SETPHAS90 CH1 v1
362 356 250 150 HighSpeedLINES RXOFF

2 Strictly speaking, this is not true because it is always clear whichifzero andendif belongs to,
as long as theifzero ... endif constructs are hierarchically stacked, and non-hierarchical stacking
(e.g.,ifzero(v1) ... ifzero(v2) ...endif(v1) ...endif(v2)) doesn’t make sense at all (the
same is true for real-time looping).
3To be accurate, we cannot simply replace a pulse with a delay of the same length, since we also need
to take into account the precession during the pulse. This can be done using a correction term that
shortens the delay. Ifpw is a 90-degree pulse (pw/2.0 therefore 45 degrees), the accurate delay
length ispw/2.0 - pw/3.1416 + rof1 (see alsoChapter 19, “Multidimensional
Experiments,” on page 215).

Chapter 15. Decisions

162 VNMR Pulse Sequences 01-999014-00 A0398

365 359 253 151 EVENT1_TWRD 10.000 usec
367 361 255 150 HighSpeedLINES RXOFF TXON
370 364 258 151 EVENT1_TWRD 3.500 usec
372 366 260 150 HighSpeedLINES RXOFF
375 369 263 150 HighSpeedLINES (void)
378 372 266 20 BRANCH Offset 270
380 374 268 151 EVENT1_TWRD 13.500 usec
382 376 270 150 HighSpeedLINES (void)

Theelsenz statement again takes the same argument as theifzero andendif calls
(the real-time variablev10 in this case). It terminates theif part of the construct with
a BRANCH (jump) instruction and sets the jump address in theIFNotZeroFUNC
instruction to the first instruction after theif part (after theBRANCHinstruction). The
endif statement in this case sets the jump address in theBRANCH instruction at the
end of theif part.

Real-time decisions can also be used in real-time math for the calculation of complex
phase cycles (seeChapter 10, “Phase Calculations,” on page 95). A table index should
not be incremented with each scan, but perhaps with every fourth scan only.

Generating the Flag Variable

In most cases, the flag variable for real-time decisions is generated using some kind of
(real-time) modulo statement. To generate a flag variable with a period ofn scans, one
has to take modulon of a variable that is incremented with every scan likect , or
modulon/2 if the variable is incremented every second scan (ct/2), etc. Here are
some examples for the construction ofifzero flag variables (x in the comment stands
for a non-zero value):

mod2(ct,v1); /* 0 1 0 1 */
sub(one,v2); /* 1 0 1 0 */

mod4(ct,v3); /* 0 x x x 0 x x x */

add(ct,one,v4); /* 1 2 3 4 5 6 7 8 */
mod4(v4,v4); /* x x x 0 x x x 0 */

hlv(ct,v5); /* 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 */
add(v5,two,v5); /* 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 */
mod4(v5,v5); /* x x x x 0 0 x x x x x x 0 0 x x */

modn(ct,three,v6); /* 0 x x 0 x x */

To invert the logic in a simpleifzero construct (withoutelsenz branch), simply use
theelsenz branch (to simulate a non-existing ifnotzero statement):

add(ct,two,v7); /* 2 3 4 5 6 7 8 9 */
hlv(v7,v7); /* 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 */
mod4(v7,v7); /* x x x x x x 0 0 x x x x x x 0 0 */
ifzero(v7);
elsenz(v7);

...
endif(v7);

01-999014-00 A0398 VNMR Pulse Sequences 163

Chapter 16. Waveform Generators

The optional waveform generator (or programmable pulse modulator as it was called
in UNITY spectrometers) is primarily a board that permits changing the amplitude and
the (small-angle) phase of the output of a transmitter board simultaneously and
quickly. Different from the pulse programmer, it can set both the amplitude and the
small-angle phase shifts using fast status lines. You can regard it as “autonomous fast
bit extension of the pulse programmer.”

16.1 How Does a Waveform Generator Fit Into the System?

Figure 19 is a diagram of waveform generator circuitry in the UNITYplus. The
waveform generator sends output through the transmitter digital control board to the
(small-angle and 90-degree) phase and amplitude modulation circuitry on the (direct
synthesis) transmitter board. Both the amplitude and the phase modulation are also
accessible from the AP bus, but—as we will see—the waveform generator can do the
same thing, but much faster. The waveform generator is tightly coupled to a particular
transmitter board and can only interact with the channel on which it is installed (any
channel can be equipped with a waveform generator). Reconfiguring the waveform
generator for an other channel involves jumper changes on the board (the AP bus
addressing is channel-specific). It is not recommended as a routine operation.

The phase control circuitry on the transmitter board was also described inSection 4.2,
“How Do Pulses Work?,” on page 40. It does the small-angle phase shifts (0.25 degrees
resolution) and the 90-degree phase shifts in two separate, consecutive steps. It takes
42 MHz as input frequency; the output is the phase-modulated 10.5 MHz intermediate
frequency (I.F.). The phase control takes digital inputs from the pulse programmer (90-
degree phase shifts via fast lines, small-angle phase shifts via AP bus), from the
waveform generator (small-angle and 90-degree phase shifts via fast direct lines), and
from the phase modulator (just the 90-degree phase shifts via fast status lines). Each
channel is equipped with a phase modulator (for preprogrammed decoupling
sequences like square wave, swept square wave, noise, MLEV-16, WALTZ-16, XY-
32, GARP-1), and optionally with a waveform generator (freely programmable
decoupling sequences, pulse shaping). The 90-degree and small-angle phase shifts are
added to the phase setting of the pulse programmer set via AP bus.

The amplitude modulation circuitry adjusts the amplitude of the 10.5 MHz I.F. signal
in 4096linear steps (12 control bits), as opposed to the (63 or 79 dB) attenuators that
operate in dB (i.e., in logarithmic units). The 4096 linear steps correspond to a power
range of 72 dB. The amplitude modulator takes input from either the pulse programmer
(via AP bus) or from the waveform generator (via fast status lines). From the 12 control
bits, the waveform generator only controls the 10 most significant bits (1024 steps, 60-
dB power range). The amplitude modulation circuitry takes the phase-modulated 10.5
MHz I.F. from the phase modulation circuitry. Its output is the phase- and amplitude-
modulated I.F., which is then mixed with the local oscillator frequency (which is the
same as the observe frequencyplus the I.F.) that is generated directly by a PTS
frequency synthesizer and is also used in the receiver (seeChapter 18, “Acquiring
Data,” on page 205).

Chapter 16. Waveform Generators

164 VNMR Pulse Sequences 01-999014-00 A0398

The output of the mixer (the mixing product) is the observe frequency, which carries
the phase- and amplitude modulation from the 10.5 MHz (I.F.) input. The observe
frequency that passes the transmitter gate (which can also be controlled by the
waveform generator) and the 79 dB (or 63 dB) attenuator is the amplified in the rf
power amplifier and finally enters the probe. The waveform amplitude takes
precedence over the pulse programmer amplitude that is set via AP bus.

Spectrometers earlier than UNITYplus(UNITY and VXR) used a variety of different
transmitter boards:

• Only the AM/PM (amplitude modulation and phase modulation) direct synthesis
transmitter board was compatible with a waveform generator, and the amplitude
modulation was only accessible via the waveform generator, not via the AP bus.
The AM-PM board had 0.5-degree phase resolution and 1024-step (60-dB) linear
amplitude range.

A
P

 b
us

42 MHz

180o

90o

amplitude
logic

phase
adder

hardware
modulator

90o

180o

phase < 90o

amplitude

10.5 MHz

Waveform
Generator

Obs.

fast control line

Transmitter
Digital Control Board

xmtr gate

Transmitter
Board

AP bus
chip

90o

180o

phase < 90o

ph
as

e
<

 9
0

amplitude

phase
generator 90o

180o

0o

270o

phase
selector DAC DAC

90o 180o

90o

splitter

x

x90o

0o

combiner DACxSSB mixer

L.O.

I.F.

I.F.I.F.

xmtr gate

xmtr
gate

Figure 19. UNITYplus waveform generator circuitry

From PTS
(Obs + 10.5 MHz)

10.5 MHz

16.2 How Does a Waveform Generator Work?

01-999014-00 A0398 VNMR Pulse Sequences 165

• Previous direct synthesis boards only had phase modulation capability (0.5-degree
resolution, like the AM-PM board), accessible via the AP bus (and fast lines for
the 90-degree phase shifts). Due to the lack of amplitude modulation capability,
these boards were incompatible with waveform generators.

• Fixed frequency and broadband-type transmitter boards did not have amplitude or
phase modulation capability (except for 90-degree phase shifts) and were not
compatible with a waveform generator either.

Because the AM/PM transmitter board used in UNITY spectrometers did not allow
setting the modulator amplitude by AP bus and because the AM/PM board combines
both the digital and the analog functions on a single board, the corresponding
connection scheme (shown inFigure 20) is slightly simpler.

16.2 How Does a Waveform Generator Work?

The waveform generator is similar to a pulse programmer in that it directly controls
spectrometer hardware (via fast lines only) and provides accurate timing, independent
of the Acode computing. However, there are some distinct differences: the pulse
programmer is built as aflow-through (FIFO)buffer, because the information it
handles isdynamic and in essence non-repetitive (subsequent scans are normally not
identical, because of phase cycling etc.). A waveform generator, on the other hand, is
astaticbuffer (based on static RAM), built to handle a constant set ofgenericshapes
and pattern within a given pulse sequence. The term generic means that the duration
(the duration scaling) of a pulse shape may vary an arbitrary number of times within a
pulse sequence, but the phase and amplitude pattern remain constant. To better
understand the way a waveform generator works, we need to have a more detailed look
at the way it is built and how it operates.

As shown inFigure 21, the central part of the waveform generator board consists of a
256-Kbyte memory (static RAM, i.e., random access memory that does not require

A
P

 b
us

90o 180o

180o

90o

AP bus
chip

amplitude
control

phase
control

phase
modulator

90o

180o

phase < 90

amplitude

10.5 MHz
Programmable

Pulse

10.5 MHz

I.F. Obs.

L.
O

.

fast control line

AM/PM
Transmitter Board

ph
as

e
ad

de
r

xmtr gate

xm
tr

 g
at

e

Modulator

Figure 20. UNITY programmable pulse modulator circuitry

Chapter 16. Waveform Generators

166 VNMR Pulse Sequences 01-999014-00 A0398

constant refreshing). That memory is organized in 65536 words (64 Kwords) of 32 bits
each. Avariable size portion is used for instructions; the rest is used to store pattern
and shapes (see below). The other components of the waveform generator include an
interface to the AP bus, an output buffer, control and timing circuitry (20 MHz, derived
from the 40 MHz input frequency), loop control circuitry, and an amplitude multiplier
that is only used (and present) for shaping pulsed field gradients.

The waveform generator is very fast in pulse shaping. All parameters under its control
(amplitude, 90-degree and small-angle phase shifts, and the transmitter gate) are
changedinstantaneously and simultaneously(unlike changing these parameters via AP
bus, seeChapter 12, “AP Bus Traffic,” on page 137). Theminimum time slice for
waveforms and modulation pattern is 0.2 microseconds, thetiming resolution is 50
nanoseconds on the UNITYplus, and 100 nanoseconds on UNITY spectrometers.

This is the instruction timing. Apart from internal propagation delay (discussed in the
section“Shaped Pulses in the Acode” on page 176), there are always some minor
delays until the parameter change takes effect in real hardware, especially with respect
to phase changes in UNITY spectrometer (see alsoSection 4.2, “How Do Pulses
Work?,” on page 40). For shaped pulses and modulation patterns, these minor
hardware delays are irrelevant because all time slices experience the same delays.

A
P

 b
us A
P

 b
u

s
in

te
rf

a
ce

SRAM spares (2 bits)

xmtr gate

amplitude (10 bits)

90o phase shifts (2 bits)

small angle phase shifts

duration count (8 bits)

(9 bits)

o
u

tp
u

t
bu

ffe
r

Instructions

xmtr gate

spare 1
spare 2

amplitude

90o

180o

phase
(< 90o)

control &
timing

loop
control

m
ul

tip
lie

r
(o

pt
io

na
l)

high
speed
line

40 MHz÷220 MHz

Figure 21. Waveform generator board

16.2 How Does a Waveform Generator Work?

01-999014-00 A0398 VNMR Pulse Sequences 167

Overall, the waveform generator is fast enough to shape even hard pulses as short as a
few microseconds. On the other hand, its pattern memory is large enough to hold even
the most complex pulse shapes and modulation pattern known today.

Sequence of Events in a Waveform Generator

While the internal data and information paths on the waveform generator board seem
complicated, the entire functionality can be explained fairly well based on the
organization and the usage of the RAM. Let’s first have a look at the sequence of
events during the execution of a pulse sequence that uses the waveform generator:

• The pulse sequence executable reads the shape or pattern name from the statement
(shape_pulse , obsprgon , etc.) in the sequence or from the modulation
sequence parameter (dseq , etc.), reads and interprets the shape or pattern file
(more about this below), and generates a waveform generator data file named
expn.username.PID.RF 1 in /vnmr/acqqueue . This file contains both the
waveforms and the instruction blocks that will be uploaded to the waveform
generators. Each data segment (pattern and instruction blocks) is preceded by a
short header (8 bytes) that contains the AP bus address of the waveform generator
(to which the data will be sent) plus the starting RAM address and the number of
(32-bit) words in the pattern or block.

• At the same time, a file/vnmr/acqqueue/ldcontrol is generated or updated.
This file contains a memory map for all waveform generators of the system. It
shows where in the waveform generator memory (and in which waveform
generator) the current waveform(s) and the corresponding instruction blocks are
located (i.e., the starting address). This starting address is also used in the pulse
sequence when generating Acode instructions that call waveform generator
instruction blocks.

• Before uploading the Acode for a new experiment that uses waveform generators,
Acqproc uploads the waveform generatordata (pulse shapes and decoupling
pattern) andinstruction blocks in the fileexpn.username.PID.RF from
/vnmr/acqqueue into the HAL memory. The acquisition also uploads the data
via the pulse programmer and the AP bus into the waveform generator pattern and
instruction memory.

• The pulse sequence is then initiated byAcqproc , the same as any other
experiment. Whenever a waveform generator is to be started within a pulse
sequence (e.g., at the beginning of a shaped pulse), the execution of a specific
instruction block is initiated via AP bus. Among other information, that instruction
block contains the pattern start address, the pattern length and the duration of a
time slice for that particular shape call, see below. To perform a particular shaped
pulse, it is sufficient to send the (2-byte) address of an instruction block to a
waveform generator, plus a one-byte command that starts its execution (5 AP bus
words in total).

1 The name of the file includes the experiment name, the user name, the process-ID of the pulse
sequence executable, and the suffix.RF (see alsoChapter 5, “Submit to Acquisition: go,”
on page 55). The name alone forAcqproc allows the association of such a file with a given Acode
file for a specific experiment of a particular user.

Chapter 16. Waveform Generators

168 VNMR Pulse Sequences 01-999014-00 A0398

• The final execution of a pulse shape or decoupling pattern is (normally) triggered
by a fast status line (there is one fast line per waveform generator, seeSection 9.2,
“Fast Bits,” on page 88).

How Are Patterns Stored in a Waveform Generator?

To better understand the functioning of the waveform generator, let’s now have a look
at the organization of its RAM:

Waveforms and modulation patterns are stored in the waveform generator as ageneric
patternthat describe the principal amplitude and phase modulation and therelative
durationof each slice of a shaped or modulated pulse sequence element. The actual
length of a slice duration unit is defined in each instruction block that calls that
particular shape. This way, each shape only needs to be stored once. It can be called an
almost infinite number of times withindividual duration scaling for every single call.

The shapes or pattern are stored in 32-bit words organized as follows (see also the
schematic drawing inFigure 21):

• 8 bits for the duration count—any element of a shape can be one up to 255 time
slices long. The duration of a time slice is not defined in the pattern, but will be
given through the instruction block.

• 10 bits for the amplitude—this allows setting the amplitude in 1024 steps (1 to
10242) on the linear modulator. On the UNITYplus these are the 10 most
significant bits of the 12-bit linear modulator; via AP bus the full amplitude range
(4096 steps) can be addressed: the smallest step on the waveform generator
corresponds to four amplitude steps on the linear modulator. On UNITY
spectrometers, the linear modulator was 10 bits only, and these could be fully
addressed via the waveform generator only.

• 11 bits (10 bits on the UNITY) for the phase of the pattern element—out of this, 2
bits are the 90-degree phase shift, the remaining 9 bits (8 bits on UNITY) are the
small-angle phase shift (360 quarter-degree steps, or 180 half-degree steps on the
UNITY). On the transmitter board, this phase shift isaddedto the current phase
shift (as set by the pulse programmer through two fast lines and the AP bus) such
that the 90-degree and small-angle phase shifting within a shaped pulse occurson
top of any preexisting phase shift.

• 1 bit for the transmitter gate—this can also be regarded as an additional amplitude
bit that allows setting the amplitude to zero. Note that the regular amplitude bits
have a gap between the positive amplitudes and “negative amplitudes” (amplitudes
with phase inversion). Taking into account 180- degree phase shifts (and there are
many pulse shapes with phase inversion), the “regular” amplitude settings are –
1024 to –1 and 1 to 1024; the zero is accessible only through the transmitter gate
bit (the linear modulator does not have a zero amplitude).

• 2 bits are spares. These bits are not used or addressed by any regular software and
hardware up to now. These could possibly be used to trigger additional gates or
other devicesduring a waveform or decoupling pattern (this would currently
require changingpsg/wg.c viapsggen mechanism, because there is no function
or feature that would allow setting these bits).

2 In the shape or modulation files inshapelib , these amplitude values are represented by numbers
ranging from 0 to 1023 (1 less than actually obtained); this has sometimes led to confusion.

16.2 How Does a Waveform Generator Work?

01-999014-00 A0398 VNMR Pulse Sequences 169

Patterns or shapes can be between 1 and almost 64 Kwords long. Note that the 64
Kword pattern memory is shared among all shapes and instruction blocks for the active
experiment. A variable size part of the waveform generator memory is used for
instruction blocks.

The waveform generator shape definition is incomplete insofar as it only contains a
relative duration in each pattern word. In essence, this allows replacing successive
shape slices with identical phase and amplitude by a single slice with a larger duration
count. The vast majority of the pulse shape definitions have a (default) duration count
of 1 in each slice. In modulation patterns, pulse angles are translated to duration counts;
therefore, decoupler modulation pattern frequently use slices with larger duration
counts, and the slice duration can be defined in units between 1 and 90 degrees.

Waveform Generator Instruction Words

Patterns are stored at the high end (0xFFFF in 32-bit words is the last memory location)
of the RAM address range. Instruction blocks are stored at the bottom end, from
address 0x0000 up. A typical instruction block for an rf pattern (pulse shape or
modulation pattern) consists of six 32-bit words. Based on the 3 most significant bits,
we can distinguish 8 different types of instruction words. The structure and the
contents depend on the word type: bits 29 to 31 are the word type, bit 28 is reserved in
all types for (default) transmitter gating, the rest of the block is variable. Major parts
of the instruction word are often not used and contain no further information.

UsingTable 9, let’s look at the various kinds of instruction words (unused parts of the
instruction words were left white).

Each instruction block starts with aIB_START instruction word that specifies the 16-
bit starting address of the associated pattern block; the next instruction word,
IB_STOP, defines the (16-bit) address of the first word behind the pattern. Note that
multiple pattern are stored next to each other without start or end marks.

TheIB_STOP instruction can also contain a duration count (0 to 255) for an optional
delay preceding the pattern in bits 0 through 7. This duration count goes together with
a IB_DELAYTB instruction that defines the duration time base in a 28-bit number (0 to
268,435,455). The time base is in 50-nanosecond units (a 20 MHz clock frequency is
used for the waveform generator timer); therefore, the time base can be up to 13.42
seconds. Together with a duration count, this permits specifying a delay of up to 3422

Table 9. Waveform generator instruction words

Type 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IB_START 0 0 0 G L RAM start address

IB_STOP 0 0 1 G RAM stop address delay count

IB_SCALE 0 1 0 G loop count amplitude scale

IB_DELAYTB 0 1 1 G delay time count, 50 nsec units

IB_WAITHS 1 0 0 G

IB_PATTB 1 0 1 G pattern time count, 50 nsec units

IB_LOOPEND 1 1 0 G

IB_SEQEND 1 1 1 G

Chapter 16. Waveform Generators

170 VNMR Pulse Sequences 01-999014-00 A0398

seconds, or almost an hour. The minimum duration time base is 200 nanoseconds. Bit
28 determines whether the transmitter is on during that delay or not. TheIB_DELAYTB
instruction (together with the duration count in theIB_STOP instruction) could be
used to specify additional delays preceding and following a shaped pulse or other
pattern. It is currently not used for regular shaped pulses or programmed decoupling
(see below).

The IB_SCALE instruction has two purposes. It allows specifying an amplitude
multiplier for shaped gradients (seeSection 16.6, “Using a Waveform Generator for
Shaping Gradient Pulses,” on page 195), and it also defines an 8-bit loop counter for
cycling with a defined loop count over shapes or pattern. For pulse shapes, the loop
counter is set to 1. Programmed decoupling normally uses infinite looping (with the
loop count set to 1).

TheIB_WAITHS instruction makes the waveform generator to wait for a trigger signal
on its dedicated pulse programmer high-speed line before starting to execute a pattern.

The IB_PATTB instruction defines the pattern time base the same way as the
IB_DELAYTB for the delay time base. The pattern time base can be between 0.2
microseconds and 13.42 seconds—together with a duration count of 1 to 255 in the
pattern definition, each sliceof a shaped pulse or pattern can be between 0.2
microseconds and 3422 seconds long.

The IB_LOOPEND instruction is used in connection with pattern looping, and the
IB_SEQEND instruction word terminates each instruction block.

Waveform Generator Data File

Upon typinggo , all pattern and instruction blocks for the current experiment are
collected in a single file/vnmr/acqqueue/expn.username.PID.RF (PID being
the process-ID of the pulse sequence executable), or/vnmr/acqqueue/acqi.RF
for data generated throughgo('acqi') . This file consists of short headers consisting
of 4 unsigned integers, each followed by either an instruction block or a data block. The
headers consist of the AP bus address of the target waveform generator, the starting
address in the RAM of the waveform generator, the number of 32-bit words (- 1) in the
instruction block or pattern, and a “spare” number that has no real function in the
software, except that it allows the reader to distinguish between instruction blocks
(0xabcd) and data blocks (0xfedc). The file ends with a 32-bit trailer containing the
pattern0xa5b6c7d8 . From the headers, the acquisition CPU “knows” which
waveform generator (i.e., which AP bus address) a block needs to be sent to, and at
what (RAM) address in the target device it needs to store the data (or instruction) block.

Unlike Acode (or NMR data structures), the commandod is of little help in inspecting
waveform generator data, because all the (32-bit) words are complex bit patterns,
either instruction words or pattern data. On the other hand, pattern data have a fixed
structure, and there are only eight different kinds of instruction words, and also the
headers are very simple.

16.2 How Does a Waveform Generator Work?

01-999014-00 A0398 VNMR Pulse Sequences 171

Therefore, with the aid of the information found in/vnmr/psg/wg.c , it is relatively
easy to write a little program that decodes these data. Let’s look at a simple example3:

INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words
--
0x08ffcc00 IB_START: RAM start address = 0xffcc
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0xa000063f IB_PATTB: Time count = 1600 (0.00008000 sec / 80.00 usec)
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c18, WG start address = 0xffcc, 36 words
--
count amplitude phase gates
----- --------- ------ -----
 3 1024 180.00
 4 1024 0.00
 2 1024 180.00

.....

.....
 4 1024 180.00

 2 1024 0.00
 3 1024 180.00

END OF FILE

This is a data file for waveform-generator-based WALTZ-16 decoupling (see also
below for a more detailed interpretation of the data contents). The file begins with an
instruction block, followed by a data block. Of course, there are often several
instruction and data blocks—there is at least one instruction block per data block. If the
same waveform or pattern is used several times with different parameters in the same
pulse sequence, there may be several instruction blocks referring to the same data
block. All instruction blocks are collected at the beginning of the file, followed by the
data blocks in the order of their usage in the pulse sequence (the order of the data
blocks is actually not relevant).

Both blocks are for the decoupler waveform generator (AP bus address0x0c18 4). The
instruction block will be stored at location0 in the waveform generator RAM, and the
data block at location0xffcc . The instruction block is 6 words long, the pattern is 36.
The data block address is referred to in theIB_START instruction word, the address in
IB_STOP is 0xffcc + 0x24 = 0xfff0 (65484 + 36 = 65520). The delay count in the
same instruction word is the default; there is no delay in this instruction block. The
instruction block ends with the instruction wordIB_SEQEND.

The other parts of the instruction block and the data block will be explained inSection
16.4, “Using Waveform Generators for Programmed Modulation,” on page 177below.

3 The decoding shown here was produced using a C programwgdecode from the VNMR user
library (part ofuserlib/bin/apdecode).
4 The observe channel waveform generator has AP bus address0x0c10 , 0x0c48 is the address for
the second decoupler channel,0x0c40 is for the third decoupler channel.

Chapter 16. Waveform Generators

172 VNMR Pulse Sequences 01-999014-00 A0398

Executing Waveform Generator Patterns

Through the AP bus and AP interface, the acquisition CPU can not only write to
waveform generator RAM, but it can also writedirectly into the output register(output
buffer) and set the output status of any waveform generator. For each call, it sends the
address of an instruction block(using Acode instruction102 , WG3) andcontrol codes
(using Acode instruction101 , WGCMD) into the waveform generatorcontrol register
(see also the Acode examples in the following sections). Control code 5 is used to start
a shaped pulse, control code 7 is used for programmed decoupling, and control code 1
for starting shaped gradients. Termination of the execution of an instruction block is
achieved with control code 0, which causes the waveform generator to halt at the end
of the current pattern.

For programmed modulation, it is normally not desirable to wait for the end of the
pattern: in such a case the instruction block execution is aborted with control code 0x80
(RESET). If the instruction block contains anIB_WAITHS instruction word, the
execution of an instruction block is halted until the dedicated high-speed line is set to
ON by the pulse programmer. This allows for an accurate coordination of waveform
generator events with events that are directly controlled by the pulse programmer.

Instruction blocks (i.e., the associated pattern) can be looped for a predefined number
of cycles (theIB_STOP instruction word contains an 8-bit loop count, allowing for up
to 255 loop cycles), or they can be looped infinitely, with interruption either at the end
of a pattern (loop cycle) or immediately, depending on whether code 0 is sent (“soft
stop”) or control code 0x80 (RESET), see above. It is also possible to loop over
sequences of instruction blocks (in which case all but the last instruction block have bit
27 set in theIB_START instruction).

16.3 Using Waveform Generators for Shaped Pulses

There is one statement per rf channel for performing a simple shaped pulse:

shaped_pulse(name,width,phase,rx1,rx2);
decshaped_pulse(name,width,phaser,rx1,rx2);
dec2shaped_pulse(name,width,phase,rx1,rx2);
dec3shaped_pulse(name,width,phase,rx1,rx2);

All these statements have the same set of five arguments:name is the base name
(without “.RF ” extension) of a pulse shape file in/vnmr/shapelib or
$vnmruser/shapelib ; the other arguments are exactly the same as for an ordinary
rgpulse statement (see alsoSection 4.2, “How Do Pulses Work?,” on page 40). It
turns out that the four statements are actually macros, all of them calling the same
statementgenshaped_pulse (the macros are defined in/vnmr/psg/macros.h):

genshaped_pulse(name,width,phase,rx1,rx2,g1,g2,device);

The last argument is the device (OBSch, DECch, DEC2ch, andDEC3ch for the four
statements above, see the footnote on page 40). The two additional argumentsg1 and
g2 are additional delays surrounding the shaped pulse (but with the transmitter turned
on). Because they can be defined in waveform generator instruction block, both are set
to 0.0 in all four macro calls listed above (no statement currently uses these delays).

There are also statements for two and three simultaneous shaped pulses for the observe
and decoupler, or the observe and the two first decoupler channels, respectively:

simshaped_pulse(n1,n2,w1,w2,ph1,ph2,rx1,rx2);
sim3shaped_pulse(n1,n2,n3,w1,w2,w3,ph1,ph2,ph3,rx1,rx2);

16.3 Using Waveform Generators for Shaped Pulses

01-999014-00 A0398 VNMR Pulse Sequences 173

Also these are macro calls to the following functions:

gensimshaped_pulse(n1,n2,w1,w2,ph1,ph2,rx1,rx2,g1,g2,dev1,dev2);
gensim3shaped_pulse(n1,n2,n3,w1,w2,w3,ph1,ph2,ph3,rx1,rx2, \

g1,g2,dev1,dev2,dev3);

With these two statements, it is possible to perform simultaneous shaped pulses onany
combination of two or three rf channels. Note that with the presence of the
rfchannel parameter, these “gen” functions should not longer be required.

Programming Shaped Pulses: An Example

To illustrate what has been explained in the previous sections, let’s now take a practical
(simple) example.

The Pulse Sequence

We take thesh2pul pulse sequence, which is basically a simples2pul sequence with
the two rectangular pulses replaced by shaped pulses:

#include <standard.h>
pulsesequence()
{

char p1pat[MAXSTR], pwpat[MAXSTR];
getstr("p1pat",p1pat);
getstr("pwpat",pwpat);
....
status(A);

hsdelay(d1);
status(B);

shaped_pulse(p1pat,p1,zero,rof1,rof2);
hsdelay(d2);

status(C);
shaped_pulse(pwpat,pw,oph,rof1,rof2);

}

The Shape Definition

We set both thep1pat and thepwpat parameter to'gauss' , which causes the file
/vnmr/shapelib/gauss.RF to be interpreted when typinggo . This file (the
“ .RF ” extension indicating that it contains a pulse shape definition) consists of several
columns, each line defining one pulse slice:

• The phase angle of the slice in degrees; phases can be both positive or negative;
phases will be converted to positive values between 0 and <360 degrees (better: the
corresponding positive range of phase shift units) internally.

• The amplitude, in values between 0.0 and 1023.0 (the file interpreter reads
fractional numbers; therefore, shape files can use fractional numbers throughout,
but this is not a requirement). Note that these numbers correspond to real
amplitudes of 1 up to 1024. If this column is not specified, the amplitude defaults
to 1023.0 (1024). The values are rounded off internally, hence any positive
fractional number up to 1023.0 is allowed (because it may be delivered from a
shape calculation program).

• The relative slice duration, in values between 1.0 and 255.0; the default for this
column is 1.0.

• The gate settings: 1 turns on the transmitter gate (TXON), 2 turns on the first spare
line, 4 turns on the second spare line. This defaults to 1.0 for pulses (transmitter

Chapter 16. Waveform Generators

174 VNMR Pulse Sequences 01-999014-00 A0398

on) and is normally omitted. The values for the gates can just be added in column
4, resulting in the possibilities shown inTable 10.

• The gate field (value 0.0) can be used to generate a slice with zero output, to
compensate for the fact that amplitude 0.0 in reality is amplitude 1. For short (hard)
shaped pulses starting with a non-zero (internal) phase shift it may be desirable to
precede the shape with a slice with the phase of the first real slice, but with the gate
turned off.

The fileshapelib/gauss.RF defines a Gaussian pulse with 256 slices:

#
Gaussian Pulse: 256 points, 5-sigma
This pulse is amplitude modulated and selectively excites
a bandwidth (Hz) approximately equal to 2e+6/pulse_length
(usec).
0.00000011.3651.000000
0.00000012.1891.000000
0.00000013.0661.000000
...
(120 lines deleted)
...
0.0000001016.0001.000000
0.0000001018.5141.000000
0.0000001020.4741.000000
0.0000001021.8771.000000
0.0000001022.7191.000000
0.0000001023.0001.000000
0.0000001022.7191.000000
0.0000001021.8771.000000
0.0000001020.4741.000000
0.0000001018.5141.000000
0.0000001016.0001.000000
...
(120 lines deleted)
...
0.00000013.9991.000000
0.00000013.0661.000000
0.00000012.1891.000000

Table 10. Waveform generator gate control for pulse shapes

Value TXON Spare #1 Spare #2

0 OFF OFF OFF

1 ON OFF OFF

2 OFF ON OFF

3 ON ON OFF

4 OFF OFF ON

5 ON OFF ON

6 OFF ON ON

7 ON ON ON

16.3 Using Waveform Generators for Shaped Pulses

01-999014-00 A0398 VNMR Pulse Sequences 175

The Waveform Generator Data File

If both parametersp1pat andpwpat in thesh2pul sequence are set to'gauss' ,
we get the following waveform generator data file forp1=1024 andpw=256:
INSTRUCTION BLOCK:
AP address = 0x0c10, WG start address = 0000, 6 words
--
0x08feef00 IB_START: RAM start address = 0xfeef
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0xb000004f IB_PATTB: Time count = 80 (0.00000400 sec / 4.00 usec) TXON
0xe0000000 IB_SEQEND: End of instruction block

INSTRUCTION BLOCK:
AP address = 0x0c10, WG start address = 0x0006, 6 words
--
0x08feef00 IB_START: RAM start address = 0xfeef
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0xb0000013 IB_PATTB: Time count = 20 (0.00000100 sec / 1.00 usec) TXON
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c10, WG start address = 0xfeef, 257 words
--
count amplitude phase gates
----- --------- ------ -----
 1 12 0.00 TXON
 1 13 0.00 TXON
 1 14 0.00 TXON

....
(120 lines deleted)
....
1 1017 0.00 TXON
1 1019 0.00 TXON
1 1021 0.00 TXON

 1 1022 0.00 TXON
 1 1023 0.00 TXON
 1 1024 0.00 TXON
 1 1023 0.00 TXON
 1 1022 0.00 TXON
 1 1021 0.00 TXON
 1 1019 0.00 TXON

1 1017 0.00 TXON
....

(120 lines deleted)
....

 1 14 0.00 TXON
 1 13 0.00 TXON
 0 1 0.00

END OF FILE

Because we have used the same waveform twice, we gettwo instruction blocks (at
locations 0000 and 0006)referring to the same pattern block starting at location
0xfeef , ending before location0xfff0 . The pulse is triggered by the high-speed line
from the pulse programmer, hence the instructionIB_WAITHS. There are 256 slices
(actually 257, as we will see). For a pulse duration of 256 microseconds, this results in
a slice duration of 1 microsecond. Since each slice has a duration count of 1, the
duration time base for the first pulse is 1 microsecond (20 counts of 50 nanoseconds
each).

Chapter 16. Waveform Generators

176 VNMR Pulse Sequences 01-999014-00 A0398

TheTXONbit is not only set in the pattern itself, but also in theIB_PATTB instruction
word. The second pulse was selected four times longer; therefore, the duration time
base is 4 microseconds. Of course, the duration time base is rounded off to the50
nanoseconds timing resolutionof the waveform generator clock (100 nanoseconds on
UNITY spectrometers). For short pulses and pulses with a large number of slices or
total duration counts, the software may report round-off errors if they distort the pulse
length substantially.

In the pattern block, we see that the software automatically adds a slice with zero
amplitude (amplitude value 1,TXONis not set). During all other slices, the transmitter
is gated on. This is the default for the case that only three fields are specified in the
shape definition file. It is the waveform generator that turns on the transmitter during
a shaped pulse; therefore, there is no need to gate the transmitter explicitly using
xmtron andxmtroff .

Shaped Pulses in the Acode

The Acode, and the timing during the experiment, differs in two aspects between
UNITY and UNITYplus spectrometers (apart from inherent timing differences with
respect to the AP bus):

• On UNITYplus, shaped pulses are terminated when the high-speed line goes
down. On UNITY, the waveform generator needs to be stopped using a “soft stop”
by sending a control code 0 (stop at the end of the pattern). Therefore, there is a 2-
word AP bus delay (4.3 microseconds) after shaped pulses on a UNITY; whereas
on a UNITYplus, there is no implicit post-pulse delay due to AP bus traffic.

• There is a propagation delay in the waveform generator relative to the pulse
programmer timing. On UNITYplus, this propagation delay is 450 nanoseconds.
On UNITY, it is 1.5 microseconds (this is an approximation and varies slightly
from system to system). This delay needs to be taken care of, or else the pulse
programmer might abort the waveform generator or start some other event while
the shaped pulse is still executing. To correct for the delay, shaped pulses are
explicitly delayed by the expected waveform generator propagation delay.

Here is the Acode for the first of the above two pulses created on a UNITY
spectrometer:

323 317 211 102 WG3 AP addr 0x0c10, IB addr = 0x0000
326 320 214 101 WGCMD AP addr 0x0c10, WFG cmd = 0x05
329 323 217 16 SETPHAS90 CH1 zero
332 326 220 150 HighSpeedLINES (void)
335 329 223 150 HighSpeedLINES RXOFF
338 332 226 151 EVENT1_TWRD 10.000 usec
340 334 228 150 HighSpeedLINES RXOFF WFG1
343 337 231 151 EVENT1_TWRD 1.500 usec
345 339 233 152 EVENT2_TWRD 255 usec + 1.000 usec
348 342 236 150 HighSpeedLINES RXOFF
351 345 239 151 EVENT1_TWRD 10.000 usec
353 347 241 150 HighSpeedLINES (void)
356 350 244 101 WGCMD AP addr 0x0c10, WFG cmd = 00

TheWG3 instruction (three AP bus words) sets the instruction block address, the
WGCMD instruction (two AP bus words) sets the control register on the waveform
generator, see above: control word0x05 initiates the execution of the instruction
block, control word 0 terminates it.

16.4 Using Waveform Generators for Programmed Modulation

01-999014-00 A0398 VNMR Pulse Sequences 177

On a UNITYplus, the propagation delay is shorter, and the terminating WGCMD
instruction is missing:
409 403 297 102 WG3 AP addr 0x0c10, IB addr = 0x0000
412 406 300 101 WGCMD AP addr 0x0c10, WFG cmd = 0x05
415 409 303 16 SETPHAS90 CH1 zero
418 412 306 150 HighSpeedLINES (void)
421 415 309 150 HighSpeedLINES RXOFF
424 418 312 150 HighSpeedLINES RXOFF
427 421 315 151 EVENT1_TWRD 10.000 usec
429 423 317 150 HighSpeedLINES RXOFF WFG1
432 426 320 151 EVENT1_TWRD 450 nsec
434 428 322 152 EVENT2_TWRD 255 usec + 1.000 usec
437 431 325 150 HighSpeedLINES RXOFF
440 434 328 151 EVENT1_TWRD 10.000 usec
442 436 330 150 HighSpeedLINES (void)

From the Acode, it can be concluded that it takes 5 AP bus words to start a shaped pulse
(causing hidden delays of 10.75 microseconds on UNITY spectrometers, and 5.75
microseconds on the UNITYplus), and on the UNITY there is a hidden delay of 4.3
microseconds incurring from two more AP bus wordsafter the shaped pulse.

Special Cases

To demonstrate the effect of delays that are executed as part of the instruction block, a
theshaped_pulse statement was replaced by

genshaped_pulse(p1pat,p1,zero,rof1,rof2,0.1,0.2,TODEV);

This is, of course, a hypothetical example. It turns out that theg1 andg2 delays in
genshaped_pulse (0.1 and 0.2 seconds in this case, respectively) are in fact built
into the instruction block and are not coded in the Acode:
INSTRUCTION BLOCK:
AP address = 0x0c10, WG start address = 0000, 9 words
--
0x08feef00 IB_START: RAM start address = 0xfeef
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0x701e847f IB_DELAYTB: Time count=2000000 (0.1000000sec/100000.0usec) TXON
0xb000004f IB_PATTB: Time count=80 (0.0000040 sec/4.00usec) TXON
0x50010000 IB_SCALE: loop count=1 TXON
0x703d08ff IB_DELAYTB: Time count=4000000 (0.2000000sec/200000.0usec) TXON
0xe0000000 IB_SEQEND: End of instruction block

From an Acode point-of-view, the duration of this shaped pulse isp1 + g1 + g2
(p1 + 0.1 + 0.2 in this example). There is currently no code or pulse sequence that
uses these two additional delays (in all the macro calls togenshaped_pulse and
similar statements, the delaysg1 andg2 are set to 0.0).

16.4 Using Waveform Generators for Programmed Modulation

Programmed modulation—whether for broadband decoupling or for spinlock
experiments—is nothing but a special kind of shaped pulse with the addition of infinite
looping (the looping is the main reason for calling it via specific statement, and not
with ashaped_pulse call). Apart from this, the requirements and priorities are
slightly different for programmed modulation; hence, the pattern definition differs
slightly from the definition of shaped pulses.

Chapter 16. Waveform Generators

178 VNMR Pulse Sequences 01-999014-00 A0398

Programming Pattern Decoupling and Spinlock Experiments

Software for programmed modulation using a waveform generator can be set up in
several ways.

Decoupler and Modulation Control

The simplest way to use a waveform generator is for programmed decoupling
controlled throughstatus fields in the pulse sequence (see“Implicit Gating” on page
53). Using the waveform generator this way requires no special programming effort at
all—it works with any pulse sequence (as long as a waveform generator is available).

The primary control of the transmitter gates is done through the status-related
parametersdm, dm2, anddm3. This has nothing to do with any kind of modulation. The
modulation mode depends on the parametersdmm (decoupler modulation mode),
dmm2, anddmm3for the three decoupler channels: if these parameters are set to'c' in
the current status field, no modulation occurs. All other settings produce some kind of
phase modulation on the corresponding rf channel. This modulation isindependentof
the gate (dm, dm2, dm3) setting! Note that whenever pulses should be performed on a
channel, the corresponding modulation mode parameter must be set to'c' in the
current status field; otherwise, the modulation is turned un asynchronously and
produces random phases on any pulses in that same status field.

There are two possibilities for modulating a decoupler (throughstatus fields): using
a “hardware modulator,” or using a waveform generator (if one is available). The
hardware modulator can be regarded as “software (a given modulation pattern) that is
“programmed” (wired) in hardware and cannot be changed (except by changing or
modifying the modulator hardware). The standard modulators only operate on the 90-
and 180-degree phase shift lines (some even just on 180-degree phase shifting), small-
angle phase shifting and amplitude modulation is excluded. On UNITY and earlier
systems, the following modulation modes are available through a hardware modulator
(for literature references, see the manualVNMR Command and Parameter Reference):

'f' “fm-fm” or swept square-wave modulation

'g' GARP-1 decoupling (UNITYplus only)
(100 pulses with odd pulse angles and 180 degrees phase shifts)

'm' MLEV-16 decoupling (UNITYplus only)
(based on 90x-180y-90x composite inversion pulses)

'n' noise modulation

'r' square-wave modulation (UNITYplus only)
'w' WALTZ-16 modulation

(based on 90x-180-x-270x composite inversion pulses)

'x' XY-32 modulation (UNITYplus only)
(based on 90x-180y-90x composite inversion pulses)

On the UNITYplus, there is also a mode'u' for selecting external (user-supplied)
hardware modulation.

Most of these methods (definitely'g' , 'm' , 'w' , and'x') need to be calibrated (i.e.,
for a given decoupler strength, the length of the 90-degree pulse must be determined).
The modulator then needs to be triggered at the speed or frequency of the 90-degree
pulses. In practice, the modulation frequency (4 times the decoupler field strength, in
Hz) is entered directly using thedmf , dmf2 , or dmf3 parameter.

16.4 Using Waveform Generators for Programmed Modulation

01-999014-00 A0398 VNMR Pulse Sequences 179

Waveform Generator Control through the status Statement

For systems with waveform generator on a decoupler channel, the character'p' in a
dmm (or dmm2, or dmm3) field activates waveform generator-based modulation. Also
here, the modulation rate is defined through thedmf (dmf2 , dmf3) parameter, but
unlike the hardware modulator (where thedmf frequency is generated as input to the
modulator), with the waveform generatordmf is converted back into a 90-degree pulse
width, which is then used to determine the length of a duration unit in the waveform
generator instruction word.

A major advantage of the waveform generator is that it is freely programmable. Any
decoupling modulation can be programmed, including methods using small-angle
phase shifting, and methods with amplitude modulation (we might even think of using
shaped pulses for decoupling).

Settingdmmto 'p' does not define a modulation mode, but rather selects modulation
hardware (the waveform generator). In this case, the modulation mode is defined using
the string parameterdseq (or dseq2 , dseq3 for the other decoupler channels). The
value of this parameter is the basename of a file in/vnmr/shapelib or
$vnmruser/shapelib (just the body of the name, without “.DEC” extension).
Although this file is stored in the same directory as pulse shapes (shapelib/*.RF),
it has a totally different format:

WALTZ-16 Broadband Decoupling Sequence
270.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
 90.0 180.0
180.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0
270.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0
 90.0 0.0
180.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
#
270.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0
 90.0 0.0
180.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
270.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
 90.0 180.0
180.0 0.0
360.0 180.0
180.0 0.0
270.0 180.0

Chapter 16. Waveform Generators

180 VNMR Pulse Sequences 01-999014-00 A0398

Different from pulse shapes, which normally are described as amplitude and phase
function in the time axis, modulation modes are described more often as a sequence of
pulses of a certain tip angle and a certain rf phase. The amplitude remains constant
throughout the modulation pattern in the vast majority of the case. For this reason, the
format of the modulation files (*.DEC) in shapelib is different from the one for
shaped rf pulses, even though it also has up to four columns describing pulse length,
phase, amplitude and the transmitter gate setting:

• The first column describes thetip angle in degrees(positive number only).
• The second column defines the phase of the slice (equivalent to column 1 of a pulse

shape file).
• The third field describes the amplitude (equivalent to column 2 of a pulse shape

file) and defaults to 1023.0 (full amplitude on the linear modulator). As decoupler
modulation is usually constant, this column is normally omitted.

• The last field controls the waveform generator gate settings. If a waveform
generator is activated through status fields, there is an implicit gating function
(decon anddecoff) activated through thestatus statement, which overrides
any transmitter gate settings in the modulation pattern definition, but the gating for
the two spare lines (seeTable 10) remains active5.

For translating the above pattern file into a waveform generator file, the software needs
one more parameter that translates the tip angle into duration counts. We need to
specify whether the tip angle in the pattern file is to be interpreted as multiples of 90
degrees, or whether the tip, angle is in multiples of a smaller angle. Thedres
parameter specifies the tip angle resolution. For WALTZ and MLEV-type modulation
dres should be set to 90, for GARP-type decoupling it is normally set to 1 in order to
get the most accurate tip angles (see also below).

Explicit Programming

Waveform generator-based modulation can also be turned on explicitly within the
pulse sequence. There are two classes of statements for this: one to switch on and off
the modulation, and the other that also handles the gating and runs for a given number
of cycles. The following statements are used to switch on the waveform generator-
based modulation:

obsprgon(name,pw90,pwres);
decprgon(name,pw90,pwres);
dec2prgon(name,pw90,pwres);
dec3prgon(name,pw90,pwres);

wherename is the base name (without “.DEC” extension) of a pattern file in
$vnmruser/shapelib or /vnmr/shapelib , pw90 is the length of a 90-degree
pulse (allowing the function to calculate the absolute duration of each pattern element),
andpwres is the tip-angle resolution, which is needed to determine the length of a
duration unit and the number of duration units per pattern element. These four
statements are actually macros that call a single C function:

prg_dec_on(name,pw90,pwres,device);

5 The two transmitter gate signals are combined (ORed). If either of the two devices (the pulse
programmer or the waveform generator) turns the transmitter on, it will be on. In other words, gating
the transmitter on explicitly in the pulse sequence deactivates (overrides) control through the pattern
file. Of course, this does not apply to the two spare gates on the waveform generator.

16.4 Using Waveform Generators for Programmed Modulation

01-999014-00 A0398 VNMR Pulse Sequences 181

where thedevice argument is the rf device (OBSch, DECch, DEC2ch, andDEC3ch
for the four statements above, see the footnote on page 40). For switching the
modulation off again, there is another set of four statements:

obsprgoff();
decprgoff();
dec2prgoff();
dec3prgoff();

These statements are all macros that call a single C function:

prg_dec_off(2,device);

The2 in the first argument causes a hard abort (reset) in execution of the waveform
generator pattern; a 0 in lieu of the 2 would create a soft stop, allowing the waveform
generator to stop at the end of the pattern6.

Note that these functions do not turn on the transmitter gate, and the default transmitter
gating in the waveform generator pattern isoff. In other words, unless the transmitter
is gated on explicitly in the pattern file (through an odd value in column four), the
transmitter has to be gated on explicitly in the pulse sequence using statement such as
xmtron andxmtroff , decon , anddecoff ; for example:

obsprgon("mlev17",1.0/dmf,dres);
xmtron();
delay(getval("mix"));
obsprgoff();
xmtroff();

The sequence of the statements may be relevant. If thexmtron precedes the
obsprgon call, the rf is turned on unmodulated during the AP bus traffic to the
waveform generator (five AP bus words or 5.75 microseconds on a UNITYplus, 10.75
microseconds on UNITY spectrometers). On the other hand, with the above coding,
there is a gap between any preceding time event (e.g., a pulse) and the start of the
modulation. Similar considerations apply to the end of the modulation on UNITY
spectrometers, where there is a 4.3 microseconds hidden delay (there is no implicit
delay behind the modulation on a UNITYplus).Which solution is best depends on the
pulse sequence—no general recommendation can be given here.

The advantage of theobsprgon andobsprgoff mechanism is that the modulation
can be turned on at any point in a pulse sequence, and it can be left on while other
events (pulses, delays—anything that does not use the modulated channel) take place,
and it can be turned off at any point later in the sequence. There are cases, however,
like the TOCSY sequence, where we would just like to perform a mixing time with
spinlock on one channel, and there it would seem simpler if we could just activate the
waveform generator with a single command. In fact, such statements exist:

spinlock(name,pw90,pwres,phase,nloops);
decspinlock(name,pw90,pwres,phase,nloops);
dec2spinlock(name,pw90,pwres,phase,nloops);
dec3spinlock(name,pw90,pwres,phase,nloops);

Once more, these are all macros (as defined in/vnmr/psg/macros.h), calling a
single C function:

genspinlock(name,pw90,pwres,phase,nloops,device);

6 This is usually undesirable, because the modulation would then continue asynchronously up to the
end of the pattern (i.e., the pulse programmer wouldnot wait for the end of the modulation before
continuing with the next FIFO words).

Chapter 16. Waveform Generators

182 VNMR Pulse Sequences 01-999014-00 A0398

The first three arguments to these statements are the same as withobsprgon and
related functions. In thephase argument, the basic 90-degree phase shift for the
spinlocking pulse train can be specified (often the spinlock pulses are subjected to
phase cycling), and in thenloops argument to the macros, the number of pattern loop
cycles is specified (nloops must be aninteger, not a floating point number!). This is
not the parameter the spectroscopist is normally interested in. In most cases, the
relevant parameter is the spinlock time. This requires calculation of the possible
number of loop cycles in the pulse sequence, which is no real problem for a given
modulation pattern:

ncycles = (int)(getval("mix")/(64.667*pw90));
spinlock("mlev17",pw90,90.0,zero,ncycles);

It would not make sense to define the name of the decoupling pattern as a variable,
because the number of 90-degree pulse lengths per pattern depends on the pattern7.

Thespinlock statements have some other peculiarities. Compared to theobsprgon
type of statement, the default gate setting in inverted so that, by default, the transmitter
gate is turned on instead of off. This gating does not happen through the pulse
programmer (usingxmtron , decon , etc,), but it is done in the waveform generator
data file (see below) to allow for gate switchingduring the modulation, as for instance
required with the “clean” spinlocking sequences that have delays between the elements
of each composite pulse. This seems correct and desirable, but it can create confusion.

As long as no gating occurs within the pattern, anyspinlock statement can easily be
replaced by the following C construct using anobsprgon type of function—this even
avoids calculating the number of loop cycles:

xmtron();
txphase(zero);
obsprgon("mlev17",pw90,90.0);
delay("getval("mix")");
obsprgoff();
xmtroff();

This is more than just equivalent—it would even allow replacing the delay with a
sequence of other events: performing pulses and delays during the spinlock period,
without interrupting the modulation.

Now consider the case where somebody wanted to perform a “clean”-type of spinlock.
In this case thexmtron andxmtroff statements cannot be used, because this would
override any gating done by the shape (the transmitter would be continuously on). The
new construct will be:

txphase(zero);
obsprgon(“clean_mlev17”, pw90, 90.0);
delay(“getval(“mix”));
obsprgoff();

Now we need a pattern definition that includes the gating column. To specify a gating
value (column 4) we also need to specify the (default) amplitude. A programmer could
now save some work by specifying only the gating where the transmitter must be on
(because the transmitter gate is off by default):

7Having the pattern name as a variable would require parsing the pattern to find out about the pattern
length, which of course would exceed the scope of normal pulse sequence programming (and
probably the capabilities of many pulse sequence programmers).

16.4 Using Waveform Generators for Programmed Modulation

01-999014-00 A0398 VNMR Pulse Sequences 183

Clean MLEV-17
 90.0 0.0 1023.0 1.0
 90.0 270.0
180.0 270.0 1023.0 1.0
 90.0 0.0
 90.0 0.0 1023.0 1.0
 90.0 0.0 1023.0 1.0
 90.0 270.0
180.0 270.0 1023.0 1.0
 90.0 0.0
 90.0 0.0 1023.0 1.0
....

There is no real problem with this definition—as long as it is used together with
obsprgon ! Now suppose somebody wanted to use this same pattern definition for the
spinlock statement. Suddenly the experiment would not work, because with
spinlock the transmitter gate in on by default, and we are not explicitly gating the
transmitter off during the gaps! The conclusion is that if gating is usedwithin a pattern,
specify it for all slices. This makes the pattern usable with both types of functions:

Clean MLEV-17
90.0 0.0 1023.0 1.0
90.0 270.0 1023.0 0.0
180.0 270.0 1023.0 1.0
 90.0 0.0 1023.0 0.0
 90.0 0.0 1023.0 1.0
 90.0 0.0 1023.0 1.0
 90.0 270.0 1023.0 0.0
180.0 270.0 1023.0 1.0
 90.0 0.0 1023.0 0.0
 90.0 0.0 1023.0 1.0
....

The file /vnmr/psg/wg.c also defines a statementgen2spinlock that allows
simultaneous (asynchronous) spinlocking and decoupling on two channels; currently
no macro calls this undocumented statement. In general, it is as easy to use the
obsprgon type of statement to achieve the same thing; therefore, this will not be
further discussed here.

How Does Pattern Modulation Work Internally?

Let’s first have a look at the Acode generated bystatus-based waveform generator
modulation

Acode and Pattern File for Programmed Modulation

The following Acode is generated when using the waveform generator for modulated
(broadband) decoupling using the first decoupler channel on a UNITY spectrometer:
300 294 188 102 WG3 AP addr 0x0c18, IB addr = 0x0000
303 297 191 101 WGCMD AP addr 0x0c18, WFG cmd = 0x07
306 300 194 150 HighSpeedLINES DECUP WFG2
309 303 197 150 HighSpeedLINES DECUP WFG2
312 306 200 151 EVENT1_TWRD 1000 msec
314 308 202 150 HighSpeedLINES WFG2
317 311 205 150 HighSpeedLINES (void)
320 314 208 101 WGCMD AP addr 0x0c18, WFG cmd = 0x80

There are three principal differences to the Acode produced for a shaped pulse:

Chapter 16. Waveform Generators

184 VNMR Pulse Sequences 01-999014-00 A0398

• The (decoupler) transmitter gate is turned on explicitly (overriding the waveform
generator’s transmitter gating).

• The waveform generator is started using control code0x07 (for infinite looping).

• At the end of the modulation period the waveform generator is stopped using
control code0x80 (reset or abort), causing the modulation to halt immediately.

The Acode for a UNITYplus is very similar:
380 374 268 150 HighSpeedLINES DEC WFG2
383 377 271 102 WG3 AP addr 0x0c18, IB addr = 0x0000
386 380 274 101 WGCMD AP addr 0x0c18, WFG cmd = 0x07
389 383 277 150 HighSpeedLINES DEC WFG2
392 386 280 150 HighSpeedLINES DEC WFG2
395 389 283 151 EVENT1_TWRD 1000 msec
397 391 285 150 HighSpeedLINES DEC WFG2
400 394 288 150 HighSpeedLINES WFG2
403 397 291 150 HighSpeedLINES (void)

The main difference is that on the UNITYplusthe waveform generator modulation is
stopped by resetting the fast status line, and no AP bus traffic is required to achieve
this. The Acode was created usingdm='ynn' , with ad1 of 1 second.

The Acode produced by theobsprgon andobsprgoff combined with the
spinlock type of statements is identical, except that these statements do not turn on
the pulse programmer rf gate. For theobsprgon type of statement, this is normally
done through explicit gating in the pulse sequence usingxmtron , decon , etc., which
would make the Acode indistinguishable from the code above.

In the case ofspinlock and the related statements, the system does not use finite
looping on the waveform generator. The waveform generator has only an 8-bit loop
counter, allowing for 255 loop cycles maximum. The number of loop cycles in spin
locking may be much larger than that. Instead, the waveform generator is started with
infinite looping. From the loop count, the total duration of the spinlock time is
calculated. In the Acode the system performs a delay of that length and then stops the
waveform generator (using control code 0x80 on a UNITY or by resetting the fast
status line on a UNITYplus).

16.4 Using Waveform Generators for Programmed Modulation

01-999014-00 A0398 VNMR Pulse Sequences 185

Let’s see the waveform generator data (instruction block and pattern data) for
WALTZ-16 decoupling during a status field:
INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words
--
0x08ffcc00 IB_START: RAM start address = 0xffcc
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0xa000063f IB_PATTB: Time count = 1600 (0.00008000 sec / 80.00 usec)
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c18, WG start address = 0xffcc, 36 words
--
count amplitude phase gates
----- --------- ------ -----
 3 1024 180.00
 4 1024 0.00
 2 1024 180.00
 3 1024 0.00
 1 1024 180.00
 2 1024 0.00
 4 1024 180.00
 2 1024 0.00
 3 1024 180.00
 3 1024 0.00
 4 1024 180.00
 2 1024 0.00
 3 1024 180.00
 1 1024 0.00
 2 1024 180.00
 4 1024 0.00
 2 1024 180.00
 3 1024 0.00
 3 1024 0.00
 4 1024 180.00
 2 1024 0.00
 3 1024 180.00
 1 1024 0.00
 2 1024 180.00
 4 1024 0.00
 2 1024 180.00
 3 1024 0.00
 3 1024 180.00
 4 1024 0.00
 2 1024 180.00
 3 1024 0.00
 1 1024 180.00
 2 1024 0.00
 4 1024 180.00
 2 1024 0.00
 3 1024 180.00

END OF FILE

In this case, the parameterdres was set to 90, and the duration count in each slice
corresponds to the tip angle divided by the resolution (90 degrees) in each slice. The
parameterdmf (i.e., the inverse 90 degrees pulse length) was set to 12500; therefore,
the pattern time units is set to 80 microseconds by theIB_PATTB word in the
instruction block.

The (infinite) looping is not specified in the instruction block. This is done through the
control code (0x07) sent to the waveform generator at run time. The instruction and
data blocks generated byobsprgon (decprgon , etc.), are identical to those

Chapter 16. Waveform Generators

186 VNMR Pulse Sequences 01-999014-00 A0398

generated bystatus -based decoupling (assuming the same parameters and pattern
selection): the transmitter gate is off by default.

The waveform generator data are different for thespinlock statement and its
relatives. Here the transmitter is on by default—not through the pulse programmer
(because this would override transmitter gating from the waveform generator), but
through the waveform generator itself. The following data are for (decoupler based)
MLEV-16 spinlocking:
INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words
--
0x08ffbf00 IB_START: RAM start address = 0xffbf
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0xa000063f IB_PATTB: Time count = 1600 (0.00008000 sec / 80.00 usec)
0xe0000000 IB_SEQEND: End of instruction block

RF DATA BLOCK:
AP address = 0x0c18, WG start address = 0xffbf, 49 words
--
count amplitude phase gates
----- --------- ------ -----
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON
 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON

16.4 Using Waveform Generators for Programmed Modulation

01-999014-00 A0398 VNMR Pulse Sequences 187

 1 1024 180.00 TXON
 2 1024 270.00 TXON
 1 1024 180.00 TXON
 1 1024 0.00 TXON
 2 1024 90.00 TXON
 1 1024 0.00 TXON

END OF FILE

The transmitter gate is switched on throughout the pattern, but not within the
instruction block (for pulses, the transmitter would also be on during eventual delays
in the instruction block). The parameterdmf was again set to 12500.

The Influence of the dres Parameter

The duration count in a modulation pattern should be proportional to the tip angle that
is specified in the first column of the pattern file. The number of counts per tip angle
depends on thedres parameter that defines the tip angle resolution. For modulation
pattern like WALTZ-16 or MLEV-16, where all the pulses are in multiples of 90
degrees,dres can be set to 90, which gives one count for a 90-degree pulse, two
counts for a 180-degree pulse, etc. (as shown in the above examples). For sequences
like MLEV-17 or GARP-1dres=90 would not work, because it only allows for tip
angles in multiples of 90 degrees: all pulses in a pattern should ideally be multiples of
the tip angle resolutiondres ; otherwise, they arerounded to multiples ofdres in the
final pattern.

Two examples: The MLEV-17 modulation pattern ends with a 60 degrees pulse, all
other pulses are 90 or 180 degrees. In order to get an accurate reproduction of that
pattern,dres must be set to 30, 15, 7.5 or 3.75 (the last value only for the UNITYplus).
For reasons shown below, the preferred value 30. The GARP-1 modulation pattern
consists of 100 pulses with 23 different tip angles ranging from 26 to 268 degrees:

GARP-1 Broadband Decoupling Sequence
 31.0 0.0
 55.0 180.0
258.0 0.0
268.0 180.0
 69.0 0.0
 62.0 180.0
 85.0 0.0
 92.0 180.0
135.0 0.0
256.0 180.0
 66.0 0.0
 46.0 180.0
 26.0 0.0
 73.0 180.0
.....

The only way to get an accurate reproduction of such a pattern is withdres=1 . This
produces the following instruction and data blocks for the waveform generator:

INSTRUCTION BLOCK:
AP address = 0x0c18, WG start address = 0000, 6 words
--
0x08ff7a00 IB_START: RAM start address = 0xff7a
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010000 IB_SCALE: loop count = 1
0x80000000 IB_WAITHS: Wait for high-speed line trigger
0xa0000011 IB_PATTB: Time count = 18 (0.00000090 sec / 0.90 usec)
0xe0000000 IB_SEQEND: End of instruction block

Chapter 16. Waveform Generators

188 VNMR Pulse Sequences 01-999014-00 A0398

RF DATA BLOCK:
AP address = 0x0c18, WG start address = 0xff7a, 118 words
--
count amplitude phase gates
----- --------- ------ -----
 31 1024 0.00
 55 1024 180.00
 255 1024 0.00
 3 1024 0.00
 255 1024 180.00
 13 1024 180.00
 69 1024 0.00
 62 1024 180.00
 85 1024 0.00
 92 1024 180.00
 135 1024 0.00
 255 1024 180.00
 1 1024 180.00
 66 1024 0.00
 46 1024 180.00
 26 1024 0.00
 73 1024 180.00
....

The maximum duration count is 255. If a tip angle results in a greater duration count,
these counts are spread over several pattern words. In the above example, the
parameterdmf was left at a value of 12500. This results in a duration unit of 900
nanoseconds, as can be seen from the instruction block above. The smaller thedres
parameter is set, the smaller a duration unit is obtained.

The minimum duration unit is 200 nanoseconds. Even high modulation rates (large
decoupling ranges) can be performed at a high tip-angle resolution (low values for
dres). It seems that all modulations can be performed with the highest possible tip
angle resolution. The only price we seem to pay is that for large tip angles, additional
pattern words are required, but the result should be the same.

There is a possible drawback with small values indres , however. The smaller the
duration units (which are proportional todres and inversely proportional todmf), the
larger a timing error we can get. With a duration unit of 0.5 microseconds and a timing
resolution of 0.1 microseconds (UNITY), the round-off error can be up to 10%, on a
UNITYplus with 50-nanosecond timing resolution it can still be up to 5%. The
conclusion is that the smaller adres is selected, the greater the overall timing error.
If the duration unit is rounded down by 10%, all pulses in the pattern are too short by
10%. The software checks on the timing error when constructing the instruction block,
and any time base (round-off) error above 2% is reported. Of course, we can adjustdmf
(or the pulse length, the second argument to thespinlock andobsprgon functions),
but this just avoids the error and does not remove the error in the effective tip angle in
every single pulse in the pattern8!

The conclusion is that the tip angle should be selectedas large as the pattern permits,
and, unless a pattern like GARP-1 requires it, it is better not to work with the minimum
value indres and related parameters.

8 In order to keep the modulation algorithm working accurately, we would have to adjust the power
to the new (executable) value ofdmf : a 5% error in the pulse length requires a power adjustment of
about 1 dB.

16.5 What If a Waveform Generator Is Not Available

01-999014-00 A0398 VNMR Pulse Sequences 189

How small can the tip-angle resolution be? It would not make sense to allow for tip
angle resolutions as small as 0.1 degree because such values would lead to extremely
small duration units, even at moderate modulation rates, and round-off errors would be
obtained very often. Also, the pattern file would be blown up excessively—a 270-
degree tip angle would result in 11 pattern words. In addition to that, a tip angle
resolution much below one degree does not make sense anyway, because a 90 degree
pulse is never calibrated with this accuracy. The software, therefore, prevents setting
dres and related parameters incorrectly, and the tip-angle resolution inobsprgon
andspinlock type functions in various places:

• The parameterdres (as well asdres2 , dres3) has a lower limit of 1 (degree).
This can be changed easily using the VNMRsetlimit command.

• In /vnmr/psg/cps.c , values smaller than 1 in these parameters are reset to a
minimum of 1. This means, that for status-field controlled modulationdres can’t
be any smaller than 1.

• Theobsprgon andspinlock families of statements limit the tip-angle
resolution to a minimum of 0.7 degrees (in/vnmr/psg/wg.c). Altering this
would require changes to the pulse sequence overhead (i.e., usingpsggen to
change the precompiled libraries). Using this lower limit requires using a
parameter different fromdres (this would be reset to 1, see above) or (assuming
modified parameter limits in VNMR) usinggetval("dres") as third argument
to obsprgon / spinlock .

16.5 What If a Waveform Generator Is Not Available

For decoupling, the main disadvantage in not having a waveform generator is that the
user is limited to the built-in, pre-programmed decoupling methods.

Programmed Decoupling

On a UNITYplus, programmed decoupling includes GARP-1, WALTZ-16, MLEV-
16, XY-32 and others—a range that should cover all of today’s needs for broadband
decoupling. There are more limitations on UNITY and earlier spectrometers, where in
essence only WALTZ-16 is available for broadband decoupling. This can be an
experimental limitation, especially in cases where a large chemical shift range needs to
be decoupled, where GARP-1 permits using much lower power, therefore reducing the
sample heating. To some degree, it is possible to explicitly program other, synchronous
decoupling methods as explicit acquisition with pulses between the sampling points,
but for moire complex methods like GARP-1 this is rather complex, to say the least.

For single-broadband UNITY systems performing indirect detection, a waveform
generator on the observe channel can be a real benefit, in that it allows for continuous,
asynchronous broadband X decoupling. Without waveform generator the only
possibility is to explicitly program and acquisition loop with interleaved decoupling
pulses. On systems with an output board (63-word FIFO), this is limited to WALTZ-4
and also may suffer from power or duty-cycle problems, because for large proton
spectral windows a composite (90x-180-x-270x) pulse may easily be longer than the
dwell time. On systems with an acquisition control board (1024-word FIFO), XY-32
can be used, which definitely outperforms WALTZ-4.

Chapter 16. Waveform Generators

190 VNMR Pulse Sequences 01-999014-00 A0398

For spinlocking experiments (modulation on the transmitter channel), only explicitly
coded modulation is possible. This is no real limitation, because even complex
modulation algorithms (up to several hundred pulses, depending on the pulse
programmer) can be implemented using software or hardware looping.

Shaped Pulses

With a slice width of down to 200 nanoseconds, the waveform generator is unique in
its capability to shape even short, hard pulses. The range of possibilities for systems
without waveform generators depends on the type of instrument:

UNITY and Earlier Spectrometers

Systems without a waveform generator do not have a linear amplitude modulator, so
that the only possibility for performing shaped pulses is through rf attenuators. Several
hardware conditions must be fulfilled before pulse shaping can be done successfully:

• Linear amplifiers are prerequisite, otherwise the power level cannot be regulated
well enough.

• The T/R switch is also required, otherwise (with crossed diodes) the pulse shapes
would be distorted dramatically at voltage levels below 0.5 volts (seeSection 4.2,
“How Do Pulses Work?,” on page 40).

• The standard 63 or 79 dB attenuator does not provide a power range that allows
shaping selective pulses (with excitation bandwidths below several hundred Hz).
An additional fast, switchable (PIN-diode-based) attenuator is required for the
channel on which pulse shaping should occur. Early systems did not have the ports
for additional (fine) attenuators. On these, the only way out would be to take the
decoupler attenuator and route it into the transmitter channel, in series with the
standard attenuator. This leaves the system without decoupler, or with a decoupler
with fixed attenuation. Systems with newer AP interface cards have ports for fine
attenuators (normally used for solids NMR experiments). These ports can also be
used (improperly) for an additional 63-dB attenuator, which then gives the power
range required for shaping even very selective pulses.

If these hardware conditions are fulfilled, theinclude file shape_pulse.c from
/vnmr/psg can be used. It contains a statement for performing Gauss- and Hermite-
type shaped pulses using attenuators. The limitations are that only built-in
(programmed) pulse shapes can be used, small-angle phase shifting is not provided,
and the minimum slice width is 10 microseconds (which precludes shaping hard
pulses). For more information, see the text of the include file9. Shape definitions for
waveform generators cannot be used for attenuators, because attenuators are calibrated
in dB, whereas the amplitude modulator on the AM/PM transmitter board is linear.

UNITYplus

UNITYplus users are in a more favorable position. Both the amplitude and the phase
modulators are included with every rf channel and can be addressed via the AP bus,
even if no waveform generator is present. This permits using the shape definitions for

9 More powerful functions have been submitted to the user library, allowing for free shape
programming through tables, including more pre-programmed pulse shapes (such as the BURP-type
of pulse shapes), or even including small angle phase shifting.

16.5 What If a Waveform Generator Is Not Available

01-999014-00 A0398 VNMR Pulse Sequences 191

waveform generators, basically allowing for any shapes, even those using small-angle
phase shifting. This has been realized in the following statements:

apshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2);
decapshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2);
dec2apshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2);

which are macros calling the following C function:

gen_apshaped_pulse(name,width,phase,tbl1,tbl2,rx1,rx2,device);

The arguments are the same as for the statements and macros for waveform generators,
with the exception of twounusedphase table names (t1 to t60) that must be supplied
with every call (for multiple calls of these functions, new names have to be supplied
with every call). These tables are used to internally store the amplitude and phase
vectors that are read out of the specifiedstandard waveform generator shape file
(shapelib/*.RF).

The C functiongen_apshaped_pulse decodes the shape file and stores the phase
and amplitude vectors in auto-incrementing tables. It then performs the shaped pulse
in a real-time loop. The minimum slice length is given by the time it takes to set the
power on the linear modulator and the small-angle phase shift via the AP bus (2.3 +
3.45 microseconds, 5.75 microseconds in total, plus a minimum delay of 0.2
microseconds, resulting in a minimum slice length of 5.95 microseconds). The central
part of this function is coded as follows10:

/*--| Calculate
time spent for AP bus events within each slice |
+--*/
aptime = POWER_DELAY + SAPS_DELAY;

if ((plength - aptime) < MINDELAY)
{

text_error("apshaped_pulse: pulse too short or too many \
elements in shape");

abort(1);
}

/*--+
| set 90 degrees phase, set phase step size |
+--*/
txphase(phs);
stepsize(0.25,OBSch);
/*--------------------------------+
| gate receiver off, do rx1 delay |
+--------------------------------*/
rcvroff();
if (rx1 - aptime > 0.0)
 delay(rx1-aptime);

/*--+
| before turning on the transmitter and entering the |
| pulse loop preset phase and amplitude for the first |
| slice, to avoid a glitch at the start of the pulse |
+--*/

10This is not the original coding. To keep the text understandable, low-level functions have been
replaced by their standard equivalents that are also used in pulse sequences. The coding shown here
is written specifically for the observe channel. The “real” function uses generalized, low-level
functions that work for all rf channels.

Chapter 16. Waveform Generators

192 VNMR Pulse Sequences 01-999014-00 A0398

pwrf(pwrtbl,OBSch);
xmtrphase(phstbl);
txphase(phs);
decr(v12);

/*---+
| turn on transmitter, then in a soft loop execute one |
| slice, then set power and phase for the next slice |
| after the loop do the last slice, then switch rf off |
+---*/
xmtron();
loop(v12, v13);
 delay(plength-aptime);

pwrf(pwrtbl,OBSch);
xmtrphase(phstbl);
txphase(phs);

endloop(v13);
delay(plength);
xmtroff();
rlpwrf(4095.0, OBSch);
rlxmtrphase(zero);
txphase(phs);

/*---+
| perform rx2 delay, gate receiver back on again |
+---*/
if (rx2 - aptime > 0.0)
 delay(rx2-aptime);
rcvron();

In this code,plength is the slice length, calculated as pulse length divided by the
number of slices in the shape file. Slices with duration counts greater than 1 are
translated into multiple slices with a duration count of 1. The real-time variablev12
contains the number of loop cycles.pwrtbl andphstbl are the two table names that
are given as arguments; they have been “filled” with the amplitude and table values
from the shape file. Note that the amplitude values from the table have to be multiplied
by 4 in order to get the proper amplitude range, because the waveform generator only
addresses the ten most significant bits (0 to 1023), whereas through the AP bus the full
range (12 bits, 0 to 4095) can be used.

As an example, if we take the 256-step gaussian pulse that was discussed previously in
this chapter, we obtain a rather impressive piece of Acode from this single function:

 399 393 287 150 HighSpeedLINES (void)
 402 396 290 39 ASSIGNFUNC zero v12
 405 399 293 31 MULtFUNC three three v13
 409 403 297 31 MULtFUNC v13 three v13
 413 407 301 31 MULtFUNC v13 three v13
 417 411 305 31 MULtFUNC v13 three v13
 421 415 309 29 ADDFUNC v12 v13 v12
 425 419 313 32 DIVFUNC v13 three v13
 429 423 317 32 DIVFUNC v13 three v13
 433 427 321 32 DIVFUNC v13 three v13
 437 431 325 29 ADDFUNC v12 v13 v12
 441 435 329 32 DIVFUNC v13 three v13
 445 439 333 29 ADDFUNC v12 v13 v12
 449 443 337 32 DIVFUNC v13 three v13
 453 447 341 29 ADDFUNC v12 v13 v12
 457 451 345 16 SETPHAS90 CH1 oph
 460 454 348 68 PHASESTEP CH1 1 units (0.25 degrees)
 463 457 351 150 HighSpeedLINES RXOFF
 466 460 354 150 HighSpeedLINES RXOFF
 469 463 357 151 EVENT1_TWRD 4.250 usec
471 465 359 105 TABLE 360 size 256, autoinc 1, divn_ret 1, ptr 0

16.5 What If a Waveform Generator Is Not Available

01-999014-00 A0398 VNMR Pulse Sequences 193

 45 49 52 56 60 64 69 73
 78 84 89 95 102 108 115 123
 131 139 148 157 166 176 187 198
 210 222 235 249 263 277 293 309
 326 343 362 381 401 421 443 465
 488 512 537 563 590 617 646 676
 706 738 770 804 838 874 910 948
 986 1026 1066 1108 1150 1193 1238 1283
 1329 1377 1425 1474 1523 1574 1626 1678
 1731 1784 1838 1893 1949 2004 2061 2118
 2175 2232 2290 2348 2406 2464 2523 2581
 2639 2697 2754 2812 2869 2925 2981 3036
 3091 3145 3198 3250 3302 3352 3401 3449
 3496 3541 3585 3628 3669 3708 3746 3783
 3817 3850 3880 3909 3936 3961 3984 4005
 4024 4040 4055 4067 4077 4085 4091 4094
 4095 4094 4091 4085 4077 4067 4055 4040
 4024 4005 3984 3961 3936 3909 3880 3850
 3817 3783 3746 3708 3669 3628 3585 3541
 3496 3449 3401 3352 3302 3250 3198 3145
 3091 3036 2981 2925 2869 2812 2754 2697
 2639 2581 2523 2464 2406 2348 2290 2232
 2175 2118 2061 2004 1949 1893 1838 1784
 1731 1678 1626 1574 1523 1474 1425 1377
 1329 1283 1238 1193 1150 1108 1066 1026
 986 948 910 874 838 804 770 738
 706 676 646 617 590 563 537 512
 488 465 443 421 401 381 362 343
 326 309 293 277 263 249 235 222
 210 198 187 176 166 157 148 139
 131 123 115 108 102 95 89 84
 78 73 69 64 60 56 52 49
 732 726 620 106 TASSIGN table 360 tblrt
 735 729 623 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes
 max 4095, offset 0, value tblrt
741 735 629 105 TABLE 630 size 256, autoinc 1, divn_ret 1, ptr 0

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Chapter 16. Waveform Generators

194 VNMR Pulse Sequences 01-999014-00 A0398

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
1002 996 890 106 TASSIGN table 630 tblrt
1005 999 893 65 SETPHASE CH1f tblrt
1008 1002 896 16 SETPHAS90 CH1 oph
1011 1005 899 28 DECRFUNC v12
1013 1007 901 150 HighSpeedLINES RXOFF TXON
1016 1010 904 39 ASSIGNFUNC zero v13
1019 1013 907 42 IFMInusFUNC v12 one Offset = 937
1023 1017 911 151 EVENT1_TWRD 44.250 usec
1025 1019 913 106 TASSIGN table 360 tblrt
1028 1022 916 59 APChipOUT APaddr 11, reg 150, -logic, 2 bytes
 max 4095, offset 0, value tblrt
1034 1028 922 106 TASSIGN table 630 tblrt
1037 1031 925 65 SETPHASE CH1f tblrt
1040 1034 928 16 SETPHAS90 CH1 oph
1043 1037 931 27 INCRFUNC v13
1045 1039 933 42 IFMInusFUNC v13 v12 Offset = 911
1049 1043 937 151 EVENT1_TWRD 50.000 usec
1051 1045 939 150 HighSpeedLINES RXOFF
1054 1048 942 65 SETPHASE CH1f zero
1057 1051 945 16 SETPHAS90 CH1 oph
1060 1054 948 151 EVENT1_TWRD 4.250 usec
1062 1056 950 150 HighSpeedLINES (void)

The purpose of the real-time math section at the beginning (not shown in the C code
above) is to store the number of slices in a real-time variable without usinginitval
(see also“New Real-Time Numeric Constants” on page 97). The most prominent
feature in the following section are the two tables containing all 256 amplitude and
phase values of that pulse, taking up a full Kbyte (two times 256 16-bit words) of
Acode space. Of course the second table could, in theory, be reduced to a single
constantzero , but the program cannot “know” that this shape file contains no phase
changes.

Apart from the amount of Acode that is necessary to perform such a pulse through
Acode, and some limitations with respect to the modulation rate, everything seems to
be fine, andapshaped_pulse in fact is a reasonable replacement for a waveform
generator for many experiments, in particular, selective excitation. There are, however,
a few fundamental differences and limitations to this solution. Some of them lie in the
way the waveform generator works; others are a consequence of the above coding and
of the way how phase shifting works.

One problem lies in small-angle phase shifting. Any internal phase shifting on a
waveform generator is performedon top ofany current quadrature and small-angle
phase shifts. This cannot be emulated in software. The internal phase shifting in
gen_apshaped_pulse is set viaxmtrphase or equivalent statements, with work
in an absolute frame. They even reset any existing quadrature (90-degree) phase shift!
The latter is added in again after thexmtrphase call (gen_apshaped_pulse
therefore works properly on top of any quadrature phase shift), but this cannot be done
for the small-angle phase shifting. Small-angle phase shift coaddition is not provided,
and hencegen_apshaped_pulse does not work properly on top of small angle
phase shifting.

The other problem lies in the fact that quadrature phase shift needs to bereestablished
after eachxmtrphase or equivalent call. The statementtxphase (or its equivalents
for the current channel) is called once for each slice, which implies that

16.6 Using a Waveform Generator for Shaping Gradient Pulses

01-999014-00 A0398 VNMR Pulse Sequences 195

autoincrementing tables cannot be used as phase variables toapshaped_pulse or
equivalent macros.

Over all, what are the limitations of theapshaped_pulse approach?
• The minimum slice length is 5.95 microseconds, compared to 0.2 microseconds

with the waveform generator. Real short hard pulses cannot be shaped;
• Phase and amplitude changes don’t occur simultaneously. The phase and the

amplitude profile of the pulse are shifted against each other by 3.45 microseconds;
• Slices with the transmitter gate switched off are simply skipped;
• apshaped_pulse and related functions don’t work as expected on top of small

angle phase shifting;
• The phase variable cannot be an autoincrementing table;
• Simultaneous shaped pulses are not possible;
• apshaped_pulse generates lots of Acode, which may possibly limit its use for

multidimensional (3D, 4D) experiments;
• Even though the Acode size may theoretically allow for a single shape of up to

about 4000 slices (see also“Acode Size Limitations, Acode Buffering” on page
83), such long shapes will most likely lead to FIFO underflow. On a UNITY or
UNITYplus system, the FIFO is only filled at a rate of below one word per 20
µsec11, which may in many cases be the real rate-limiting step.

Nevertheless:apshaped_pulse permits performing most selective excitation
experiments (even demanding ones like those using shifted laminar pulses12 or SS
pulses13) perfectly without a waveform generator, and some of the inherent limitations
can be bypassed by programming measures.

16.6 Using a Waveform Generator for Shaping Gradient Pulses

The waveform generator was first designed for shaping field gradients and rf pulses in
imaging experiments. Only later it was adapted for high-resolution machines. By the
addition on one component (the amplitude multiplier), a UNITYplus waveform
generator can be converted for shaping field gradients (of course, the AP address has
to be changed by reconfiguring its jumper settings).

The gradient waveform generator works along the same principles as an rf waveform
generator, except that it controls the amplitude of a single field gradient instead of
phase and amplitude of an rf signal and rf gates. Therefore, a gradient pattern word has
a totally different layout, as shown inTable 11.

Bits 0 to 7 are again the duration count (same as for the rf pattern), bits 8 to 23 form a
16-bit field gradient amplitude value (-32768 to 32767), and the bits 24 to 31 are
unused (field gradients are dc by nature, so there is nophase parameter14). Pulsed
field gradients may not only be scaled in the time scale, often (mostly, in imaging

11This is under optimum conditions, without lots of Acode overhead from soft looping or
table access, etc. (both are used in theapshaped_pulse function). The actual transfer rate
for theapshaped_pulse function has not been determined.
12S.L. Patt,J. Magn. Reson. 96, 94 (1992).
13S.H. Smallcombe,J. Am. Chem. Soc.115, 4776 (1993).
14 Instead, the amplitude is signed (it can be positive or negative), but the rf amplitude is measured
and regulated in magnitude only.

Chapter 16. Waveform Generators

196 VNMR Pulse Sequences 01-999014-00 A0398

experiments) gradients are scaled in their amplitude. For an imaging experiment, a
spatial dimension can be encoded by stepping a gradient through an array of (positive
and negative) values.

With the rf definition of a waveform generator, we would have to define as many
shapes as there are amplitude values. To avoid this, field gradient shapes are made
generic in two ways: they can be scaled in duration (the same way as rf shapes and
pattern) and in amplitude. The amplitude value in the pattern is not the final one. The
gradient waveform generator has a built-in multiplier that multiplies the amplitude
value in every pattern word with a scalar value in theIB_SCALE instruction word of
the corresponding instruction block (see also“Waveform Generator Instruction
Words” on page 169).

Most imaging experiments use at least one stepped gradient for spatial encoding.
Often, there are 32, 64, 128, or 256 different gradient increments. This means that in
the pattern file, there are that many instruction blocks pointing to the same data
(pattern) block, each of them with a different scaling factor in theIB_SCALE
instruction word.

In terms of basic data handling, the gradient waveform generator is treated the same
way as its rf equivalent. Here is a (hypothetical) data file for a “hsine”-shaped gradient
without amplitude scaling:

INSTRUCTION BLOCK: Z GRADIENT
AP address = 0x0c30, WG start address = 0000, 5 words
--
0x08ff7100 IB_START: RAM start address = 0xff71
0x20fff001 IB_STOP: RAM stop address = 0xfff0, delay count = 1
0x40010001 IB_SCALE: loop count = 1, amplitude scale = 1
0xa000b88b IB_PATTB: Time count = 47244 (0.00236220 sec / 2362.20 usec)
0xe0000000 IB_SEQEND: End of instruction block

DATA BLOCK: Z GRADIENT
AP address = 0x0c30, WG start address = 0xff71, 127 words
--
count amplitude
----- ---------
 1 810
 1 1620
 1 2429
 ...

(57 lines deleted)
...

 1 32704
 1 32744
 1 32764
 1 32764
 1 32744
 1 32704
 ...

(57 lines deleted)
...

Table 11. Comparison of waveform generator pattern words

Type 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rf SP T phase amplitude duration

Gradient amplitude duration

16.6 Using a Waveform Generator for Shaping Gradient Pulses

01-999014-00 A0398 VNMR Pulse Sequences 197

 1 2429
 1 1620
 1 810
 1 0

END OF FILE

The gradient shape definition files are also stored inshapelib , but with the extension
“ .GRD”. Their format is simpler than the format for rf shapes and modulation pattern.
The two columns in the file contain the gradient amplitude and the duration count
(usually one count per slice):

#
half sine for GRADIENTS
#

810 1.0
1620 1.0
2429 1.0

(57 lines deleted)
32704 1.0
32744 1.0
32764 1.0
32764 1.0
32744 1.0
32704 1.0
(57 lines deleted)

2429 1.0
1620 1.0

810 1.0
0 1.0

Chapter 16. Waveform Generators

198 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 199

Chapter 17. Pulsed Field Gradients

The most prominent difference between pulsed field gradients (PFG) and non-PFG
pulse sequences is the addition of statements that generate the pulsed field gradients.
In certain PFG techniques (like coherence pathway selection and multiple-quantum
filtering using pulsed field gradients), little or no phase cycling is used. Some PFG
sequences use pulses with constant phase only and may therefore look simpler than
their non-PFG equivalents. Where non-PFG pulse sequences eliminate artifacts and
unwanted signals by phase cycling (e.g., subtraction), PFG sequences dephase
unwanted coherences (i.e., make them non-observable, PFG experiments are often less
subject to spectral artifacts than their non-PFG equivalents).

The PFG accessory involves a dc and audio frequency power amplifier with linear
amplitude control through the AP bus, connected to a special probe with a Z gradient
coil. The field gradient coil is shielded. While generating a strong Z field gradient
inside (at the sample), an external compensating field (with opposite sign) is generated,
such that the total field outside the gradient coil is greatly diminished. This helps
reduce eddy currents in the rest of the probe body and in the metal walls of the magnet
dewar (although eddy currents can’t be totally avoided).

17.1 Pulse Sequence Statements for PFG Gradient Control

The statements for gradient control in typical PFG experiments are simple. They reflect
the straightforward, scalar nature of a (linear) field gradient. A single parameter
determines the amplitude of the gradient, which can have values between -32768.0 and
32767.0 (the gradient amplifier uses a 16-bit DAC, negative values are permitted and
usually required in most PFG experiments).

What also simplifies programming pulsed field gradients is the fact that the gradient
amplifier is constructed practically noise-free; therefore, there is no need for blanking
it during off-intervals. The amplifier can be put into “standby” mode by setting the
VNMR parameterpfgon to 'nnn' , while settingpfgon to 'nny' turns on the (Z)
gradient amplifier. There is also no fast line (gating) involved with gradient control.
Typical gradient pulses are on the order of milliseconds; therefore, it is more than
sufficient to set the gradient amplitude with the AP bus. Even gradient shaping can be
done this way (seeSection 17.2, “Shaping Pulsed Field Gradients,” on page 202).

The most basic statement to set the gradient amplitude isrgradient 1:

rgradient(gid,amplitude);

For PFG experiments, the first argument (gid , the gradient identifier) is'z' or 'Z' ,
the second argument (amplitude) is a number between-32768.0 and32767.0 (a
floating point number of type double).

1 There is also a statementvgradient that allows defining the amplitude from real-time variables.
Typical PFG sequences use a few, predefined gradient levels that do not vary within the sequence or
from transient to transient; therefore, usingvgradient would be an unnecessary complication. Up
to now,vgradient has only been used in imaging sequences (see alsoChapter 21,
“(Micro)Imaging Experiments,” on page 239).

Chapter 17. Pulsed Field Gradients

200 VNMR Pulse Sequences 01-999014-00 A0398

A typical pulse sequence construct for a gradient pulse of lengthgz1 and amplitude
gz1lvl using thergradient function could be written as follows:

rgradient('Z',getval("gz1lvl"));
delay(getval("gz1"));
rgradient('Z',0.0);

The higher-level statementzgradpulse allows reducing these lines to a single call:

zgradpulse(amplitude,duration);

Using this statement, the above three lines for a gradient pulse of durationgt1 and
amplitudegz1lvl would be written as

zgradpulse(getval("gz1lvl"),getval("gt1"));

Although this statement has the simplicity of the statements for rf pulses (that use
gating through fast lines), one should still not forget the “underlying three lines” (i.e.,
that there is AP bus traffic before and after the actual gradient pulse, taking up a finite
time). While the time spent in AP bus traffic is negligible compared to the duration of
the gradient pulse itself, it is long enough to cause considerable dephasing for large
chemical shift ranges. It is, therefore, strongly recommended to compensate for this
time in the pulse sequence, in particular during a refocusing interval:

rgpulse(pw,t1,rof1,0.0);
delay(tau-rof1);
rgpulse(pw,t1,rof1,0.0);
zgradpulse(getval(“gz1lvl”), gt1);
delay(tau-gt1-2.0*GRADIENT_DELAY-rof1);
rgpulse(pw,t1,rof1,0.0);

Up to now we have taken gradient pulses as ideal, rectangular pulses, which obviously
was a simplification because any gradient change is slowed down by eddy currents
(this applies to switching both on and off). In first approximation, the time constant of
the decay of these eddy currents is given by the geometry and the construction of the
gradient coil and its surroundings and should not depend on the gradient strength.
Corrective delays have often been implemented in pulse sequences using pulsed field
gradients to compensate for gradient pulse imperfections like the finite slew rate. Such
corrections (in addition to eddy current compensation) are most necessary in imaging
experiments, where eddy currents are a much bigger problem than for high-resolution
PFG experiments (see alsoChapter 21, “(Micro)Imaging Experiments,” on page 239).

The first Varian PFG sequences were written with microimaging experiment concepts
in mind. A typical gradient pulse was programmed as follows:

rgradient('Z',gz1lvl);
delay(gz1+grise);
rgradient('Z',0.0);
delay(grise);
delay(gstab);

This generates the following timing scheme (times not shown proportionally):

grise length grise gstab

17.1 Pulse Sequence Statements for PFG Gradient Control

01-999014-00 A0398 VNMR Pulse Sequences 201

grise is supposed to be the time intervals before and after the pulse that are affected
by the eddy currents (delayed gradient buildup, delayed gradient decay), andgstab is
the time required to reestablish full homogeneity after a gradient pulse. It turns out that
after a typical gradient pulse of a few milliseconds, it takes about 50 microseconds until
the system has recovered from the gradient, such that there are no observable phase
errors (to regain full amplitude may take slightly longer). It is certainly not a good idea
to have a gradient pulse followed immediately by an rf pulse (or data acquisition), but
as long as some delay (of around 50 microseconds) follows the gradient pulse, there
should be no need for an additional delaygstab .

It can be assumed that eddy currents affect both the gradient buildup and gradient turn-
off times the same way (i.e., what we lose at the beginning of the gradient pulse we
regain at the end of the pulse). The gradient pulse is not quite rectangular (neither is
any pulse!). All that counts is thearea(amplitude times duration) of the gradient pulse
because that determines the amount of dephasing achieved. To avoid transversal
relaxation and spin diffusion, it is desirable to have short gradients. On the other hand,
very strong gradients require strong amplifiers that produce lots of noise and, therefore,
affect the overall homogeneity.

With PFG probes, the eddy current time constants are definitely below 10
microseconds. Even if the time constants for turning on and off the gradient pulse were
slightly different, that difference would be negligible, because their magnitude is only
fractions of a percent of the total pulse duration (typically a few milliseconds). Under
this assumption, it is certainlywrong to compensate for eddy current effects using a
finite delaygrise , as this prolongs the gradient pulse.

Most PFG pulse sequences use a gradient pulse to refocus magnetization (coherence)
that was dephased by a preceding pulse. This can only work if the two gradient pulses
have very accurate and well-defined gradient areas.grise in the above scheme would
distort the dephasing ratio between two gradient pulses with different areas, because

Still, many spectroscopists are usinggrise . By intuition, you might think that these
delays “take care of eddy currents.” In fact, effects can be seen in many experiments
where below certain values forgrise (typically 10, sometimes more) some pulse
sequences would simply not work properly. What has happened in those cases was that
the gradients may have been slightly out of balance due to the addition ofgrise to
their lengths (if they had different lengths or amplitudes) but by an amount that is not
noticeable yet. What made the experiments work is that the secondgrise (in the
above scheme) acted as gradient recovery delay.

In many pulse sequences, an rf pulse follows a gradient pulse, and for these cases we
need to insert a recovery delay; otherwise, the rf pulse generates phase errors. This is
most critical in multiple-quantum filtering experiments, where phase or amplitude
distortions after a gradient pulse can seriously hamper the performance of the
sequence. For most sequences a recovery delay of 10 to 20 microseconds is adequate
and sufficient. For multiple-quantum filtering experiments (like gradient MQCOSY or
E.COSY), the recovery time should be adjusted to 50 to 60 microseconds.

gt1 gz1lvl×()
gt2 gz2lvl×()-------------------------

gt1 grise+() gz1lvl×()
gt2 grise+() gz2lvl×()--≠

Chapter 17. Pulsed Field Gradients

202 VNMR Pulse Sequences 01-999014-00 A0398

In conclusion,grise delays are not recommended (as shown in the scheme above),
but if an rf pulse follows a gradient pulse, implementing a gradient recovery delay is
strongly recommended. This delay can be made part of anrgpulse call:

zgradpulse(getval(“gz1lvl”),getval(“gt1”));

rgpulse(pw,v1,gstab,0.0);

17.2 Shaping Pulsed Field Gradients

It has been suggested that using trapezoidal gradients (or gradients with other shapes)
would allow minimizing eddy current effects. Because PFG probes use actively
shielded gradient coils, eddy current effects are minimized; therefore, it was found that
it is not necessary to use shaped gradients. Also, in order to minimize losses due to
transverse relaxation and spin diffusion, it is desirable to use short, strong gradient
pulses. A shaped gradient by definition has a lower duty cycle and is, therefore, longer
than a rectangular gradient with the same “area.” Thus, for most liquids applications,
it is undesirable to use shaped gradients.

Still, there may be situations where shaped gradient pulses have advantages. For
example, in diffusion experiments with very high gradient strengths, a gradient coil
with high-inductive load may cause transition problems to the gradient amplifier when
turning on the gradient. A trapezoidal gradient may alleviate such problems.

How can gradients be shaped? For imaging, a gradient control unit with waveform
generator provides for an easy access to shaped gradients, but the PFG accessory does
not include a waveform generator. Therefore, gradients have to be shaped through the
AP bus, similar to the approach taken in theapshaped_pulse function (seeSection
16.5, “What If a Waveform Generator Is Not Available,” on page 189).

A function for creating a (trapezoidal) shaped gradient is shown below:

rampgrad(amp, length, ramp)
double amp, length, ramp;
{

int i, steps;
double iramp, initval, incr_val;
if (length >= MINDELAY)
{

if (ramp > length)
{

fprintf(stdout,"ramp parameter larger than \
gradient delay\n");

abort(1);
}
steps = (int) (amp / 1000.0);
if ((double) steps * GRADIENT_DELAY > ramp)

steps = (int) (ramp / GRADIENT_DELAY);
if (steps > 1)
{

incr_val = amp / steps;
initval = incr_val;
iramp = ramp / (double) steps - GRADIENT_DELAY;
for (i=0; i<steps; i++)
{

rgradient('Z',initval);
delay(iramp);

17.2 Shaping Pulsed Field Gradients

01-999014-00 A0398 VNMR Pulse Sequences 203

initval += incr_val;
}
rgradient('Z',amp);
if (ramp-(double)steps*(iramp + GRADIENT_DELAY) > MINDELAY)

delay(ramp - (double) steps * (iramp + GRADIENT_DELAY));
}
else
{

rgradient('Z',amp);
if (ramp - GRADIENT_DELAY >= 2e-7)

delay(ramp - GRADIENT_DELAY);
}
if (length - ramp >= MINDELAY) delay(length - ramp);
if (steps > 1)
{

for (i=0; i<steps; i++)
{

rgradient('Z',initval);
delay(iramp);
initval -= incr_val;

}
rgradient('Z',0.0);
if (ramp - (double)steps*(iramp + GRADIENT_DELAY) >= \

GRADIENT_DELAY)
delay(ramp - (double)steps * (iramp + GRADIENT_DELAY));

}
else
{

rgradient('Z',0.0);
if (ramp - GRADIENT_DELAY >= MINDELAY)

delay(ramp - GRADIENT_DELAY);
}

}
}

This function creates a shape with a linear ramp at the beginning and at the end of the
gradient pulse. The amplitude is changed in steps of 1000 ADC units or 1/32 of the
maximum amplitude (or in bigger steps if the ramp duration isn’t long enough). The
shape is calculated such that the gradient “area” is the same as for a rectangular
gradient of the same specified length:

Obviously, when the specified length is less than the duration of one ramp (specified
in the third argument), this could not be maintained; therefore, an error message is
produced.

ramp ramp

length

Chapter 17. Pulsed Field Gradients

204 VNMR Pulse Sequences 01-999014-00 A0398

17.3 PFG Experiments Using Homospoil Pulses

Spectroscopists who don’t have access to a PFG accessory might ask whether it is
possible to perform PFG experiments using the standard gradient (shim) coils. There
are several problems with this approach:

• The achievable gradient strength is very limited. This would lead to very long
gradient pulses (probably 10 to 100 milliseconds) causing losses due to transverse
relaxations and spin diffusion.

• The shim coils are not shielded; therefore, the recovery time from a shim coil
gradient pulse is several milliseconds. The gradient recovery delays would further
increase the losses.

• There are no user-accessible functions that allow setting shim DACs from within
a pulse sequence (although certainly such a function could be created).

• Even if a user-accessible function were created, its use would still be very
unhandy. At least for one of the polarities, the achievable amplitude may be
strongly limited if the standard gradient amplitude is far off from zero.

Of course, we can decide to use the homospoil pulse to avoid the above problems. The
homospoil pulse can be triggered with existing statements in a pulse sequence (see
“Delays With Homospoil Pulse” on page 38), but the amplitude for the homospoil
pulse is not under software control. In particular, the sign of the homospoil pulse
amplitude cannot be altered, which excludes a large number of PFG experiments.

Overall, it would certainly be possible to perform a limited range of (simple) PFG
experiments using homospoil pulses, but there are rather serious limitations, especially
for larger molecules and other samples with short transverse relaxation times. This
method will therefore not be discussed any further here.

01-999014-00 A0398 VNMR Pulse Sequences 205

Chapter 18. Acquiring Data

A prominent feature in most VNMR pulse sequences is the absence of code dealing
with data acquisition. Of course, there is a statement that does data acquisition:

acquire(points,dwell_time);

wherepoints is the number of data points to be acquired anddwell_time is the
time interval between the sampling trigger pulses, or the time that is apparently taken
to acquire a complex data point1. Because the receiver and ADC acquire data in
complex points (real + imaginary),points (the number of values measured) must be
a multiple of two.2 At the same time, thedwell_time is equal to the inverse spectral
window and determines the largest frequency that can be measured. Higher frequencies
are folded in (this is also called “aliasing”).

Larger spectral windows require shorter dwell times. With a 0.2-microsecond
minimum time event, the maximum spectral window which the pulse programmers can
possibly handle is 5 MHz3.

Still, most pulse sequences end with the last pulse. How then is the acquisition done?

18.1 Implicit Acquisition

One thing thatacquire does (apart from coding the specified number of sampling
intervals) is to increment a global variableacqtriggers that initially (before calling
the functionpulsesequence) is set to zero. If a pulse sequence does not contain the
acquire statement (i.e., if there was no explicit acquisition, seeSection 18.2,
“Explicit Acquisition,” on page 208), acqtriggers still is set to zero after the call to
pulsesequence , and the software automatically completes the sequence with an
implicit acquisition.

The following code segments are found in the functioncreatePS from within the
modulepsg/cps.c :

acqtriggers = 0;
...
pulsesequence(); /* generate Acodes from USER pulse sequence */
...
test4acquire(); /* if no acquisition done yet, do it */
write_Acodes(); /* write out generated lc, auto & instructions */
return;

1 Theacquire statement is codingpoints/2 periods (with a duration as specified by the second
argument), each starting with an ADC trigger pulse.
2 If using the Output board (63-word FIFO), points must be 2 or a multiple of 64.
3 There is no need for “off” times in-between sampling intervals. Every time event can trigger a
complex data point if the CTC bit (the “command to convert” or acquisition trigger) is set to high:
unlike normal fast lines, the CTC is electronically reformed into a very short trigger pulse at the very
beginning of each sampling interval (see alsoChapter 9, “Pulse Programmers,” on page 85).

Chapter 18. Acquiring Data

206 VNMR Pulse Sequences 01-999014-00 A0398

Functiontest4acquire is found inpsg/hwlooping.c ; and starts with the lines:

if (acqtriggers == 0) /* No data acquisition yet? */
{

if (nf > 1.0)
{

text_error("Number of FIDs (nf) Not Equal to One\n");
abort(0);

}
if (ap_interface < 4)

HSgate(rcvr_hs_bit,FALSE); /* turn receiver On */
else

SetRFChanAttr(RF_Channel[OBSch],SET_RCVRGATE,ON,0);
for (i = 1; i <= NUMch; i++) /* zero HS phaseshifts */

SetRFChanAttr(RF_Channel[i],SET_RTPHASE90,zero,0);
acqdelay = alfa + (1.0 / (beta * fb));
G_Delay(DELAY_TIME,acqdelay,0); /* alfa delay */
acquire(np,1.0/sw); /* acquire data */

}
...

From these lines of code, we can extract the following information on the implicit
acquisition:

• Implicit acquisition doesnot work for multi-FID experiments (nf > 1), such as
multiecho imaging experiments (seeChapter 21, “(Micro)Imaging Experiments,”
on page 239) or sequences like COCONOESY (combined COSY—NOESY), i.e.,
sequences that acquire more than one FIDwithin the pulse sequence.

• The receiver is gated on as part of the implicit acquisition. It should be harmless if
this is forgotten within the pulse sequence.

• The quadrature phase of all transmitters is reset to zero before acquiring data. In
combination with receiver phase cycling, this avoids coherent signal buildup in
case of an rf leakage, which could produce a large, narrow peak (“glitch”) in the
center of the spectrum (with signal averaging this can only hurt in the case of the
observe transmitter itself, or with decoupler transmitters operating at the frequency
of the observe transmitter).

• The acquisition is preceded by a delayalfa+(1.0/(beta*fb)) . Thus, the
alfa and the filter group delays allow for a proper timing of the first data point
(see“Considerations for the Delays Following the Last Pulse” on page 50).

• The number of points (values) acquired, and the dwell time used in the implicit
acquisition are given by the two parametersnp and sw (these C variables have the
same name as the VNMR parameter from which they are initialized).

After the conditional branch for the implicit acquisition, the function (i.e., also for the
case of an explicit acquisition)test4acquire resets any PFG or imaging gradient,
adds the instruction for the housekeeping delay (seeSection 18.5, “Housekeeping
Delays,” on page 214), and finally adds the code to jump back to the NSC (next scan)
instruction in the Acode (see“The Instruction Section” on page 79).

The implicit acquisition throughacquire is performed as a hardloop with a certain
number of delays and with the CTC (command to convert) set to high. The number of
dwell times per hardloop depends on the parameter and hardware configuration. With
the pulse sequence controller board (2048 word loop FIFO), up to 1024 or 2048 dwell
times can be coded per hardloop (depending on whether single- or double precision

18.1 Implicit Acquisition

01-999014-00 A0398 VNMR Pulse Sequences 207

time words are used). With a maximum of 32767 loop cycles, this allows for up to 64
or 128 million data points to be acquired, or half as much using the acquisition
controller board (1024 word loop FIFO). From a parameter point of view,np is limited
to multiples of 64. Residual dwell times are performed after the hardloop4. On systems
with an output board (63-word FIFO), the acquisition is performed as hardloop with 16
or 32 dwell times (64 data points) per loop cycle, allowing for up to 1 or 2 million data
points5.

The number of points has limitations other than those imposed by the looping
capability of the pulse programmer. Primarily, the standard memory size on the HAL
board limits the number of points. With the standard 2-Mbyte HAL memory, up to
1,048,576 data points can be added in single precision (16-bit) acquisitions or up to
524,288 points in double precision (32-bit) acquisitions. It is possible to expand the
RAM on the HAL board: the MC-68000 CPU address space is 24 bits, or up to 16
Mbytes (some of the address space is used up by the acquisition CPU, ROM, and status
registers), theoretically allowing for up to 4 or 8 million data points.

The STM board (seeChapter 7, “Digital Components,” on page 65) uses a 24-bit
counter to count the number of data points added up per transient. That number is
compared with the number stored in the first long word (LC->np) in theLC structure
of the Acode (seeSection 8.2, “Looking at Acode,” on page 69). If these numbers don’t
match, an error message “number of points acquired not equal to np ” is
produced. The STM counter can handle up to 16,777,216 points. This number is higher
than those imposed by the memory and address space limitations—the STM board is
not a limiting factor for the number of points.

The standard ADC for liquids NMR can handle data rates of up to 200,000 points per
second (spectral windows of up to 100,000 Hz). The STM board can safely handle such
data rates6. For larger spectral windows, a wideline receiver has to be used. The two
wideline receiver/ADC models available can sample data at rates of up to 2 and 5 MHz
(corresponding to 4 or 10 million values per second), much more than the STM board
can possibly handle. Therefore, these boards are equipped with a fast on-board buffer
memory, into which the data are acquired and from which the data are piped into the
STM board (2-MHz digitizer) or transferred onto the HAL board (5-MHz digitizer).

The latest wideband (12-bit) ADC board allows for spectral windows of up to 5 MHz
(as much as the pulse programmer can handle) and is equipped with 512 Kbyte of
buffer memory, resulting in a maximum of 131,072 data points7. The older wideline
ADC board allowed for spectral windows of up to 2 MHz and was equipped with 64
Kbyte of buffer memory, allowing a maximum of 16,384 points (8192 complex) only.

4There is no technical reason whynp could not be any multiple of two (even values below 64 should
be permissible), but this has not been tested out. At the very least this would require changing the
parameter limits fornp .
5 With this configuration, all points must be acquired within the hardloop (no extra dwell times
following the loop); therefore, the number of points acquired (np) must be a multiple of 64.
6 There is also a FIFO buffer between the ADC and the adder on the STM board.
7 This board has on-board STM functionality.

Chapter 18. Acquiring Data

208 VNMR Pulse Sequences 01-999014-00 A0398

18.2 Explicit Acquisition

In some cases, it is necessary to code the acquisition explicitly because implicit
acquisition lacks the desired functionality. These cases fall into three categories:

• Sequences where a pulse or other event should follow the acquisition, such as in
the flipback experiment used sometimes in solids NMR, to recollect residual (spin-
locked) proton magnetization after the acquisition time (“forced relaxation”).

• Sequences that acquire multiple FIDs within the pulse sequence (nf > 1).

• Sequences that require performing pulses or other events in-between the
acquisition of single data points8 (single-point acquisition), as used in sequences
with explicit (synchronous) decoupling (see also the second example inSection
14.3, “Hardware Loops,” on page 150), or for sequences with so-called multipulse
line narrowing (see also the first example in the same section).

Typically, single-point acquisitions are coded using a hardloop, such as the following:

initval(np/2.0,v14);
starthardloop(v14);

acquire(2.0,1.0/sw <length of other events in dwell time>);
<additional events>

endhardloop();

Because two data points are acquired per loop cycle, the number of loop cycles is equal
to half the number of data points. To obtain properly scaled and referenced spectra, it
is essential that the time specified in theacquire statement, plus all the other events
in the same dwell time (including hidden delays!), make upexactlythe expected dwell
time,1/sw . In experiments with multipulse line narrowing, this is not so relevant
because the scaling in these spectra is distorted anyway due to chemical shift scaling.

Of course, it is possible to acquire more data points per hardloop, for example, to allow
changing the phase of the pulses between the data points:

initval(np/8.0, v14);
starthardloop(v14);

acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v1,rof1,rof1);
delay((1.0/sw-2.0*rof1-pw)/2.0);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v2,rof1,rof1);
delay((1.0/sw-2.0*rof1-pw)/2.0);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v3,rof1,rof1);
delay((1.0/sw-2.0*rof1-pw)/2.0);
acquire(2.0,(1.0/sw-2.0*rof1-pw)/2.0);
rgpulse(pw,v4,rof1,rof1);
delay((1.0/sw-2.0*rof1-pw)/2.0);

endhardloop();

The number of time events in a hardloop must not exceed the loop FIFO size of the
pulse programmer (otherwise FIFO errors would result at execution time). This also
limits the number of points peracquire statement within a hardloop. Because nested
hardloops are not possible,acquire in a hardloop codes a linear sequence of FIFO
words and, in the best case, the number of points that can be collected in a single
acquire statement within a hardloop is equal to the size of the loop FIFO for single

8 In practice, this means in-between acquiringpairs of data points.

18.3 Multi-FID Sequences

01-999014-00 A0398 VNMR Pulse Sequences 209

precision timer words, or half that for double precision timer words. Only the second
condition is checked at runtime (and aborts thegocommand with an error message if
necessary). This is a rather loose test, because there are usually additional time events
within the hardloop; otherwise, the entire FID could be collected in a singleacquire
statement without an explicit hardloop (see alsoChapter 9, “Pulse Programmers,” on
page 85 andSection 14.3, “Hardware Loops,” on page 150).

With this type of explicit acquisition (and irrespective of parameter limits),np is
limited to multiples of the number of points acquired per hardloop, unless special
provisions are taken in the pulse sequence to acquire any remaining points in separate
acquire statements outside the hardloop. With explicit acquisition, the user must
ensure that the correct (np) number of points is acquired with every transient. A
mismatch in the number of points acquired leads to the error message “number of
points acquired not equal to np ”.

An explicit acquisition can also be made part of a conditional part of the pulse
sequence, as in the example of the following fragment of a proton flipback sequence:

...
rgpulse(pw,oph,rof1,0.0);
decphase(zero);
status(C);
if (dm[C] == ‘y’)
{

txphase(zero);
delay(alfa+1.0/(beta*fb));
acquire(np,1.0/getval(“sw”));
decrgpulse(pw,three,0.0,0.0);
status(A);

}
}

In explicit acquisition, the user’s responsibility is to ensure proper timing for the first
data point and to avoid center glitches through rf leakage by resetting the relevant
transmitter phases to zero (see alsoSection 18.1, “Implicit Acquisition,” on page 205).

18.3 Multi-FID Sequences

VNMR has the ability to handle data with multiple FIDs per FID file trace (i.e., data
from experiments where more than one FID was collected in a single pulse sequence
transient). In such a case, all FIDs must be collected using explicit acquisition, as in the
following (partial) example of a combined COSY and NOESY pulse sequence:

...
status(A);

hsdelay(d1);
status(B);

rgpulse(pw,v1,rof1,0.0);
delay(d2-rof1-4.0*pw/3.1416);
rgpulse(pw,v2,rof1,rof2);

status(C);
txphase(zero);
delay(alfa+1.0/(beta*fb));
acquire(np,1.0/sw);
hsdelay(mix-rof2-(alfa+1.0/(beta*fb))-(np/2.0)*1.0/sw-rof1);
rgpulse(pw,v3,rof1,rof2);

status(D);

Chapter 18. Acquiring Data

210 VNMR Pulse Sequences 01-999014-00 A0398

txphase(zero);
delay(alfa+1.0/(beta*fb));
acquire(np,1.0/sw);

}

Of course, proper timing of the first data point must be ensured forall FIDs that are
acquired, to avoid phasing and baseline problems throughout the experiment. Note that
the restrictions in the number of points that were discussed in the previous section
apply to thesum (np*nf) of all FIDs acquired in a pulse sequence, not just to thenp
parameter itself, i.e., failure to acquirenf FIDs per transient results in the (slightly
misleading) error message “number of points acquired not equal to np ”.
Other examples of multi-FID acquisitions are discussed inChapter 21,
“(Micro)Imaging Experiments,” on page 239.

18.4 Receiver Phase Shifting

There are no fast lines from the pulse programmer that transmit the observe phase into
some hardware, so how is receiver phase shifting done? How about small-angle
receiver phase shifting? How are NMR signals detected?

Detection of NMR signals

All signals are measured relative to the reference frequency, which is constructed from
the local oscillator (L.O.) and the intermediate frequency (I.F.), both of which are
usually fixed in phase and frequency during an experiment.

As shown inFigure 22, the UNITYplus uses an I.F. of 10.5 MHz (i.e., the local
oscillator is 10.5 MHz above the observe frequency). The signal from the probe is first
amplified in thepreamplifier (54 dB gain) and then passed through a first switchable

Obs. +δ
from probe

preamplifier

L.O. (Obs. + I.F.)

mixer

I.F. (10.5 MHz) +δ

fixed

mixer
1.5 MHz
L.P. filter

δ
0o

dc offset adj.

programmable
L.P. filter

mixer

1.5 MHz
L.P. filter

δ
90o

dc offset adj.

channel balance adj.

splitter
I.F. (10.5 MHz) +δphase

generator

42 MHz

10.5 MHz

0o

90o

10.5 MHz

δ
0o

δ
90o

re
al

im
ag

in
ar

y

quadrature
phase adj.

200 Hz -
51.2 MHz

programmable
L.P. filter
200 Hz -
51.2 MHz

amplification

variable
attenuator

gain adjustment

variable
attenuator

gain adjustment

Figure 22. Detection of NMR signals

18.4 Receiver Phase Shifting

01-999014-00 A0398 VNMR Pulse Sequences 211

attenuator (6 and 12 dB, allowing for 0 to 18 dB attenuation, in steps of 6 dB). After
that it is mixed with the local oscillator frequency in a double balancedmixer , resulting
in a 10.5 MHz signal that is modulated with the observed signals (i.e., the difference
between the transmitter frequency and the observed signals). All parts behind that first
mixer operate at constant frequency, which simplifies the design of the receiver9.

After the mixer, the signal passes anamplification and gain regulation stage.Figure
22 simplifies this. The UNITYplus receiver contains three successive amplification
stages (14 dB amplification each), each of which is preceded by switchable attenuators
(14 dB each, one of them 2 + 4 + 8 dB) that allow setting the gain in steps of 2 dB
between 0 and 42 dB10. In total, the UNITYpluspreamplifier and receiver provide for
a gain of 96 dB (54 + 3x14 dB) and a variable attenuation of up to 60 dB11.

The amplified signal (δ + 10.5 MHz) is then split into two identical components that
are fed into a pair of mixers. In these (double-balanced)mixers , the signals are then
mixed with two 10.5 MHz I.F. components that are phase-shifted by 90 degrees against
each other (they are both generated from a single, fixed 42 MHz frequency using a
phase generator and frequency divider). The output from these mixers are two audio
signal components that are phase-shifted against each other by 90 degrees,
corresponding to thereal and imaginary components of the audio signal.

After passing a pair of fixed filters, the two signals are then amplified to 10 Vp-p
maximum12 and finally fed into a pair ofprogrammable audio filters (8-pole quasi-
elliptical filters) that remove noise outside the spectral window (which otherwise
would be folded into the observed spectral window).

These two audio signals are finally fed into theADC (not shown inFigure 22), digitized
and added to the current FID through the sum-to-memory (STM) board (see also
Chapter 7, “Digital Components,” on page 65). Because the transmitter frequency is
located at the center of the observed spectral window, we need to detect both positive
and negative frequencies. Sampling real and the imaginary signal components allows
us to determine the sense of rotation of every signal component, and hence distinguish
between positive and negative signal components. This is calledquadrature
detection.13

For liquids experiments (standard spectral windows of up to 100 kHz), UNITY and
earlier systems used a similar scheme in their receivers, but mixed the 10.5 MHz signal
(after the L.O. mixer) first with 10.0 MHz, resulting in a signal at 500 kHz. Mixing with
a 500 kHz reference frequency then generated the audio signal. Reducing the number

9 Wideband amplifiers—and rf devices in general—are much more demanding in their construction,
and the receiver is certainly one of the most critical parts in the spectrometer.
10It turns out that the “gain” in reality is controlling attenuators! We still call it gain, as the parameter
runs “backwards” (to make it look like a gain parameter): 0 dB gain means maximum (18 + 14 + 14
+ 8 + 4 + 2 dB) attenuation, 60 dB gain means no attenuation.
11The overall gain of the receiver chain can be varied between 36 and 96 dB.
12Any dc offset in the audio signals can be corrected at these amplifiers, and the gain of one of the
amplifiers can be adjusted, allowing to accurately balance the two channels. Also, the relative phase
shift of the two channels can be fine-adjusted down to fractions of a degree at the 42/10.5 MHz phase
generator.
13Errors in the relative phase of the two components, as well as any channel imbalance can lead to
imperfect quadrature detection, resulting in quadrature (“mirror”) images of all signals (partial
folding of the signals around the center of the spectrum). If one of the two channels has zero
amplitude, no quadrature detection is obtained, and the Fourier transform produces all signals both
as positive and negative frequencies.

Chapter 18. Acquiring Data

212 VNMR Pulse Sequences 01-999014-00 A0398

of mixing stages in the UNITYplus has improved performance, and the better
distribution of amplification and gain attenuation at the receiver input has increased the
dynamic range by avoiding overload with strong samples at intermediate levels.14

Quadrature Receiver Phase Shifts

Although dc offsets and the channel balance can be adjusted, there will always be slight
differences between the two signal components. This can be observed in single-
transient (or constant phase) spectra where often quadrature images and a center glitch
can be observed15. Cycling the receiver through all four quadrature phases eliminates
such artifacts, because both signal components have then passed through the two
receiver and ADC channels (90-degree phase shifting), and dc offsets are cancelled out
through phase alternation (180-degree phase shifting).

In most pulse sequences, the phase of the observed FID, as well as the phase of the
receiver is therefore altered through phase cycles such as 0, 90, 180, 270, or 0, 180, 90,
270, or the like—the first example providing for fast quadrature image suppression, the
second example offering faster dc offset (center glitch) cancellation16.

To better understand how receiver phase shifting works, let’s look at a particular signal
vector and its real and imaginary signal components at a particular point in time within
the FID, during four successive transients with the phases 0, 90, 180 and 270 degrees.

If we added these four signals as shown, we would obtain exactly zero!

Proper signal addition (averaging) is easy to obtain. We simply need to properly route
the two signal components before we add them to the real and imaginary parts of the
stored FID. As shown inTable 12, to change the receiver phase, we should tell the STM
board how to combine the stored FID with the incoming data: 90-degree receiver phase
shifting is simple math and signal routing.

This is done implicitly withSETICM (set input card mode) instruction in the Acode,
which tells the acquisition CPU to read theoph register from theLC structure and to
transfer the observe phase information to the appropriate status register on the STM
board. Such an instruction is placed ahead of thefirst acquisition instruction (be it
implicit or explicit) or ahead of the first hardloop that contains anacquire statement.

14Such overload could drive amplifiers in the receiver into saturation. At these levers they become
non-linear, typically leading to intermodulation distortions in the spectrum (non-linear devices act as
mixers), and typically adding mixing products of dominant NMR signals to the spectrum (ghost peaks
at the distance of strong signals). This becomes most evident if more than one strong signal is present
in the spectrum.
15Under normal circumstances, these artifacts should be below 0.5% of the main signals.
16Many sequences only do a partial receiver phase cycle (quad image suppression through 0o and 90o

phase shifts), mainly in experiments where a residual solvent (water) signal would cover eventual
center glitches (from dc offsets) anyway.

0o 90o 180o 270o

real

imag

real real real

imag imagimag

18.4 Receiver Phase Shifting

01-999014-00 A0398 VNMR Pulse Sequences 213

Note that because theSETICM instruction is placed implicitly and automatically with
the firstacquire statement only, it isimpossibleto change the “receiver phase” after
the first acquire (oph can, of course, be changed, but this would have no effect on
the way the signals are co-added. In other words, all data points within an FID are
acquired with the same “receiver phase.” Even in multi-FID experiments (seeSection
18.3, “Multi-FID Sequences,” on page 209), all FIDs are acquired with thesame
receiver phase.

Small Angle Receiver Phase Shifting

As the receiver phase can be shifted in increments of 90 degrees through mathematical
operations, one could certainly imagine a more complex STM board that shifts the
incoming data byany phase angle, using the following formula set:

Unfortunately, the STM board does not provide such a functionality, hence proper
small-angle receiver phase shifting is not possible. There are, however, a few possible
workarounds for this problem:

• If all transients should be shifted by thesame small angle phase (apart from
quadrature phase shifts), the above transformation can be performed after the
acquisition on the final FID file on the disk, either through an external program17

or from within VNMR by going through an ASCII file (writefid command),
using a macro to reforming these data and creating a modified ASCII file, which
can the be used to re-build a phase-shifted binary FID using themakefid
command.

• On systems with older (type a or b) rf generation on the observe channel (some
VXR and earlier systems only), thephaseshift statement not only shifts the
transmitter phase, but it changes the phase of the entire reference frame by shifting

17A C program with this functionality is supplied as part of the user library.

Table 12. Dealing with real and imaginary signal components

Signal phase Signal component Operation

0o
0o add to real part

90o add to imaginary part

90o
0o subtract from imaginary part

90o add to real part

180o
0o subtract from real part

90o subtract from imaginary part

270o
0o add to imaginary part

90o subtract from real part

Ri r i Θcos i i Θsin+=
I i i i Θcos r i Θsin–=

Chapter 18. Acquiring Data

214 VNMR Pulse Sequences 01-999014-00 A0398

the phase of the local oscillator using the so-called “phase-pulse technique”18(see
the section “Pulse Sequence Statements: Spectrometer Control” in the manual
VNMR User Programming). In fact, there are a few systems that can do small-
angle receiver phase shifting! This technique may not work with newer rf
generation types, because not all decades in the PTS frequency synthesizer switch
frequencies in a phase-coherent way. In fact, thephaseshift statement is
programmed to only work through the offset synthesizer used in older systems.

• Instead of shifting the receiver phase by a small angle, it is of course possible (and
almost equivalent) toshift the phase of all pulses (at least those on the observe
channel) by the same amount (using thexmtrphase statement), butin the other
direction. Note that it is still advisable to do some quadrature receiver phase
shifting to compensate for an eventual channel imbalance, quadrature phase error,
or dc offset. It is a bad idea to keep the receiver phase constant for all scans while
just shifting the phase of all pulses instead.

It turns out that from all pulse sequences and experiments, there are only a few rare
examples that require small-angle receiver phase shifting at all, and for those, the
solutions presented above are totally sufficient.

18.5 Housekeeping Delays

Before jumping back to the beginning of the pulse sequence, every pulse sequence
performs an instruction 97 (HouseKEEPing), which introduces an extra delay for a
variety of clean-up tasks that need to be performed before the next scan can be started:

• After every transient, thect counter is incremented and compared withnt (to
check whether the experiment is finished). Further, a check is made whether ansa
(stop acquisition) signal has been received, and the number count from the STM
board is checked to ensure the proper number of data points was acquired. The
duration of this delay has changed over the different instrument and software
generations: it currently is around 14 milliseconds. The only way to avoid this
delay is to program a multi-FID pulse sequence (seeSection 18.3, “Multi-FID
Sequences,” on page 209).

• After the first FID that acquires real data, the first 256 points of the FID are
checked for ADC overflow, in cases where a fixed gain was used. For this task, the
housekeeping delay is lengthened byX milliseconds. Autogain (gain='n')
totally disrupts the timing after the first transient.

• Additional small delays occur at the beginning of the first “real” transient (i.e.,
after the steady-state transients) as well as with the start-up of every increment.
The start-up delay is used to set up all the hardware (see alsoSection 8.2, “Looking
at Acode,” on page 69).

• If a diagnostics terminal is connected to the acquisition CPU and the bootup
selector switch is set to a non-zero position (even if just the switch setting is the
case), long housekeeping delays (around 0.2 seconds or more) occur, because the
information for the diagnostics terminal needs to be prepared and sent. This was
discussed inSection 13.2, “Diagnostics and Error Output,” on page 146.

18This method temporarily (for a few microseconds) changes the offset on the (observe) channel,
which causes the reference frame to change its orientation.

01-999014-00 A0398 VNMR Pulse Sequences 215

Chapter 19. Multidimensional Experiments

It cannot be the purpose of this manual to explain the mechanistics ofnD NMR
experiments; only programming issues will be discussed here. Also, apart from the
names of the parameters that are used, all indirect dimensions (t1 up to tn-1 in nD
experiments, wheren currently is up to 4) are treated the same way; therefore, only the
2D case will really be discussed here. The following tables should allow transferring
the information in this chapter to higher dimensions innD experiments (all the
parameters in the 2D column will be discussed in detail below):

19.1 Indirect Time Domain Incrementation

One of the prominent features of VNMRnD pulse sequences is the absence of any
explicit coding for the looping and the evolution delay incrementation. Similarly, any
arrayed experiment does not complicate the pulse sequence: thepulsesequence()

function is simply called once per array element. In the case ofnD experiments, we
don't even define an array. The presence of theni andsw1 parameters alone causes the
pulse sequence software to set up an implicit array ofni elements on the parameterd2.
That array isnotshown in VNMR, but thearraydim parameter does reflect the extra
dimension in that it multiplies the number of traces from explicit arrays withni , ni2

andni3 .

Table 13. VNMR acquisition parameters used fornD experiments

Parameter description 2D 3D 4D

Number oftn increments ni ni2 ni3

Spectral width infn sw1 sw2 sw3

fn coherence selection mode parameter(optional) phase phase2 phase3

Flag forfn axial peak displacement(proposed/optional) fad fad2 fad3

Flag for inverting folded peaks infn (proposed/optional) f1180 f2180 f3180

Table 14. Variables used innD pulse sequences

Variable description 2D 3D 4D

Evolution delay (double) d2 d3 d4

Spectral width infn (double) sw1 sw2 sw3

Real-time index for evolution intn (codeint) id2 id3 id4

fn coherence selection mode (integer) phase1 phase2 phase3

Evolution time increment intn (double) inc2D inc3D inc4D

Chapter 19. Multidimensional Experiments

216 VNMR Pulse Sequences 01-999014-00 A0398

Note that the implicit array is startingwith the current value ofd2 (d3, d4)1, the array
increment is1/sw1 (1/sw2 , 1/sw3):

d2implicit =d2, d2+1/sw1, ... d2+(ni-1)/sw1

d3implicit =d3, d3+1/sw2, ... d3+(ni2-1)/sw2

d4implicit =d4, d4+1/sw3, ... d4+(ni3-1)/sw3

For a basicnD experiment, all we need to do in terms of defining the sequence of pulse
sequence events is, to include the evolution delay (d2 for 2D, d2 andd3 for 3D, etc.).
Some sequences will use a refocusing pulse in the middle of an evolution time, which
can be easily achieved with a construct like

delay(d2/2,0 - rof1);
rgpulse(2.0*pw90,v1,rof1,0.0);
delay(d2/2.0);

Other sequences might use what is sometimes called a “fixed evolution time”, with a
pulse that moves within that fixed delay. Also this can be realized easily:

pulse(pw90,v1,rof1,0.0);
delay(d2-rof1);
pulse(2.0*pw90,v2,rof1,0.0);
delay(tau-d2-rof1);
pulse(pw90,v3,rof1,0.0);

In order to obtain flat baselines in phase-sensitive experiments, it is furthermore
important to not only compensate for any delays around the adjacent pulses but also
for the precession during these pulses. The correction term is-2.0*pw90/3.14159 per
90 degrees pulse of lengthpw90 adjacent to the evolution time. Hence, for pulse
sequences like COSY or NOESY the evolution period should be coded as follows:

pulse(pw90,v1,rof1,0.0);
if (d2 - 4.0*pw90/3.14159 - rof1 > 0.0)

delay(d2-4.0*pw90/3.14159-rof1);
pulse(pw90,v2,rof1,0.0);

The if statement serves to suppress the error message from the fact that for the first
increment the calculated delay is negative. This construct actually implies that the
spacing between the first two increments is not the same as between all the other
increments: all traces except for the first one (where theoretically the two pulses would
have to overlap) are measured correctly, and this means that there will be a (minor)
error in the first data point in the indirect dimension. Fortunately, this error can easily
be corrected either by applying a dc offset correction after the Fourier transformation,
or by reconstructing the first data point using linear prediction.

No correction for spin precession is required for TOCSY-type spin locking, and for
ROESY spinlocks it seems easier to use an empirical correction term that is adjusted
experimentally (such that no first order phase correction is required in the indirect
dimension).

1 This is a useful feature because it allows (re-) acquiringany part of annD experiment with little
effort, but it also is dangerous in thatd2 (d3 , d4) can inadvertently be set to some (possibly large)
non-zero value, which can have serious consequences for the result of the experiment (like causing
strong first-order phase shifts or the observation of noise only). Therefore, as of VNMR 5.1, it is a
good idea to have thego macro issue a warning ifnD experiments are started with non-zero evolution
delays.

19.2 nD Quadrature Detection

01-999014-00 A0398 VNMR Pulse Sequences 217

19.2 nD Quadrature Detection

This is not the place for an exhaustive discussion of methods for achieving quadrature
detection innD experiments; however, the most important methods will be presented
here as a guideline for the implementation of new pulse sequences.

Absolute Value nD Experiments

F1 quadrature in 2D experiments is achieved by either co-adding two data sets with the
“phase-relevant” pulses prior to the evolution period shifted by 90 degrees, or by
independently incrementing (or decrementing2) the phase of these pulses (mostly just
one pulse) in steps of 90 degrees. The first method only requires half the number of
scans and is completely sufficient. This is a major cancellation step (the N+P-type
spectrum is added or subtracted from the N-P type spectrum, resulting in either an N-
or a P-type 2D spectrum. In other words, half the 2D spectrum—the anti-diagonal and
the associated crosspeaks in homonuclear correlation spectra—is cancelled in this
step) and should be one of the faster steps in the overall phase cycling. Certainly it is
advisable to perform this stepbefore CYCLOPS.3

One peculiar aspect of this type of absolute-valuenD experiment is that when we do
the f1 coherence selection, we seem not to accumulate signal-to-noise ratio (as at that
point we are in fact cancelling half the signal). This is most obvious when the phase-
cycling (or the cancellation efficiency) is checked in a 1D array using

ni=1 nt=1,2,4,8,16,32

where we expect a 2signal-to-noise improvement with every step. For example, if this
is a simple double-quantum filtered COSY experiment where we first do a four-step
double-quantum coherence selection (nt=4), followed by a two-step f1 quadrature
selection phase cycle (nt=8), followed by a four-step CYCLOPS phase cycle (nt=32),
we would observe relative signal-to-noise ratios of 1, , 2, 2, *2, 4 in the 1D trace,
instead of 1, , 2, *2, 4, *4 (as for standard 1D experiments). This at the same
time is an easy test that indicates the minimum number of transients per increment for
achieving quadrature detection in f1

4.

Phase-Sensitive nD Experiments: States/Haberkorn/Ruben

The above method does not allow phasing thenD spectrum, because the real and
imaginary parts of the spectrum are not separated in the indirect frequency domain;
hence, the display in absolute-value mode. Various methods have been proposed and
used to separate the real and imaginary (i.e., absorption and dispersion) parts of anD
spectrum. The most “natural” method on Varian instruments seems to be the technique
proposed by States et al.5, also called “hypercomplex” mode, which involves acquiring

2 The sign of the phase incrementation determines whether P- or N-type spectra are obtained. Both
can be processed by VNMR such as to give a “normal” presentation (using the'ptype' argument
to theft2d command to obtain “normal” orientation for P-type spectra.
3 As the short-term fluctuations in an instrument (or its environment) are usually smaller than the
long-term variations, it is advisable to perform the major cancellation steps (line multiple quantum
filtering, f1 quadrature) before performing steps like CYCLOPS for cleaning up minor artifacts.
4Note that for multiple-quantum-filtered experiments, the evolution delay (d2 for 2D) must be set to
a non-zero value in order to see a double-quantum-filtered signal in the 1D trace; donotforget to reset
that delay to 0 before starting the real experiment!
5 D.J. States, R.A. Haberkorn & D.J. Ruben,J. Magn. Reson.48, 286 (1982).

2 2
2 2 2

Chapter 19. Multidimensional Experiments

218 VNMR Pulse Sequences 01-999014-00 A0398

two separate data sets where in the second data set the phase of the (phase-relevant)
pulses prior to the evolution time is incremented by 90 degrees compared to the first
set. In VNMR we define an array using a parameterphase , which is set to the values
1 and 2 (phase=1,2). This parameter is available within pulse sequences in the integer
variablephase1 (note the difference in the names!)6. In the pulse sequence, we then
can use a simple construct such as

if (phase1 == 2) incr(v1);

wherev1 is the phase of the first pulse7. This method of achieving f1 quadrature gives
the maximum in processing flexibility. It falls in line with the simultaneous sampling
in f2, and, compared to TPPI, it usually gives better baseline flatness. There is also a
disadvantage in that any axial peaks (artifacts that often cannot be avoided, in particular
with biomolecular NMR spectra) show up in the center of the spectrum, whereas with
TPPI (see below) they are moved to the edge of the spectrum. This can be fixed,
however, by combining the hypercomplex method with FAD (fn axial peak
displacement, described below).

Note that thephase array is performedbeforeincrementingd2 (i.e., theimplicit array
is array='d2,phase'), which is in line with the requirement that scans or data that
are to be subtracted from each other for cancellation should be measured as close to
each other in time as possible, to make the experiment less susceptible to
environmental variations and give better cancellation. The same holds true for 3D and
4D experiments, where theimplicit arrays usually are

array='d2,d3,phase,phase2' (for 3D), or
array='d2,d3,d4,phase,phase2,phase3' (for 4D).

We could argue that this method requires twice (3D) and four times (4D) as long to
make the first complete plane available for viewing, but this method will definitely give
better cancellation than

array='d3,phase2,d2,phase' (for 3D), or
array='d4,phase3,d3,phase2,d2,phase' (for 4D).

But of course it is entirely possible to set up such arrays explicitly from within VNMR.
For example, for3D experiments:

array('d2',ni,0,1/sw1)
array('d3',ni2,0,1/sw2)
ni=0 ni2=0
array='d3,phase2,d2,phase'

The real problem with this method (apart from giving bad cancellation efficiency) is,
that such datacannot be processed using VNMR (unless we write extra software to
rearrange the FIDs).

6 In earlier VNMR releases this parameter had to be fetched from the parameter table using constructs
such asint phase1 = (int)(getval(“phase”) + 0.5) ;
7 Note that early releases of VNMR also incremented the receiver phase. This results in data sets that
require using a different selection of coefficient arguments with thewft2d command, like
wft2d(1,0,0,0,0,0,0,-1) (i.e., typically the last two arguments need to be exchanged
compared with the current “standard”). This early mode also had the disadvantage that the second
data set was 90 degrees out of phase in f2 compared to the first set.

19.2 nD Quadrature Detection

01-999014-00 A0398 VNMR Pulse Sequences 219

Axial Peak Displacement (FAD)

It turns out that there is a trick to move the axial artifacts in hypercomplexnD spectra
to the edge of the spectrum by inverting the phase of the (phase-relevant) pulses prior
to the evolution time and the receiver phase with every even time increment, both for
phase=1 andphase=2 . In the vast majority of the cases this method will be used by
default for hypercomplex experiments, but sometimes is may be desirable to have this
extra phase inversion under flag control. For these cases we would propose the flag
namesfad1 (or fad), fad2 , andfad3 . If we disregard the flag control, the pulse
sequence construct for a hypercomplex experiments will be a bit more complex than
the one shown in the previous section:

if ((phase1 == 1) || (phase1 == 2))
{

dbl(id2,v13);
add(v1,v13,v1);
add(oph,v13,oph);
if (phase1 == 2) incr(v1);

}

wherev1 is the phase of the (phase-relevant) pulse(s) prior to the evolution time, and
id2 is a real-time variable that contains the number of evolution time increments
(0, 1, 2, ... ,ni-1)8.

Phase-Sensitive nD Experiments: TPPI

On instruments with sequential sampling, quadrature detection is achieved by the
receiver phase with every data point. An equivalent method can be applied tonD
spectroscopy by continuously incrementing the phase of the (phase-relevant) pulses
prior to the evolution time by 90 degrees with every increment. This is also calledTPPI
method, or time proportional phase incrementation.9 This separated the absorption and
dispersion parts of the spectrum in a single data set, but it requires acquiring twice the
spectral window and twice the number of increments in the indirect dimension to
achieve the same digital and spectral resolution. The transformed spectrum then
consists of two parts: one with the absorption lines and one with the dispersive
contribution, separated by the axial peak (artifacts).10 Because TPPI leads to a single
data set, the processing seems somewhat simpler, but it apparently is more difficult to
achieve good baseline flatness.

8 In earlier VNMR releases, the “increment counter”id2 did not exist and constructs like the
following were used instead:

int t1_counter =(int)(d2 * getval(“sw1”) + 0.1);
(...)
if ((phase1 == 1)||(phase1 == 2))
{

initval((double)(2*(t1_counter%2)), v13);
add(v1,v13,v1);
add(oph,v13,oph);
if (phase1 == 2) incr(v1);

}
9 D. Marion & K. Wüthrich, Biochem.Biophys. Res. Commun.113, 967 (1983).
10The VNMR support for processing TPPI spectra is somewhat limited, in that it is not possible to
discard the dispersion part of the spectrum, which means that the entire data matrix must be carried
along. This can be a problem, especially with 3D processing where the transformed data matrix may
require as much as four times the disk space compared to the hypercomplex method in which the
imaginary parts of the spectrum can be discarded.

Chapter 19. Multidimensional Experiments

220 VNMR Pulse Sequences 01-999014-00 A0398

The VNMR convention is that TPPI is done withphase (phase2 , phase3) set to 3,
rather than 1 and 2. In the pulse sequence, we can use a simple construct like

if (phase1 == 3) add(v1,id2,v1);

wherev1 is the phase of the (phase-relevant) pulse(s) prior to the evolution time, and
id2 is a real-time variable that contains the number of evolution time increments
(0, 1, 2, ... ,ni-1)11.

The main advantage of the TPPI method is that only four coefficients are required for
the ft2d command (which accepts up to32 coefficients). If we want to measure a
genuine array of phase-sensitive 2D spectra (e.g.: an array of mixing times with
NOESY or TOCSY) using the hypercomplex method, we would end up with a double
array. This would lead to a long and complex set of coefficients for theft2d command,
and the number of array elements for the “genuine” array (e.g.,mix) would be limited
to 4. With TPPI, up to 8 array elements (e.g., 8 different mixing times) can be
measured, and in addition to that there is a macrowft2dac that makes it easy to select
and process individual data sets from the array (and this macro does not cope with
arrayed hypercomplex data).

Phase-Sensitive nD Experiments: Arrayed TPPI

The TPPI implementation discussed above has the disadvantage of leading to
frequency doubling in f1; there is an alternative that doesn't have that disadvantage:
arrayed TPPI. For this mode, the parameter conventionphase=1,4 has been used. The
method involves acquiring two data sets, with the (phase-relevant) pulses, prior to the
evolution time, shifted by 90 degrees in the second data set, the same as in the
hypercomplex method, but in addition to that, for the second data set the evolution time
is increased by half an increment:

if (phase1 == 4)
{

incr(v1);
d2 += inc2D/2.0;

}

As already mentioned, this method does not lead to frequency doubling in f1, but it
requires processing the data set with real (instead of complex) FT in f1 (proc1='rft').
This again has some disadvantages in that some processing options, like linear
prediction orlsfrq , are not implemented for real FT; therefore, this method can't
really be recommended. In addition to that, most current sequences add FAD for the
case ofphase=1,2 (hypercomplex method, see above), which conflicts with the
definition ofphase=1,4 for arrayed TPPI (where FAD would unnecessarily be added
for phase=1 , but not for the traces withphase=4). If arrayed TPPI still is to be used,
it would probably be better to change the convention tophase=4,5 for this method, or

11In earlier VNMR releases, the “increment counter”id2 did not exist and had to be created using
an standard real-time variable in constructs like

int t1_counter = (int)(d2 * getval(“sw1”) + 0.1);
(...)
if (phase1 == 3)
{

initval((double) t1_counter),v13);
add(v1,v13,v1);

}

19.2 nD Quadrature Detection

01-999014-00 A0398 VNMR Pulse Sequences 221

alternatively, to have FAD under flag control (the former would be preferable, as the
flag solution would still allow for a parameter mis-setting).

Folding in Indirect Dimensions

In hypercomplex phase-sensitivenD spectra, folded peaks (in an indirect domain,
where no audio filter is involved) are in phase with the “normal” signals, provided the
evolution time is corrected for the precession of the spins during adjacent pulses, as
shown inSection 19.1, “Indirect Time Domain Incrementation,” on page 215ff. In 3D
and 4D experiments, the number on increments that can possibly be performed in any
indirect dimension is very limited, and yet for many biomolecular 3D and 4D
experiments, rather large homonuclear and heteronuclear shift ranges must be covered,
which imposes severe restrictions on the achievable digital resolution.

In this situation, we would welcome using folding in one dimension, because this
allows doubling the digital resolution with the same number of increments—or
acquiring half as many increments only in one dimension (which also cuts the overall
experiment time in half). Of course, this only works if there is no significant overlap
between folded and “real” peaks, and if there is an easy and safe way of distinguishing
between folded and “real” signals.

The method of choice to distinguish between the two groups of signals is to increase
all tn evolution delays by half an tn increment,0.5/sw1 (or 0.5/sw2 , 0.5/sw3). This
is the equivalent to increasingalfa by 0.5/sw for the observe dimension and leads to
a 180 degrees first-order phase shift in the corresponding frequency domain, which
inverts all signals that are folded in once in that domain (remember that there is no
attenuation due to audio filters in the indirect domains!). If there was any first point
distortion, this would lead to a half-sinoidal baseline distortion in that domain.
Fortunately, there are no filter distortions in these domains, and with that addition to
the evolution time we may actually be able to even sample the first data point correctly
(assuming the corrections forrof1 and for the precession during adjacent pulses is less
than half an evolution time increment).

There are various ways in which this could be implemented. A “minimalist approach”
would be to simply setd2=0.5/sw1 in the VNMR parameter set. We don't think this
is an optimal solution, because (in order to avoid operator errors) we would rather
prefer to see the evolution time delays to be set to zero for allnD experiments, with the
exception of the case where either we want to test signal levels somewherewithin the
evolution delay or where we want toreacquire specific traces from annD experiment
(the latter case would also be made more difficult with this approach). Also, once the
parameter is entered, it’s value doesn't have an obvious meaning to the user, and so
later it is not clear what was intended with that parameter setting.

Still we would like this feature to be under parameter control, because it certainly is
not something that should be applied to all phase-sensitivenD experiments (in
particular, not in homonuclear correlation experiments on biomolecular samples where
baseline flatness is a primary requirement).

Chapter 19. Multidimensional Experiments

222 VNMR Pulse Sequences 01-999014-00 A0398

Several existingnD sequences use flags namedf1180 , f2180 , andf3180 to control
this feature in f1, f2, and f3. In the pulse sequence this can then be used as follows:

double d2incr;
char f1180[MAXSTR];
getstr(“f1180”,f1180);
if (f1180[1] == 'y')

d2incr = inc2D/2.0;
else

d2incr = 0.0;
(...)
pulse(pw90,v1,rof1,0.0);
if (d2 + d2incr - 4.0*pw90/3.14159 - rof1 > 0.0)

delay(d2+d2incr-4.0*pw90/3.14159-rof1);
pulse(pw90,v2,rof1,0.0);
(...)

Combined Implementations

The majority ofnD pulse sequences have the hypercomplex method (with FAD) and
(standard) TPPI built in. This can be done with the following construct:

if ((phase1 == 1) || (phase1 == 2))
{

dbl(id2,v13);
add(v1,v13,v1);
add(oph,v13,oph);
if (phase1 == 2) incr(v1);

}
else if (phase1 == 3) add(v1,id2,v1);

where once morev1 is the phase of the (phase-relevant) pulse(s) prior to the evolution
time, andid2 is a real-time variable that contains the number of evolution time
increments (0, 1, 2, ... ,ni-1). This should be more than sufficient for most phase-
sensitivenD experiments.

There is a number of pulse sequences around (also in/vnmr/psglib) that combines
all of the aboveand absolute-value acquisition in a single pulse sequence. This is
certainly achievable, but it turns out to be somewhat non-trivial, because it requires
combining two different phase cycles in one sequence. In order to do things in an
optimum way, the f1 quadrature phase incrementation isn't simply added at the end of
the phase cycle, but instead it isinserted into the phase cycling sequence (see also
“Absolute Value nD Experiments” on page 217). Where this is done with real-time
calculations, it makes the phase cycling difficult to decode and understand, because for
most of the calculation steps we have to consider the absolute value and phase-
sensitive cases separately, as shown in the following (streamlined) example from a
NOESY pulse sequence:

19.2 nD Quadrature Detection

01-999014-00 A0398 VNMR Pulse Sequences 223

/* CALCULATE PHASECYCLE */
sub(ct,ssctr,v12); /* ctss */
mod2(v12,v1); /* 01 */
hlv(v12,v3); /* ct/2 */
dbl(v1,v1); /* 02 */
hlv(v3,v10); /* ct/4 */
hlv(v10,v10); /* ct/8 */
if (phase == 0)
{

assign(v10,v9); /* ct/8 */
hlv(v10,v10); /* ct/16 */
mod2(v9,v9); /* [01]8 */

}
else assign(zero,v9);
hlv(v10,v2); /* ct/32 av

ct/16 ph */
dbl(v2,v2); /* [02]32 av

[02]16 ph */
add(v9,v1,v1); /* (02)4 (13)4 av

02 ph */
mod2(v10,v10); /* [01]16 av

[01]8 ph */
add(v2,v1,oph); /* (02)4 (13)4 (20)4 (31)4 av

(02)8 (20)8 ph */
add(v3,oph,oph); /* 0213203113203102 2031021331021320 av

0213203102132031 2031021320310213 ph*/
add(v10,oph,oph); /* 0213203113203102 3102132002132031 av

0213203113203102 2031021331021320 ph*/
add(v10,v2,v2); /* [0123]16 av

[0123]8 ph */
add(v10,v1,v1); /* (02)4 (13)4 (13)4 (20)4 av

(02)4 (13)4 ph */
add(v10,v3,v3); /* [01230123 12301230]2 av

[01231230]2 ph */
if ((phase == 1) || (phase == 2)) /* hypercomplex + FAD */
{

dbl(id2,v11);
add(v1,v11,v1);
add(oph,v11,oph);
if (phase == 2) incr(v1);

}
else if (phase==3) add(v1,id2,v1); /* TPPI */

Needless to say, in the original sequence the phase cycle is explained verbally (at least!)
as follows: “The first 90-degree pulse is cycled first to suppress axial peaks. This
requires a two-step phase cycle consisting of (v1 , 0 2). The third 90-degree pulse is
cycled next using a four-step phase cycle (v3) designed to select both longitudinal
magnetization, J-ordered states, and zero-quantum coherence (ZQC) during the mixing
period. If the experiment is to collect data requiring an absolute-value display, the first
pulse is next incremented by 1 to achieve f1 quadrature. If the data are to be presented
in a phase-sensitive manner, this step is not done. Next, the second 90-degree pulse is
cycled to suppress axial peaks (v2). Finally, all pulse and receiver phases are
incremented by 90 degrees (v10) to achieve quadrature image suppression due to
receiver channel imbalance.”

With phase tables, the same phase cycling can be achieved in a somewhat easier way,
but still it requires altering the “division return factor” for those tables that define phase

Chapter 19. Multidimensional Experiments

224 VNMR Pulse Sequences 01-999014-00 A0398

cycles that have lower priority than the f1 quadrature phase incrementation and are
“slowed down” for the case of an absolute-value experiment.

This is the phase table definition for the same pulse sequence:

t1 = 0 2 /* 1st pulse */
t2 = { 0 2 }16 /* 2nd pulse (phase=0: divn_return=32) */
t3 = { 0 1 2 3 }2 /* 3rd pulse */

/* calculate oph=t1+t2+t3 in sequence */
t4 = { 0 1 }8 /* CYCLOPS (phase=0: divn_return=16) */
t5 = { 0 1 }8 /* f1 quadrature for phase=0 */

In this table, definition the phase cycling elements have been separated in order to
achieve simple phase tables. The division return factor for the tablest2 andt4 is
altered within the pulse sequence, before the phases are combined:

sub(ct,ssctr,v10);
if (phase1 == 0)
{

setdivnfactor(t2,32); /* modify tables for phase=0 */
setdivnfactor(t4,16);
getelem(t5,v10,v5);

}
else assign(zero,v5);
getelem(t1,v10,v1); /* extract phases from tables */
getelem(t2,v10,v2);
getelem(t3,v10,v3);
add(v1,v5,v1); /* f1 quadrature (phase=0) */
add(v1,v2,oph); /* calculate oph */
add(v3,oph,oph);
getelem(t4,v10,v4); /* add CYCLOPS */
add(oph,v4,oph);
add(v1,v4,v1);
add(v2,v4,v2);
add(v3,v4,v3);
if ((phase == 1) || (phase == 2)) /* hypercomplex + FAD */
{

dbl(id2,v11);
add(v1,v11,v1);
add(oph,v11,oph);
if (phase == 2) incr(v1);

}
else if (phase==3) add(v1,id2,v1); /* TPPI */

But still: combining absolute-value and phase-sensitive experiments in the same pulse
sequencecomplicates the phase cycling setup—just to incorporate a rarely used
option! Therefore, it is strongly recommended to instead write two different pulse
sequences, where an absolute-value option really makes sense, or at the very least, we
could also think of supplying two separate phase tables with one sequence:

/* phase tables for phase-sensitive NOESY */
t1 = 0 2 /* 1st pulse */
t2 = { 0 2 }16 /* 2nd pulse */
t3 = { 0 1 2 3 }2 /* 3rd pulse */

/* calculate oph=t1+t2+t3 in sequence */
t4 = { 0 1 }8 /* CYCLOPS */
t5 = 0 /* unused */

19.2 nD Quadrature Detection

01-999014-00 A0398 VNMR Pulse Sequences 225

/* phase tables for absolute value NOESY */
t1 = 0 2 /* 1st pulse */
t2 = { 0 2 }32 /* 2nd pulse */
t3 = { 0 1 2 3 }2 /* 3rd pulse */

/* calculate oph=t1+t2+t3 in sequence */
t4 = { 0 1 }16 /* CYCLOPS */
t5 = { 0 1 }8 /* f1 quadrature */

Now a single pulse sequence could use these two files to implement both absolute value
and phase-sensitive NOESY phase cycles:

sub(ct,ssctr,v10);
getelem(t1,v10,v1); /* extract phases from tables */
getelem(t2,v10,v2);
getelem(t3,v10,v3);
getelem(t4,v10,v4); /* CYCLOPS */
getelem(t5,v10,v5); /* f1 quadrature (phase=0) */
add(v1,v5,v1); /* f1 quadrature (phase=0) */
add(v1,v2,oph); /* calculate oph */
add(v3,oph,oph);
add(oph,v4,oph); /* add CYCLOPS */
add(v1,v4,v1);
add(v2,v4,v2);
add(v3,v4,v3);
if ((phase == 1) || (phase == 2)) /* hypercomplex + FAD */
{

dbl(id2,v11);
add(v1,v11,v1);
add(oph,v11,oph);
if (phase == 2) incr(v1);

}
else if (phase==3) add(v1,id2,v1); /* TPPI */

Of course, for the case of two different pulse sequences, the individual sequences could
be further simplified in that theif statement that deals with phase-sensitive
experiments could be left away for the absolute-value case, etc.

Coherence Selection through Gradients

Pulsed field gradients can be used in a number of ways innD NMR. For just
scrambling transverse magnetization (such as in some gradient-NOESY pulse
sequences), up to multiple-quantum filtering and coherence selection in general. In the
former case, there will still be a phase cycling section in the sequence, using the above
mechanisms for f1 coherence selection and (partial) artifact suppression. In other cases,
the coherence selection will be done using gradients, which often dramatically
simplifies the phase cycling (sometimes no phase cycling is used at all).

Using pulsed field gradients for coherence selection has the important advantage of not
requiring subtraction (cancellation) through phase cycling; therefore, these
experiments are much less susceptible to environmental variations (which otherwise
often lead to bad cancellation). From a programming point-of-view, there is very little
to add here that hasn’t been discussed already.

Chapter 19. Multidimensional Experiments

226 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 227

Chapter 20. Solid-State NMR Experiments

Apart from the rotor synchronization feature, which consists of dedicated hardware
and software for specific solid-state experiments, there is mostly a gradual difference
between standard liquids and solid-state experiments. As far as software and the
execution of pulse sequences are concerned, the typical spectral window in solids
experiments is much larger and, because the signals themselves are often extremely
wide, the pulse sequence timing becomes much more of an issue. Extra delays of even
a few microseconds only can cause a severe loss of coherence, or will at the very least
lead to severe phasing problems in the final spectrum.

We can not cover the entire area of solids NMR spectroscopy. In this chapter, just a
few typical highlights are picked and discussed.

20.1 Cross-Polarization MAS Experiments

AP Bus Events in CP/MAS Experiments

The simplest CP/MAS experiment consists of a 90-degree pulse on protons, followed
by the cross-polarization period, during which both protons and the X-nucleus are
spinlocked with the same rf field (Hartmann-Hahn condition). After that, the decoupler
is switched to full power to remove the dipolar line broadening during the acquisition.
The following code is simplified and written for a UNITYplus,with AP bus control of
the linear modulator:

status(A)
decpwrf(getval(“crossp”));
delay(d1);
decrgpulse(pw,t1,rof1,0.0);
status(C);
decphase(zero);
rgpulse(getval(“contact”),t2,0.0,0.0);
decpwrf(getval(“dipolar”));
delay(rof2); rcvron();

status(C) turns the decoupler on. After the contact time, the decoupler stays on and
is switched to the higher “dipolar” level using thepwrf statement, which takes 4.6
µsec on a UNITYplus. It is possible and acceptable to switch the linear modulator
while the rf is turned on for that channel (a 4.6µsec gap would be unacceptable
anyway)—after all, that’s what is happening all the time during a shaped pulse.1

1 Note that for these applications it is not desirable to switch the 63 or 79 dB attenuator with the rf
turned on (even though that would take less AP bus cycles). On older (UNITY) systems, we have seen
transition phenomena during the switching: there is no guarantee that all the bits of these attenuators
switch at exactly the same time. On such older systems, we have also observed full power coming
through for a very short period (there may also be a very small gap with less power). Even though
that period lasted only a few nsec, it would be enough to make a probe arc with the 1-kW amplifiers
switched on. (In liquids experiments there is much less power involved, and there should be less of a
problem—after all, people have been creating soft shaped pulses using these attenuators.)

Chapter 20. Solid-State NMR Experiments

228 VNMR Pulse Sequences 01-999014-00 A0398

If we took an oscilloscope to see what really happens during this experiment, we would
find that after the pulse, during the first three AP bus words (out of four), the power
stays at the same level, because the new power level is being latched (all the bits are
pre-stored and then enabled at the same time, with the last AP bus word). On a
UNITYplus, the actual switching was found to happen 350 nsec into the last AP bus
period. The first 150 nsec are the pulse programmer overhead, then it seems to take
another 200 nsec for the AP bus chip to read the information and set the hardware. So,
the power switching occurs 3*1.15 + 0.15 + 0.2 = 3.8µsec after the transmitter pulse
(while the entiredecpwrf statement takes 4.6µsec). For the standard CP/MAS
experiment, this means that the full dipolar decoupling will occur with a slight delay
that may influence the first 1 or 2 data points, but overall, it still seems acceptable.

There are experiments such as CPCOSY or CPNOESY, however, that require that the
protons are spinlocked at high (dipolar decoupling) powerimmediately after the
Hartmann-Hahn polarization transfer. To do this accurately, we would have to shorten
thergpulse by 3.8µsec, then turn the transmitter on during thedecpwrf statement
and then turn the transmitter offduring the last AP bus word; however, it is impossible
to switch any high-speed linesduringAP bus events—we can only switch them before
or after thedecpwrf call. In this case, the second option is the better approximation:

status(A)
decpwrf(getval(“crossp”));
delay(d1);
decrgpulse(pw,t1,rof1,0.0);
status(C);
decphase(zero);
rgpulse(getval(“contact”) - 4.6e-6 ,t2,0.0,0.0);
xmtron();
decpwrf(getval(“dipolar”));
xmtroff();
delay(d2);
rgpulse(pw,t3,0.0,rof2);
rcvron();

The only error we make with this construct is that the decoupler is switching to dipolar
decoupling amplitude for a maximum of 0.8µsec at the end of the contact time, but
that effect is minimal and certainly acceptable.

Using a Waveform Generator in CP/MAS Experiments

A similar problem occurs when a waveform generator is to be used in such experiments
(e.g., for amplitude modulated spinlocking). A construct like

decrgpulse(pw,t1,rof1,0.0);
decphase(zero);
decprgon(pattern,pw,5.0);
status(C);
rgpulse(getval(“contact”),t2,0.0,0.0);

is clearly unacceptable, because the 5.75µsec that it takes to set up the waveform
generator (on a UNITYplus) are much too long. Immediately after the proton 90-
degree pulse, the Hartmann-Hahn spinlocking must start; otherwise, the proton
magnetization would be lost completely before the spinlocking starts. In this case it
may not even help to play the “trick” that was discussed in the previous section
(shortening the proton 90-degree pulse byWFG_START_DELAY, and then turn the
decoupler back on while setting up the waveform generator via AP bus), because the

20.1 Cross-Polarization MAS Experiments

01-999014-00 A0398 VNMR Pulse Sequences 229

duration ofWFG_START_DELAYmay be longer than the proton 90-degree pulse. Also,
starting the spinlocking while setting up the waveform generator is undesirable,
because this would lead to 5.75µsec of unmodulated cross-polarization (plus 0.45µsec
for the waveform generator propagation delay on a UNITYplus). Clearly, a better
method is needed here.

It would be nice if it were possible to start the waveform generator without the AP bus
overhead. It turns out that this is possible! Let’s first analyze what happens during the
decprgon call (see alsoSection 16.4, “Using Waveform Generators for Programmed
Modulation,” on page 177):
300 294 188 102 WG3 AP addr 0x0c18, IB addr = 0x0000
303 297 191 101 WGCMD AP addr 0x0c18, WFG cmd = 0x07
306 300 194 150 HighSpeedLINES DECUP WFG2
309 303 197 150 HighSpeedLINES DECUP WFG2
312 306 200 151 EVENT1_TWRD 1000 msec

First, the instruction block address is sent to the waveform generator (3 AP bus words,
followed by the “waveform generator command” (2 AP bus words), then the high
speed line for the waveform generator is set, after which the modulated time event
starts (with the modulation actually being delayed by the waveform generator
propagation delay of 0.45µsec on a UNITYplus). So,decprgon prepares the
waveform generator and sets the high speed line, but that high speed line is only going
to be actuatedwith the next time event. We can use this to do what we want:

#define OBS_WFG 0x4
#define DEC_WFG 0x80
#define DEC2_WFG 0x1000
#define DEC3_WFG 0x20000
(...)
decprgon(pattern,pw, 5.0);
HSgate(DEC_WFG,FALSE);
decrgpulse(pw,t1,rof1,0.0);
HSgate(DEC_WFG,TRUE);
decphase(zero);
status(C);
rgpulse(getval(“contact”),t2,0.0,0.0);
decprgoff();

This requires some explanation. After thedecprgon call, the high-speed line for the
waveform generator is set, as discussed above.Immediately after that call(before the
next FIFO word is produced), we reset that fast bit to FALSE, such that it isn’t actually
turned on in the hardware. To do that we need theHSgate function with an address
constant that we have extracted from Table 3 inSection 9.2, “Fast Bits,” on page 88for
the UNITYplus.2 During the pulse that follows, the waveform generator is ready (it has
got the instruction block address and knows how to execute it), but it doesn’t start yet.
This only happens when we set the high-speed lineafter the decoupler pulse.

With this solution we are able to start a waveform generator without overhead. Of
course, this only works for one pattern per waveform generator, and if the same should
be repeated in the sequence with the same waveform generator, we would still need
some time to perform thedecprgon in-between. Note that on a UNITY, the statement

2 The corresponding constants for UNITY systems can be taken from Table 2 in the same section of
this manual. Note that the entire construct has been tested only on a UNITYplusand will probably
not work on UNITY systems. Of course, only one value (DEC_WFG) is used in this pulse sequence
fragment; the other values are only given here as reference and wouldn’t have to be defined if they
are not used.

Chapter 20. Solid-State NMR Experiments

230 VNMR Pulse Sequences 01-999014-00 A0398

degprgoff also involves AP bus traffic and hence will still introduce a delay
(WFG_STOP_DELAY). On a UNITYplus the line

HSgate(DEC_WFG,FALSE);

is actually identical to

decprgoff();

and does not introduce an extra delay.

The only small timing error that we still have with the above construct is the waveform
generator propagation delay (450 nsec on a UNITYplus), which will introduce 450
nsec of unmodulated spinlocking, but even that can be taken care of if we want to get
a really perfect solution:

#define DEC_WFG 0x80
(...)
decprgon(pattern,pw,5.0);
HSgate(DEC_WFG,FALSE);
decrgpulse(pw-WFG2_OFFSET_DELAY,t1,rof1,0.0);
HSgate(DEC_WFG,TRUE);
decon(); delay(WFG2_OFFSET_DELAY); decoff();
decphase(zero);
status(C);
rgpulse(getval(“contact”),t2,0.0,0.0);
decprgoff();

Here, we interrupt the 90 degrees decoupler pulse to enable the waveform generator
high-speed line such that itreally starts at the beginning of the spinlock period3.

20.2 Sideband Suppression in MAS Experiments

TOSS (total sideband suppression) has several variants. All form a relatively simple
pulse sequence element: a series of pulses with some specific spacing (which is a
function of the rotor speed). In principle, there isn’t much to discuss here, but we
picked TOSS as an example on how to code a series of spaced pulses and also to
perhaps eliminate some common misunderstandings and help you to optimize your
coding under various aspects.

An early version of TOSS coding, taken from/vnmr/psglib/xpolar.c in VNMR
4.3, is the following:

rcvroff();
delay((0.1226/srate)-pw);
rgpulse(2.0*pw,v3,0.0,0.0);
rcvroff();
delay((0.0773/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
rcvroff();
delay((0.2236/srate)-2.0*pw);
rgpulse(2.0*pw,v3,0.0,0.0);
rcvroff();
delay((1.0433/srate)-2.0* pw);
rgpulse(2.0*pw,v4,0.0,rof2);
delay((0.7744/srate)-pw-rof2);

3 Instead ofWFG2_OFFSET_DELAYwe could also takeWFG_OFFSET_DELAYas a constant,
because all waveform generators in a system will generally behave the same way.

20.2 Sideband Suppression in MAS Experiments

01-999014-00 A0398 VNMR Pulse Sequences 231

There is a misunderstanding involved in this coding. It is not necessary to switch off
the receiver after every pulse, because after a firstrcvroff statement the receiver is
regarded to be “globally off” and is not switched back on after a pulse, but only by the
next (implicit or explicit)rcvron call, as shown inSection 4.2, “How Do Pulses
Work?,” on page 40(although this has no negative effect, of course, other than creating
an unnecessaryHighSpeedLINES call in the Acode). This has been cleaned up in a
more recent coding from the user library (slightly simplified):

rcvroff();
(...)
if (toss[0] == ‘y’)
{

fprintf(stdout,”, TOSS”);
delay((0.1226/srate)-pw);
rgpulse(2.0*pw,v3,0.0,0.0);
delay((0.0773/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
delay((0.2236/srate)-2.0*pw);
rgpulse(2.0*pw,v3,0.0,0.0);
delay((1.0433/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
delay((0.7744/srate)-pw);

}

Because this avoids the extrarcvroff calls, it looks easier to read, but it certainly still
isn’t perfect. In both versions the transmitter phase is not preset; therefore, over the first
500 nsec of each pulse (UNITYplus) there will be some phase transition error (there is
no pre-pulse delay). However, the following construct is definitely undesirable:

delay((0.1226/srate)-pw-rof1);
rgpulse(2.0*pw,v3,rof1,0.0);
delay((0.0773/srate)-2.0*pw-rof1);
rgpulse(2.0*pw,v4,rof1,0.0);
delay((0.2236/srate)-2.0*pw-rof1);
rgpulse(2.0*pw,v3,rof1,0.0);
delay((1.0433/srate)-2.0*pw-rof1);
rgpulse(2.0*pw,v4,rof1,0.0);
delay((0.7744/srate)-pw);

This fixes the phase error but creates a new problem. A known trouble with the TOSS
pulse sequence element is that it stops working above a certain rotor speed. In the
expression(0.0773/srate)-2.0*pw , the value starts becoming negative as soon
as 2*pw > (0.0773/srate) . The above coding increases that problem, because we
now also subtractrof1 from that delay.

The following, very compact coding avoids this problemand allows for phase-
presetting:

rgpulse(2.0*pw,v3,(0.1226/srate)-pw,0.0);
rgpulse(2.0*pw,v4,(0.0773/srate)-2.0*pw,0.0);
rgpulse(2.0*pw,v3,(0.2236/srate)-2.0*pw,0.0);
rgpulse(2.0*pw,v4,(1.0433/srate)-2.0*pw,0.0);
delay((0.7744/srate)-pw);

Chapter 20. Solid-State NMR Experiments

232 VNMR Pulse Sequences 01-999014-00 A0398

Unfortunately, we have now traded in another problem: thedps command in VNMR
hides pre- (and post-) pulse delays. Therefore, this element will be shown as four back-
to-back pulses, which again is undesirable. We can, of course, explicitly pre-set the
phase using thetxphase function, as in the following coding4:

txphase(v3);
delay((0.1226/srate)-pw);
rgpulse(2.0*pw,v3,0.0,0.0);
txphase(v4);
delay((0.0773/srate)- 2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
txphase(v3);
delay((0.2236/srate)-2.0*pw);
rgpulse(2.0*pw,v3,0.0,0.0);
txphase(v4);
delay((1.0433/srate)-2.0*pw);
rgpulse(2.0*pw,v4,0.0,0.0);
delay((0.7744/srate)-pw);

This finally has the phases preset, and will be doing overall what we want. It also avoids
unnecessary receiver gating (assuming the receiver is off globally), and it works with
thedps command. Alternatively, we could use a coding that is also more efficient in
terms of Acode space and execution speed (if that ever becomes an issue), because with
the above coding thergpulse function will create extraSETPHAS90 and
HighSpeedLINES calls in the Acode:

rcvroff();
(...)
if (toss[A] == ‘y’)
{

txphase(v3);
delay((0.1226/srate)-pw);
xmtron(); delay(2.0*pw);xmtroff();
txphase(v4);
delay((0.0773/srate)-2.0*pw);
xmtron(); delay(2.0*pw);xmtroff();
txphase(v3);
delay((0.2236/srate)-2.0*pw);
xmtron(); delay(2.0*pw);xmtroff();
txphase(v4);
delay((1.0433/srate)-2.0*pw);
xmtron(); delay(2.0*pw);xmtroff();
delay((0.7744/srate)-pw);

}

Although at first it seems odd not to usepulse or rgpulse for something that “is a
pulse”, this coding isn’t really too complex, and it fulfills all the needs. It is readable,
it does the proper thing in hardware, and it also is most efficient in terms of Acode size
and execution speed. This efficiency can be relevant in cases where multiple hardloops
or a large number of pulses in general is involved, or innD experiments, where
excessive Acode size can lead to a loss of the Acode buffering (leading to extra delays
and a disruption of the steady-state between increments).

4Note thatfprintf(stdout,...) in the previous version can always be replaced by the simpler
printf(...) function.printf sends the output tostdout .

20.3 Rotor Synchronization

01-999014-00 A0398 VNMR Pulse Sequences 233

20.3 Rotor Synchronization

Rotor synchronization experiments require dedicated hardware (consisting of a
counter that counts a given number of rotor periods, and a timer/counter that counts
within the rotor period). This accessory can be used in three different ways, as
described in the following sections.

Measuring the Rotor Period Duration

Measuring rotor period duration is achieved with therotorperiod(v n);
statement. In this mode, the rotor synchronization hardwarereturnsthe number of 100
nsec clock cyclesto the acquisition CPU. The accessory actually counts the clock
cycles for every rotor period and stores the last value in a register.rotorperiod
causes the pulse programmer toread that register through the AP bus (which is
bidirectional) and store it in one of its own registers, from where the acquisition CPU
can retrieve it into the specifiedvn (v1 tov14) variable. This could be used to perform
pulse sequence events at defined pulse angles (relative to the trigger position), using
also the external trigger of the pulse programmer. In the example below, we want to
perform a pulse at 0, 120, and 240 degrees rotor positioning on successive scans:

rotorperiod(v1); /* rotor period in 100 nsec units */
modn(ct,three,v2); /* 0 1 2 0 1 2 3 */
divn(v1,three,v3); /* rotorperiod/3 */
dbl(v3,v3); /* 50 nsec units */
dbl(v3, v3); /* 25 nsec units */
mult(v3,v2,v3); /* 0, 120, 240 degrees, in 25 nsec */
(...)
xgate(1.0); /* wait for next trigger */
ifzero(v3); /* don’t wait for 0 degrees */
elsenz(v3);

sub(v3,three,v3); /* subtract 150 nsec overhead */
sub(v3,three,v3);
vdelay(NSEC,v3); /* perform 25 nsec time event */

endif(v3);
rgpulse(....

After reading the rotor period duration usingrotorperiod and constructing the
scan-based multiplier, we calculate the desired angle resolution in 100-nsec units and
then convert that to 25-nsec units. We then multiply that number by the scan-based
multiplier and get the number of 25-nsec counts to perform on every scan.

We then wait for the next rotor trigger usingxgate(1.0) . Because we don’t want to
(and cannot) perform avdelay with zero counts, we exclude that case (0 degrees
angle) using a real-timeifzero statement—a pulse could directly follow. For the
other cases (non-zero phase angles), we subtract the pulse programmer overhead of 6
timer units (150 nsec), and then we perform avdelay , which is a delay with a given
time base and a timer count given as real-time variable.

However, we have to be careful, in that we should consider that

• Real-time variables are 16-bit integers with a maximum value of 32767.

• Any counter on the pulse programmer is only 12 bits, allowing for a maximum
value of 4096.

Chapter 20. Solid-State NMR Experiments

234 VNMR Pulse Sequences 01-999014-00 A0398

At 10 KHz rotor speed, the rotor period is 100 nsec, corresponding to 4000 clock cycles
of 25 nsec. In this particular case, we would be dealing with a maximum of 2/3 of a full
rotor cycle, which must be less than 4096*25 + 150 nsec or 102.55µsec. This
corresponds to a rotor period of 153.825µsec, or a rotor speed of 6500 Hz. Therefore,
it may therefore be safer to do the same thing using theµsec time base:

rotorperiod(v1); /* rotor period in 100 nsec units */
modn(ct,three,v2); /* 0 1 2 0 1 2 3 */
divn(v1,three,v3); /* rotorperiod/3 */
add(two,three,v4); /* 5 */
dbl(v4,v4); /* 10 */
divn(v3,v4,v3); /* usec units */
mult(v3,v2,v3); /* 0, 120, 240 degrees, in usec */
(...)
xgate(1.0); /* wait for next trigger */
ifzero(v3); /* don’t wait for 0 degrees */

delay(0.35e-6);
elsenz(v3);

delay(0.2e-6);
vdelay(USEC,v3); /* perform 25 nsec time event */

endif(v3);
rgpulse(....

In this case, we have to face round-off errors of up to 500 nsec (below 2 degrees at
typical rotor speeds). To avoid extra errors from the timer word overhead of 150 nsec,
we should perform a 150 nsec delay for the 0-degree case. Because this is not possible
(with the minimum delay being 200 nsec), we perform a 350 nsec delay for the 0-
degree case, and a 200 nsec delay where we use avdelay . This solution gives us
slightly less accuracy, but definitely no problem with rotor speeds as low as a few
hundred Hz.

Waiting for Triggers

Thexgate function (which was also used in the example in the previous section) loads
the (12-bit) time counter on the pulse programmer with the specified number of counts
and switches the counter to the external time base (the external trigger). On each
trigger, the counter counts one unit down, and the next pulse sequence event starts
when the count reaches zero. Often that time count will be just 1 (1.0, as the argument
must be a floating point number). If in the above example the final pulse is to be
performed after a longer delay, we have the options to perform a normal delay,
followed by thexgate(1.0) call, or we could calculate how many rotor cycles that
delay would be (this is typically done based on a VNMR parametersrate) and then
performxgate with that calculated number of rotor triggers. Note, however, that the
number of rotor cycles that can be counted this way is 4096 only, because the pulse
programmer uses a 12-bit counter. At typical rotor speeds of 5 to 10 KHz, this limits
the “counted” delay to 0.8 to 0.4 seconds.

20.4 Multipulse Experiments

01-999014-00 A0398 VNMR Pulse Sequences 235

Rotor-Synchronized Experiments

True rotor-synchronized experiments go a bit further than the above examples. In the
rotor-synchronized version of NOESY (XNOESYSYNC pulse sequence) the
requirement is that the two pulses adjacent to the mixing time be performedat the same
rotor angle, after a given number of rotor periods. This is done with therotorsync
pulse sequence element (simplified coding):

(...)
initval(srate*mix,v10);
rgpulse(pw,t2,0.0,0.0);
txphase(t3);
rotorsync(v10);
rgpulse(pw,t3,0.0,rof2);
(...)

The rotor synchronization accessory counts through every rotor period, as mentioned
before. Therotorsync function stops that counter through a high-speed line. Then
the number of rotor periods specified in the real-time argument variable (calculated
from thesrate parameter and the duration of the delay) is loaded into the accessory,
which starts counting rotor (tachometer) triggers until that number is reached (it
actually counts from that number down to zero). After that it takes the number of 100
nsec clock cycles, at which it was stopped initially, and counts thesedown to zero.
After that, it sends a trigger to the pulse programmer, which has been set to “external
timebase” mode with a trigger count of 1. Hence, this causes the next pulse sequence
element (the pulse that follows) to be executed.

This complex sequence of events guarantees that when the trigger is sent back to the
pulse programmer, the rotor is at exactly the same angle as when the pulse programmer
stopped the 100 nsec timer through the high-speed line. Note that in this case we do not
use the timer from the pulse programmer to count the rotor cycles; therefore, there is
no 12-bit (4096) count limit. The limit is 32767, the largest number that can be stored
in a real-time variable.

20.4 Multipulse Experiments

Multipulse line narrowing consists of a series of pulses that is performed between each
pair of acquired data points. Although it very much looks like a TOSS pulse train (see
Section 20.2, “Sideband Suppression in MAS Experiments,” on page 230), the
requirements are much different:

pulsesequence()
{

double tau = getval("tau"),
dtau = tau - pw - rof1 - rof2;

...
initval(np/2.0,v9);
...
delay(d1);
rgpulse(pw,v4,rof1,rof2); /*prep pulse */
starthardloop(v9);

delay(dtau);
rgpulse(pw, v4,rof1,rof2); /* x */
delay(dtau);
rgpulse(pw,v3,rof1,rof2); /* -y */
delay(tau + dtau);

Chapter 20. Solid-State NMR Experiments

236 VNMR Pulse Sequences 01-999014-00 A0398

rgpulse(pw,v1,rof1,rof2); /* y */
delay(dtau);
rgpulse(pw, v2, rof1, rof2); /* -x */
delay(tau + dtau - 2.0e-7);
acquire(2.0,2.0e-7); /* acquire */
rgpulse(pw,v2,rof1,rof2); /* -x */
delay(dtau);
rgpulse(pw,v3,rof1,rof2); /* -y */
delay(tau + dtau);
rgpulse(pw,v1,rof1,rof2); /* y */
delay(dtau);
rgpulse(pw, v4,rof1,rof2); /* x */
delay(tau);

endhardloop();
}

Unlike the TOSS pulse train, we cannot keep the receiver switched off globally;
otherwise, we would not be able to see any signal! Also, the pulses here are extremely
short (typically 1 to 2µsec), so a 500 nsec phase or amplitude glitch at the beginning
of each pulse would be clearly unacceptable. Also, the amplifier blanking/unblanking
needs to be timed very carefully. For good signal-to-noise, we need to minimize the
pre-and post-pulse delays. On the other hand, we also need the amplifiers fully
unblanked, and we need to avoid destroying the preamplifiers with the ring-down
voltages from the 1 KW pulses (which rather calls for longer pre- and post-pulse
delays!). Still, there will be preamplifier saturation from the residual probe ring-down;
therefore, we should place the acquisition as late in a delay as possible.

Note also that in the above coding, the maximum number of points that can be acquired
is 65K, because the 16-bit hardloop count limits the number of loop cycles to 32768.
If more points were to be acquired, we would have to pack multiple pulse trains (and
acquisition triggers) into a single loop cycle (in which case again we must set the
parameternp to a number that corresponds to full loop cycles; otherwise, the error
message “number of points acquired not equal to np ” is obtained.

20.5 Other Line-Narrowing Techniques

A new line narrowing technique that is now gaining popularity is the so-called
“frequency-switched Lee-Goldberg” (FLSG2) method5, which involves rf irradiation
at a certain field strength with rapid frequency switching between two frequencies on
either side of the proton spectrum.

The critical point about this technique is that the frequency switching must occur
phase-coherently and very rapidly (actually with a 180-degree phase shift at the
frequency switch). It was often thought that these requirements can be met only with
special frequency synthesizers with latching (i.e., the frequency information is sent
first and all the digits of the frequency change at the same time) and extremely fast (and
phase coherent) frequency switching. the latter can only be obtained with overrange
(i.e., with an extended range of DDS (direct digital frequency synthesis)). Such
frequency synthesizers are available, but it is well known that digital frequency
synthesis at higher frequencies causes increased spurious output (it is just much harder

5 A. Bielecki, A.C. Kolbert & M.H. Levitt,Chem. Phys. Lett., 155, 341 (1989). For the actual
implementation see the article by Jun Ashida & David Rice inMagnetic Moments, Winter, 1996, Vol.
VIII,1.

20.5 Other Line-Narrowing Techniques

01-999014-00 A0398 VNMR Pulse Sequences 237

to do high frequencies/offsets digitally, rather that using analog techniques). Also, any
phase error during the frequency and phase transition will lead to errors that
accumulate and deteriorate the efficiency of the experiment.

It turns out that with the waveform generator, we can implement these frequency
offsets as linear phase ramps (shifted laminar pulses or SLP) We used 52 steps per
ramp, with 4 degrees phase shift per slice. When the frequency changes, the phase
ramp changes direction (and 180 degrees are added to the phase).

This turns out to be an ideal way to implement this technique. The frequency is
generated using small-angle phase shifts that are performed within 100 nsec, making
frequency switching extremely rapid. And the 180-degree phase switching is done with
the same hardware; therefore, there is no question that both the phase and frequency
switching occur in an absolutely synchronous and accurate manner, with no
accumulation of phase errors or the like.

Chapter 20. Solid-State NMR Experiments

238 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 239

Chapter 21. (Micro)Imaging Experiments

Although, with few exceptions, imaging experiments use the same spectrometer
hardware, the pulse sequences for imaging and the associated data (parameters,
macros) look totally different from any pulse sequence for liquids or solids NMR. This
has a variety of reasons:

• When setting up an imaging experiment, we are dealing with the physical
dimensions of the object we are looking at. On the parameter side, there is a
complex relationship between the physical dimensions in the image (e.g., the field
of view, the slice thickness and orientation) and the experimental parameters.
Ultimately it all relates to a field gradient strength, but this gradient strength again
depends on the gradient amplifiers, the gradient coil, etc. This all leads to a fairly
large number of parameters involved in imaging experiments. That doesn’t mean
that the imaging experiment is extremely complex. We do not have to interact with
all those parameters! It is just that the parameter aspect is totally different from the
setup of a high-resolution NMR experiment.

• Most or all imaging experiments use multi-echo/multi-FID acquisition for an
entire plane, if not for a complete 3D image.

• Some or all of the indirect dimensions are not using time incrementation but a
gradient strength (sometimes a frequency offset) is varied instead. Many imaging
experiments use waveform generators for field gradient pulse scaling and shaping.

• To make complex imaging sequences still readable and understandable, the pulse
sequence code has been broken up into a number of C functions (such as for
performing a shaped pulse on top of a gradient pulse) that are defined in the pulse
sequence file itself and which are called from within thepulsesequence
function. This leads to a coding style that is totally different from anything in
standard liquids and solids NMR.

Another difference from the rest of the pulse sequences is that all imaging pulse
sequences are now defined consistently, both in terms of the parameters involved as
well as in the C coding used in the pulse sequence file itself. Overall, therequirements
for imaging experiments are totally different from those of any other NMR experiment,
which justifies the fundamental difference in the pulse sequence coding.

It is beyond the scope of this manual to explain all the special mechanisms involved in
imaging experiment; however, if you look into the dedicated imaging functions, you
will see that it still uses standard pulse sequence elements. The main and basic
difference is the implicit coding for thenf -type multi-FID acquisition.

Chapter 21. (Micro)Imaging Experiments

240 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 241

Chapter 22. Role of Macros and Parameters

Most pulse sequences are more complex than thes2pul standard sequence for 1D
experiments. They include more pulses, more delays, pulses on other channels,
gradient pulses, etc., and all these additional pulse sequence elements will depend on
parameters.

In principle, it is of course possible to “hard-code” the parameters for such new pulse
sequence elements into the C program, for example:

pulse(13.5e-6,v1,10e-6,0.0);

which would avoid any extra parameter definition etc. Unfortunately, such parameters
are rarely constant, because they will depend on a large number of “external” factors,
such as the machine and amplifier type, the frequency, the probe type, rf and gradient
amplitude settings, and even the rf routing, but also the probe tuning and the sample
properties (like the susceptibility). Even though simple delays are not hardware-
dependent, their optimum setting typically depends on the NMR properties of the
molecules under investigation.

All this would make it necessary to change the pulse sequence and recompile it for the
specific requirements of the experiment to be run, essentially for each and every
acquisition. This is highly undesirable. The C coding of most pulse sequences is
difficult to understand for most of the simple NMR users, and most users don’t even
look at the C code of a pulse sequence. Therefore, it is strongly recommended to keep
anything in a pulse sequence variable that may possibly need adjustment for a given
hardware setup and a given sample.

On the other hand, many of today’s pulse sequences use a large number pulses on
various rf channels, combined with several gradient pulses, possibly involving several
waveform generator shapes and pattern. Keeping all this under variable control can
lead to an enormous number of variables, which again can make a pulse sequence
difficult and cumbersome to use.

Therefore, the target should be tokeep the number of variables at a minimum without
giving up pulse sequence flexibility. One obvious way to achieve this is to use
parameter dependencies where possible (e.g., by deriving all pulse widths at a given
channel and power level from a single pulse length, typically the length of a 90-degree
pulse).

Assuming amplifier linearity and perfect pulse shapes (modern spectrometer hardware
fulfils this criterion to a large extent), we could even extend this principle to pulses at
different power levels, theoretically up to a point where all pulse widths (assuming the
same pulse shape) on a given rf channel are derived from a single pulse width
parameter at a reference power level. Similar considerations apply to gradient
amplitudes and delay lengths.

Chapter 22. Role of Macros and Parameters

242 VNMR Pulse Sequences 01-999014-00 A0398

22.1 Creating New Parameters in VNMR

As mentioned before, we want to be able to manipulate pulse sequence parameters
from within VNMR. This way it is not necessary for the user to read and understand
the C code, and complex experiments can be driven with a simple(r) user interface. In
this scheme VNMR parameters become the primary medium for interacting with a
pulse sequence.

VNMR comes with a basic collection of parameters: configuration parameters
(/vnmr/conpar), global parameters (~/vnmrsys/global), in addition to the
current and processed parameter trees (~/vnmrsys/exp n/curpar and
~/vnmrsys/exp n/procpar). For driving a pulse sequence, only the configuration
parameters, plus the acquisition parameter group in both the global and the current
parameter trees, are relevant. Only the parameters in use in thes2pul pulse sequence
can be assumed to be present in a general case (in many cases the user will, in fact, first
do a simple 1D experiment before switching to a more complex pulse sequence).
Hence, for a new, complex pulse sequence, the user has tocreate the necessary new
parameters, which is typically done using thecreate command in VNMR:

create('parameter_name'<,'type',<'tree'>>)

Typical pulse sequence parameters are created in thecurrenttree (which is the default);
therefore, it is normally not necessary to specify the parameter tree. From a parameter
valuepoint-of-view it is most important to distinguishpulsesfrom any other numeric
parameters, because pulses are specified in microseconds. Using a real or integer,
frequency (Hz) or delay (sec) parameter for pulses by mistake could lead to pulses of
several seconds1.

From a parameter handling and security point-of-view (avoiding more subtle
parameter mis-settings), it is definitely important to specify the correct parameter type,
which is one ofstring , flag , delay , frequency , real , integer , or pulse .
This leads to parameters with the properties shown inTable 15.

1 As of VNMR 5.1, the built-in probe protection software should prevent probes from being burnt or
amplifiers from being destroyed due to such mistakes, but it is of course better not to rely on this.

Table 15. VNMR parameter types and propertie

Type Default properties

string character string, enumerals indicate entire string values

flag character string, enumerals are possible string elements

delay real, maximum 8190 sec, minimum 0, stepsize 100 or 25 nsec

frequency real, maximum 1e9 Hz, minimum –1e9 Hz

real real, maximum 9.99999984307e17, minimum –9.99999984307e17

integer real, maximum 32767.0, minimum 0.0, stepsize 1.0

pulse real, maximum 8190µsec, minimum 0, stepsize 0.1 or 0.025µsec

22.1 Creating New Parameters in VNMR

01-999014-00 A0398 VNMR Pulse Sequences 243

The parameter limits for the pulse and delay type parameters are “indirect” limits2 and
are taken from the parametersparmin , parmax , andparstep in /vnmr/conpar
(pulse type parameters use element number 13 in these parameters, delay type
parameters use element number 14). These “global” parameter limits (in particular, the
pulse and delay step size) are set by theconfig program and depend on the actual
spectrometer hardware (pulse programmer).

The “indirect” parameter limit is a very useful feature. There are countless parameter
sets around, each of them with numerous delays and pulses. By having the parameter
limits for these parameters stored in one central place (/vnmr/conpar), it is not
necessary to adjust the parameter limits individually when moving data or software
between spectrometers with different acquisition hardware.

Note that there is no “proper” integer parameter type. All numeric parameters are
stored as floating point numbers. Not all pulse sequence parameters are covered by an
appropriate parameter type. Power levels (rf attenuator settings, linear modulator
amplitude levels), gradient amplitudes and some others do not have their own
parameter types. Many of these “missing types” are covered by integers with the
appropriate parameter limits. Wherever possible, these limits are defined indirectly in
/vnmr/conpar , via the parametersparmax , parmin andparstep (seeTable 16).

For new parameters it is advisable to limit the parameter entry to applicable values by
activating the appropriate parameter limits. Wherever such parameter limits may be
hardware-dependent it is advisable to use indirect parameter limits fromTable 16. This
leads to the following recipe for creating new parameters:

• Forfrequency offsets(and also for parameters holding coupling constants), you can
use either the defaultfrequency parameter properties or the parameter limits3

for thetof parameter4:

create('parameter_name','frequency')
setlimit('parameter_name',7)

• Fordelays, and standard rf pulsesthe default parameter properties should be
sufficient:

create('parameter_name','delay')
create('parameter_name','pulse')

• For shaped or selective rf pulse lengthsand parameters that define theduration of
gradient pulses, the default parameter maximum for pulses is too small, because
selective pulses can be up to tenths of a second long. You can use either a delay
parameter to define such pulse lengths, or, probably better, use a pulse parameter

2The definition is such that if protection bit 13 (value 8192, see theVNMR Command and Parameter
Reference for thesetprotect command) is set, the parameter definition does not contain the
actual parameter limits, but rather indices into the threesystemglobal parametersparmin,
parmax , andparstep , which are numeric arrays (see also theVNMR Command and Parameter
Reference for the setlimit command).
3 Note that as of VNMR 5.1,setlimit with two arguments automatically activates protection bit
13 (value 8192). Under earlier versions of VNMR, this would be equivalent to

setlimit('parameter_name',x,x,x)
setprotect('parameter_name','on',8192)

4 To be very correct, we would have to use index 8 for offsets on the decoupler channel, and indices
16 and 20 for offsets on the second and third decoupler channel, respectively. However, these limits
are typically the same for all channels and not very critical. Also, with the possibility to reassign rf
channels, that difference becomes irrelevant.

Chapter 22. Role of Macros and Parameters

244 VNMR Pulse Sequences 01-999014-00 A0398

with modified parameter limits (do not try simulating millisecond parameters by
multiplying pulse parameter values by 1000 or dividing delay values by 1000 in a
pulse sequence, because this just complicates and obscures the issue!).

create('parameter_name','pulse')
setlimit('parameter_name',1e6,0,0.025)

• Forpulse power levels (attenuator settings),you should use the indirect limits used
for thetpwr parameter. To be very correct, we should use the power parameter
limits for the rf channel the new parameter refers to, but this is often not
appropriate, because theparmax[9] (used fordpwr) is meant to be for a power
level used in continuous decoupling and is usually set to 49, which is inappropriate
for hard rf pulses.

create('parameter_name','integer')
setlimit('parameter_name',17)

• Forpower levels used for continuous irradiation,you can use the parameter limits
also used with thedpwr parameter (where the maximum is at a safer level):

create('parameter_name','integer')
setlimit('parameter_name',9)

Table 16. Predefined, indirect parameter limits

Indirect parameter limit definition
Parameter examples

Index Typical max / min / stepsize

1 500 / 0 / 0.1 sc

2 840 / 5 / 0.1 wc

3 500 / 0 / 0.1 sc2

4 520 / 5 / 0.1 wc2

5 100000 / 100 / 25e-9 sw

6 51200 / 200 / 200 fb

7 100000 / -100000 / 0.1 tof

8 99000 / -99000 / 0.1 dof

9 49 / -16 / 1 dpwr,dhp

10 39 / 0 / 1 dlp

11 2e6 / 1 / 1 dmf

12 500 / -500 / 1 loc

13 8190 / 0 / 0.025 p1, pw,pw90,rof1,rof2,alfa

14 8190 / 0 / 25e-9 d1,d2,pad,dod,vtwait

15 1e6 / 0 / 0.025 ---

16 100000 / -100000 / 0.1 dof2

17 63 / -16 / 1 tpwr

18 63 / -16 / 1 dpwr2

19 32767 / -32768 / 1 (shim gradient values)

20 100000 / -100000 / 0.1 dof3

21 49 / -16 / 1 dpwr3

22.1 Creating New Parameters in VNMR

01-999014-00 A0398 VNMR Pulse Sequences 245

• For linear modulator amplitude settings,you must define the limits explicitly:

create('parameter_name','integer')
setlimit('parameter_name',4095,0,1)

• The same is true forpulsed field gradient (PFG) amplitudes5:

create('parameter_name','integer')
setlimit('parameter_name',32767,-32767,1)

• Forstring parameters(typically used for shape and pattern names), no parameter
limits need to be defined. It may occasionally be useful to define enumerals6 to
avoid parameter entries that don’t make sense:

create('parameter_name','string')
setlimit('parameter_name',17)

• Formulti-field flags (typically only allowing for the characters'y' and'n')
enumerals are very useful, because they simplify the value testing within the pulse
sequence (e.g., if there are only two allowed character values'y' and'n' , we can
simply test for one of the values, and if that test fails, the other value can be
assumed). Also, flag enumerals are an easy way to define a large number of
possible values in multifield flags7.

create('parameter_name','flag')
setenumeral('parameter_name',2,'y','n')

• A single-field flagcan alternatively be defined as string parameter with enumerals,
which would be more restrictive in the parameter entry:

create('parameter_name','string')
setenumeral('parameter_name',2,'y','n')

Needless to say, any new parameter should befilled with a sensible value. It is best to
do this right after defining the parameter, because otherwise it may be forgotten! Note
in particular that defining enumerals for strings and flag parameters doesnot
automatically select or fill in a “legal” value:create followed bysetenumeral
will leave a parameter with an empty string (''), which may lead to unexpected results
when testing for either'y' or 'n' alone in the pulse sequence!

5The proper limits for Performa I type gradients are 2047, -2047, 1; but still it is recommended to use
the limits for Performa II gradients as shown in the text, because this makes the parameter set portable
between systems with different PFG amplifiers.
6 See theVNMR Command and Parameter Reference for thesetenumeral command. The
problem with enumerals in strings is that VNMR is not very helpful in the case of an “illegal”
parameter entry. An error message is issued, but no hint as to what the allowed values are is given.
You have to usedisplay('parameter_name') to see the enumerals for a parameter. For pulse
shapes and WFG patterns, it is therefore betternot to define enumerals (you will get an error message
from thego command if a non-existent pattern or pulse shape is specified).
7 For a flag withn fields, allowing for the characters'y' and'n' , the number of possible values is
2n, or even more if we account for abbreviated versions (i.e., the fact that by convention the last
character of a flag parameter is propagated to any subsequent position:'n' stands for
'nnnnn...').

Chapter 22. Role of Macros and Parameters

246 VNMR Pulse Sequences 01-999014-00 A0398

22.2 Using New Parameters in C

In order to be able to use the value of a new parameter that has been defined in VNMR,
we have to use the special functionsgetval (for numeric parameters) andgetstr
(for flag and string variables) that read such parameter values off the VNMR parameter
table and make them available in the pulse sequence environment.

Numeric Parameters

Thegetval function serves to extract numeric parameter. It returns a double,
irrespective of the parameter type. Note that values frompulse parameters are
converted and passed to the pulse sequence environmentin seconds! Typically, the
getval function is used to initialize a C variable:

double pwx;
pwx = getval(“pwx”);

The VNMR parameter name in the argument of thegetval function and the name of
the C variable don’t necessarily have to be the same, but of course this is very much
preferable. Because it is advisable to keep pulse sequences simple, we should always
watch out for syntax simplifications. One such possibility is to combine variable
declaration and initialization:

double pwx = getval(“pwx”),
pwx2 = getval(“pwx2”);

If a parameter value is used only once in a pulse sequence, it is not really necessary to
define a C variable that holds the value. The functiongetval can also be used directly
as argument to an other function:

rgpulse(2.0*getval(“pwx”),zero,rof1,0.0);

And, of course,getval functions can also be used within mathematical expressions:

tau = 1.0/(2.0 * getval(“j”));

String Parameters

String parameters are slightly more complicated. In principle it would be possible to
create a function similar togetval for strings (i.e., a function returning a (pointer to
a) string). The problem with this is that the user would have to deal with pointer
variables, and that was considered to be too complex for a simple pulse sequence
language (apart from that, pointers are a possible source for errors that are hard to
debug in C programs). Consequently, string parameters must be filled into a string C
variable:

char xpol[MAXSTR];
getstr(“xpol”,xpol);

MAXSTRis defined as 256. Note that after the (fixed-length) string variable definition,
the string isnot automatically initialized; its contents can be assumed to be random.

Do not forget to initialize variables! This mechanism is used both for strings and flag
parameters. For checking individual character fields within a status-related flag
variable, see also“Checking Flag Parameters” on page 160.

22.3 Adding New Parameters to the Display

01-999014-00 A0398 VNMR Pulse Sequences 247

22.3 Adding New Parameters to the Display

In VNMR, creating and setting the new parameters isn’t just enough. You want to be
able to see what the values are, and eventually print out complete parameter listings.
Typing parameter_name? , as the only way to see a parameter value, isn’t a good
solution, because it is very easy to overlook parameters that are not shown on the
screen or listed in a printout.

Editing display (dg , ap) templates is usually byparamvi('parameter_name') or
by paramedit('parameter_name') . If you have defined an environment
variablevnmreditor in your~/.login 8 file, paramedit can be set up to use
textedit instead of thevi editor, which is more convenient for editing parameters
like dg andap , which typically consist of a single, long line (in which occasional users
of vi will have difficulties in setting the insertion point9). Entering such a long
parameter value directly in VNMR (dg='') is difficult, if not impossible. Apart
from that, you don’t want to re-enter the entire template, but you selectively want to
add the new parameters.

The parameter display templates are explained in Chapter 5, “Modifying Parameter
Displays in VNMR,” in the manualVNMR User Programming, Be careful with
conditional displays. Referring to non-existent parameters in a condition expression
causes nasty error messages!

As of VNMR 5.1. it is possible to split a display template into substrings by setting up
an array of strings—typically one substring per column title. Although such split
display templates are incompatible with earlier versions of VNMR, you will find the
shorter substrings much more manageable when editing (particularly withvi). It even
becomes feasible to substitute entire substrings, for example:

dg[2] = '1:PULSE SEQUENCE:seqfil,d1,p1(p1):1,d2(d2),pw:1;'

It is advisable to at least define adg and anap template (if you want, you can also use
thedg template for theap andpap commands, although that will create 4-column
output and arrays will not be shown). You certainly want to make sure that all relevant
acquisition parameters (in particular those that are pulse sequence-specific) are on
contained in a template. For theap template to work properly with arrays, it should be
set up with two columns only.

A potential problem with thedg command and template is that the available space is
very limited, and you often have to use several display templates to cover all relevant
parameters. Thedg command is well-behaved if there are too many parameters in a
column. Extra parameters are shown on the top of the next column (except for the last
one, where extra parameters will simply not be shown!). Note, however, thatdg does
nothandle properly the case where the “parameter overflow” is more than one column!

8 You can also typesetenv vnmreditor textedit in a shell window before starting VNMR
with thevn command.
9 The best way to position the insertion point in such a long line usingvi is to search for a text string
(/substring), rather than using the keyboard arrows.

Chapter 22. Role of Macros and Parameters

248 VNMR Pulse Sequences 01-999014-00 A0398

22.4 Doing It All by Macro

Obviously, there is a fair amount of “extra setup work” related to creating a new pulse
sequence. We certainly don’t want to repeat that every time when we want to use such
a sequence! Therefore, many years back, we started using pulse sequence-specific
macros that allow us to easily switch between a simple 1D setup experiment and any
more complex sequence.

Of course, we could also use the strategy of storing one complete and ready-to-use
parameter set for every pulse sequence, which can simply be recalled before starting
the desired sequence. The disadvantage of this approach is that sample-specific
parameters that have been calibrated in the 1D setup experiment (such as transmitter
offsets, spectral window, referencing parameters, probe- and sample-specific pulse
widths and power levels) are lost and would have to be restored manually, which of
course is a source for errors and omissions. We therefore strongly recommend creating
such pulse sequence-specific macros.

Apart from the tasks described above, such a macro can carry the action a bit further
and also adjust additional parameters (existing ones that need adjustment), display a
manual file for the pulse sequence, etc. And of course the macro should also select the
pulse sequence it is written for by setting theseqfil parameter. The ideal pulse
sequence macro should be written in such a way that an inexperienced user can do a
1D setup experiment, then simply type the name of the desired pulse sequence (i.e.,
execute the pulse sequence-specific macro) and start the acquisition. This user should
then end up with areasonablespectrum using the built-in default parameter values, as
set by the macro.

Macros for 1D Pulse Sequences

Possible tasks for a 1D pulse sequence setup macro can be described as follows:

1. Select the pulse sequence by setting theseqfil parameter.

2. Create new, pulse sequence-specific parameters.

3. Where necessary, set protection bits and limits for the new parameters.

4. Fill reasonable values into the new parameters.

5. Set other parameters to pulse sequence-specific settings, where necessary (e.g.:
setnt to a multiple of the pulse sequence phase cycle length).

6. Set up parameter display templates (dg , ap).

7. Preadjust processing and display parameters, where necessary.

8. Display information on the new pulse sequence (typically a manual file) with
further information.

9. Display the pulse sequence usingdps (optional).

The first five tasks listed above can be done with standard MAGICAL constructs and
commands listed above:

seqfil='dept'
create('mult','real')
setlimit('mult',2,0,0) mult=0.5,1,1,1.5
create('tau','delay')
create('pp','pulse')

22.4 Doing It All by Macro

01-999014-00 A0398 VNMR Pulse Sequences 249

create('pplvl','integer')
setlimit('pplvl','17)
...

There is a problem with this construct, in thatcreate results in an error if a parameter
already exists. A safer construct would be:

seqfil='dept'
exists('mult','parameter'):$e
if not($e) then

create('mult','real')
setlimit('mult',2,0,0)

endif
mult=0.5,1,1,1.5
...

Even though that looks complex for sequences with many parameters, it certainly is
readable. Where this concept falls apart is with the parameter display templates. We
can't edit a parameter from within a macro that may be called in background (we don’t
want to re-edit the templates upon recalling a sequence anyway), and we don’t want to
set the entiredg andap parameters with constructs like

dg = ''
dg[1] = '1:SAMPLE:date,temp,solvent,file(file<>\'exp\');'
dg[2] = ...

because this would make setting up such macros quite complicated!

Instead, the following concept has been adopted by most users: We generate the new
parameters once (as shown above) and fill in the appropriate default values, and we
generate the modified display template parameters. Then wesave the entire parameter
set in parlib (/vnmr/parlib or ~/vnmrsys/parlib). Now, in the pulse
sequence start-up macro, we simplypick the new or modified parameters with their
values from that parameter set:

psgset('dept','mult','j','tau','presat','dg','ap')

This saves us from checking whether a parameter already exists (an existing parameter
will simply be overwritten by the imported one), and it also allows setting thedg and
ap parameters in a simple way (once they have been modified and stored, of course!).

The first argument to thepsgset command (a macro) is not only the value that is
going to be filled into theseqfil (andpslabel) parameter, it also is the (body of
the) file name (without “.par ” extension) of the parameter file from which the
specified parameters are picked. As expected, a local parameter file takes precedence
over a parameter file with the same name, but stored in/vnmr/parlib . Thepsgset
macro can pick up to 11 parameters in one call (not counting the first argument: the
maximum number of arguments is 12 with this command). To retrieve more
parameters, severalpsgset calls are required.

Before recalling the parameters and their values (using thertv command),psgset
callsprune to remove any extra parameter in the local set that is not present in the
parlib file. This avoids an excessive accumulation of parameters when calling
different pulse sequence macros consecutively.

Chapter 22. Role of Macros and Parameters

250 VNMR Pulse Sequences 01-999014-00 A0398

After having “imported” the new parameters plus the display templates, most pulse
sequence macros are supposed to also set default values for existing parameters. This
can be achieved in two different ways:

• The values can be stored in the parameter set inparlib and recalled with
psgset , which will simply replace existing values with those fromparlib .

• The values can be set directly, if necessary, withif constructs:

if d1=0 then d1=1 endif

The problem with theparlib approach is that the parameter values are well hidden
away, and to change the defaults we have to recall the parameter set, change the values,
and then overwrite the saved parameter set again. In the author’s opinion, it is much
easier (and more transparent) to change a macro than to change a parameter set, and
hence it is recommended to rather use the first approach:usepsgset to recall and set
the new and specific parameters and the display templates, but use simple MAGICAL
assignments to set existing (standard) parameters.

There is a special case. Some macros want to setnt based on the number of transients
for the previous set-up experiment. In the case of thedept pulse sequence, the macro
is supposed to decreasent by a factor of 32 (taking into account the sensitivity
enhancement due to polarization transfer), but ensuring thatnt still is a multiple of 4
(the basic phase cycle for that sequence). Taking the current value ofnt may not be
appropriate, because in the preceding experimentnt may have been set to a very large
number, and the actual experiment was perhaps stopped after having reached a
satisfactory signal-to-noise ratio. Takingct , on the other hand, can be wrong also,
because any change in an acquisition parameter will setct to zero! Therefore, it is a
good idea tofirst capture the value ofct (note the precaution for arrayednt !):

“dept - convert standard parameter set to dept”
if ct>0 then $nt=ct else $nt=nt[1] endif
psgset('dept','mult','j','tau','presat','dg','ap')
if $nt>128 then nt=$nt/128 nt=4*nt else nt=4 endif
if d1=0 then d1=1 endif
in='n' il='y' gain='y' pw=pw90 hs='nn'
dof=0-2.5*dfrq “move decoupler from 5 to 2.5 ppm”
dm='nny'
if waltz='y' then dmm='ccw' else dmm='ccf' endif
ai
wexp='deptp' array='mult'
man(seqfil) dps

Note that for thedept sequence,mult is an normally arrayed parameter, but using
psgset andrtv to retrieve such an arrayed parameter doesnotautomatically set the
array parameter! Also, some parameter settings may have to be set depending on the
actual hardware. Constructs like the one used for thedmmparameter (depending on the
presence of WALTZ decoupler modulation capability) make a pulse sequence (macro)
more portable between different hardware platforms.

22.4 Doing It All by Macro

01-999014-00 A0398 VNMR Pulse Sequences 251

Macros for 2D Pulse Sequences

An important additional task in 2D pulse sequence set-up macros is the creation of the
2D specific parametersni andsw1. This is typically done by theset2d macro utility:

“relayh - set up parameters for relayh pulse sequence”
if ct>0 then $nt=ct else $nt=nt[1] endif
av set2d('relayh', 6) “6 Hz resolution in F2“
psgset('relayh','relay','tau','dg','ap')
...

Theset2d macro sets theseqfil parameter, then callspar2d(seqfil) , a macro
that creates the standard 2D acquisition parametersni , sw1 andphase . For
homonuclear 2D spectra (dn=tn), it sets

sw1=sw ni=sw1/24 rfl1=rfl rfp1=rfp

(12-Hz default digital resolution if f1). For the heteronuclear case, it calls

psgset(seqfil,'ni','sw1')

or if no argument was specified, it setsni=256 sw1=2*sw as “default guesses”.

Back to theset2d macro. After having calledpar2d , theset2d macro switches to
a fixed gain (i.e., that is something you will not have to do in the set-up macro!), then
sets up the acquisition and processing parametersnp , fn , ni , fn1 for the specified (or
the default) digital resolution if f1 and f2. The default is 6 Hz in f2, 12 Hz in f1 (the
desired digital resolutions can be specified in arguments 2 and 3).

Theset2d macro then selects sinebell weighting functions in both dimensions for
absolute-value spectra (dmg='av'), or a gaussian apodization for phase-sensitive 2D
spectra (dmg='ph'). It is therefore important thatset2d is only called when the
correct display mode has been selected!It is recommended to callset2d prior to the
first psgset call, and to always have it preceded byav or ph , to ensure the proper
display mode selection, as in the example above.

In a last step, theset2d macro adjusts the display parameters for the 2D spectrum, and
it disables the “automation parameters”wbs, wnt , wexp, andwerr .

Forheteronuclear 2Dexperiments, the set-up macro has the additional tasks of setting
up the acquisition parameters for the “other” nucleus (in f1). It would be nice if these
parameters (dof , sw1, rfl1 , rfp1) were taken from the equivalent parameters (tof ,
sw, rfl , rfp) in a second set-up experiment, typically a 1D experiment in an other
experiment file. Starting with VNMR 5.1, this can also be an “internal” data set in the
same experiment directory. This can be done by adding a lengthy construct like the
following to the set-up macro (simplified, for VNMR 5.1):

jexp:$experiment
exists(curexp+'/subexp/H1','directory'):$internal
if $internal then

$enumber=$experiment
else

$enumber=0
endif
if ($#<1) then

input('exp# containing 1H spectrum (0=none)? '):$enumber
else

$enumber=$1
endif
if ($enumber<0) or ($enumber>9) then

Chapter 22. Role of Macros and Parameters

252 VNMR Pulse Sequences 01-999014-00 A0398

write('error','%s - illegal experiment number',$0)
return(1)

endif
if ($enumber>0) then

"get proton parameters"
if ($enumber=$experiment)

if not($internal) then
write('error','%s - no 1H data found in current exp',$0)
return(1)

else
svtmp('tmp') rttmp('H1')
$savesw=sw $savetof=tof
$saverfl=rfl $saverfp=rfp $savewp=wp $savesp=sp
rttmp('tmp')

endif
else

jexp($enumber)
$savesw=sw $savetof=tof
$saverfl=rfl $saverfp=rfp $savewp=wp $savesp=sp
jexp($experiment)

endif
sw1=$savesw dof=$savetof
rfl1=$saverfl rfp1=$saverfp wp1=$savewp sp1=$savesp

else
sw1=10*dfrq dof=0
write('line3','a full 10 ppm 1H window will be used')

endif
fn1=sw1/3 ni=fn1/4

The released VNMR 5.1hetcor macro actually uses a much more complex
construct! This is, of course, a typical example for a construct that should be put into a
utility macro. The only reason why this hasn’t happened yet is that within the standard
VNMR pulse sequences it was always only thehetcor macro that used such a
construct. A number of related pulse sequences (coloc , flock , phase-sensitive
hetcor , but also indirect detection sequences likehmqc, etc.) could profit from such
a utility.

22.5 Switching Between Similar Sequences

The above macro scheme is acceptable for the way an NMR spectrometer is used in
many organic chemistry and industrial environments, where users typically perform a
series of set-up experiments (like one for1H, one for13C, maybe also extra
experiments with reduced spectral window), and then start a limited number of special
experiments—mostly just one or two:

• 1H, <1H (reducedsw),> COSY
• 1H, <1H (reducedsw),> NOESY
• 1H, <1H (reducedsw),> 13C, DEPT, HETCOR
• 1H, COSY,13C, DEPT, HETCOR

Note that for homonuclear 2D spectra it is not necessary to acquire a spectrum with
reduced spectral window. Youfirst adjust the chemical shift referencing, then you save
the 1D spectrum either in a subfile, usingcptmp , or by moving into a different
experiment (you will use the 1D spectrum for the 2D plotting). Now you can just place

22.5 Switching Between Similar Sequences

01-999014-00 A0398 VNMR Pulse Sequences 253

the cursors around the relevant signals, typemovesw, andthen call the 2D pulse
sequence set-up macro.

However, a typical spectroscopist in biological NMR will work in a totally different
way. Often a sample stays in the magnet for a week or more, while a series ofsimilar
or closely related experiments are performed, such as HNCOCA, HNCA, etc. Under
such circumstances, the above macro scheme has several disadvantages:

• The complex sequences used in this environment require a large number of
parameters that have been carefully calibrated on that particular sample;psgset
would simply overwrite these values with the ones fromparlib , which is highly
undesirable.

• Some of these macros may assume that they are called in a 1D experiment and may
not work properly when called on a 2D or 3D data set (e.g., some of these macros
cannot be called twice in sequence!).

Users have adopted two philosophies to cope with these deficiencies:

• Rather than calling a pulse sequence macro, they simply recall a parameter set
fromparlib . The referencing between different biological samples (at least those
in one lab) is often almost identical, so this is not a problem. However, this will
requirere-entering all calibrated parametersfor each experiment (considering the
fact that many of these experiments last for several days, this seems acceptable to
many users).

• Assuming all these pulse sequences use convergent parameter definitions, it may
be possible to simply change theseqfil parameter to switch to a related
sequence. The problem is, that itcannot be assumed that parameter sets are
consistent between sequences in a general case (unless all sequences involved
were developed locally), because there is no compulsory style guide for parameter
naming and usage!

Clearly, this is an area which requires improvement. In fact, there are planned
improvements:

• A new style of setup macro is being developed that can be used repeatedly and
does not overwrite calibrated parameters.

• A detailed style guide covering parameter naming will be put forward in a future
version of this manual.

Chapter 22. Role of Macros and Parameters

254 VNMR Pulse Sequences 01-999014-00 A0398

01-999014-00 A0398 VNMR Pulse Sequences 255

Chapter 23. Putting It All Together

In this chapter, we look at approaches for programming a new pulse sequence, testing
a sequence and its associated macros and files, and submitting a sequence to the Varian
user library.

23.1 Starting a New Sequence

To write your own pulse sequence, you have two principal options:

1. Look for a pulse sequence (in/vnmr/psglib , or inuserlib/psglib , or in
any other source) and modify or rework that into your desired pulse sequence.
You can do the same thing with the associated parameter sets, macro, phase
table, etc.

2. Start a new sequence “from scratch.”

Programming by Modifying an Existing Pulse Sequence

Definitely, the first approach is very often much easier and is preferred simply because
it is less work. It does have some disadvantages, such as:

• It is more susceptible to programming errors.
• It is more difficult to debug because the program is not developed in a “top-down”

approach.
• It is much more difficult to do systematic programming and development this way.
• It tends to perpetuate bad syntax and style from existing sequences and old—

maybe outdated—pulse sequence programming features. The syntax tends to get
worse with every transformation of a pulse sequence, unless the programmer is
very disciplined.

Programming by the Top-Down Approach

We are not going to further discuss the first approach (there isn’t much to say about this
method anyway). On the other hand, it certainly is worthwhile giving some hints for
the second approach, pulse sequence programming from the “top-down,” for which
(given the above) some obvious advantages exist:

• It can lead to clean, well-debugged programs.
• The resulting sequence will have a more systematic and simpler syntax.
• It probably uses the latest pulse sequence programming features and, therefore, is

more up-to-date to begin with.

Although the top-down approach may be somewhat more work for the programmer, it
certainly is the more valuable method from a didactic point-of-view.

The idea of the top-down approach is simple:don’t start with the details! Start with a
rough framework, then start filling in details level by level. Try keeping the syntax
complete and compilable all the time, and recompile the program frequently. This way

Chapter 23. Putting It All Together

256 VNMR Pulse Sequences 01-999014-00 A0398

you never have too many bugs at once, and it is much easier to find the bugs than if you
start compilation when the program is several pages long.

The best way to do this is to open up two UNIX windows side by side (the development
of a complete, new sequence; don’t block the NMR interface by calling an editor from
within VNMR). In one window you edit the sequence (using your preferred editor); in
the other window youcompile the sequence periodically, whenever it is appropriate.
You can leave these windows running for as long as the programming lasts (or until
you want to log out, of course). Just close the windows to icons when you want to use
the VNMR user interface.

Periodically save your work—don’t give Murphy’s law a chance to destroy several
hours of working effort!

While you program, always add comments. Don’t wait to insert comments until you
are finished, because then you will want to work with the new sequence and the
comments will never be added. Sensible comments never make a sequence more
complicated; they keep it understandable.

Don’t write novels into the comments. Use short comments, but add comments to every
part of a complicated pulse sequence. Short sequences on the other hand (if they are
well-written) should be more or less self-explanatory and usually require very little
comment.

As you write the pulse sequence, maintaining amanual file for the new pulse sequence
is recommended. Often, the manual has been taken from the first part of the comment
of the pulse sequence text; it is not necessary to duplicate that text. Either write a
separate manual and don’t add that text also to the sequence, or just do it in the pulse
sequence for simplicity (you can still move that text out of the sequence and into a
separate manual file later).

23.2 Testing a Sequence and Related Files

At some point in the programming you start using new variables (delays, pulse widths,
power levels, etc.). When this happens, always add the parameter definition and
initialization in the pulse sequence (such that it still compiles without error message).
At the same time you can start developing themacro and creating theparameter set
for the pulse sequence. Reserve an experiment in VNMR for that new sequence, and
successively create (and adjust) new parameters, as you add them to the pulse
sequence. Also, you can keep thedg andap templates up-to-date at the same time. In
the macro, very likely you will have to add an argument to apsgset command. You
also want to periodically save the macro and the parameter set, even when they aren’t
finished yet, just to secure your work.

Also, as you start using phase tables, you should of course maintain atable file for the
sequence.

Continue doing this until you think the sequence is complete. When the sequence then
compiles without error, you should complete the macro (of course, you will check with
a similar, existing macro to ensure that you don’t forget anything in the new macro).

Typingdps in VNMR will now indicate whether the parameter set is complete, and it
will also give you a first “clear view” onto the features of the new sequence: are all the
pulses and delays there, in the right sequence? Whendps works without problems, you

23.3 Submitting a Pulse Sequence to the User Library

01-999014-00 A0398 VNMR Pulse Sequences 257

should double-check thedg andap templates. and then save the parameter set in
parlib .

Now either retrieve a simple 1D spectrum or use the VNMRsetup command to
retrieve standard 1D parameters, and then call the pulse sequence macro and check
again withdps . This will tell you whether the macro is complete and functional.

You can go even further with the testing, still without involving a spectrometer. You
may want to check the pulse sequence for run-time errors and problems by typing
go(‘acqi’) . This executes the pulse sequence and generates Acodes, at least for the
first increment (in case of arrayed ornD experiments). It also serves as a test for the
parameter checking built into the pulse sequence. If you then want, you could even use
theapdecode tool (bin/apdecode from the user library) to have a look at the
Acodes that were generated.

All this can be done on a data station. In order to be able to callgo(‘acqi’) you
must callconfig and declare the system a spectrometer—butdon’t call setacq on
a data station, of course!

The next steps must happen on the spectrometer. Try a 1D run (nt=1) first. Then you
may want tocheck the phase cycling by performing an array with

nt=1,2,4,8,16,32,64,128

You may have to adjust the parameter defaults in the macro, as you continue with the
testing.

Finally make sure the last versions of all related files are complete and saved:

• Pulse sequence (frompsglib).
• Table file intablib.

• Macro.
• Parameters inparlib.

• Manual file.
• Shape and pattern files, if required.

If the new sequence is functional and works to your satisfaction, don’t you want to
submit it to the Varian NMR user library and share the sequence with other users?

23.3 Submitting a Pulse Sequence to the User Library

To submit a new sequence to the user library, first fill in a submission form (in the user
library the form becomes theREADMEfile, myseq.READMEin this example). You find
a blank form in/vnmr/userlib/SUBMISSION . Then you collect all files related to
your sequence, except for the compiled version (because this is specific to your
software version, it would just take up lots of space in the user library—also, it is very
easy and quick to recompile a sequence):

• If you want to send the submission by e-mail, you can directly create a uuencoded,
compressed tar file:

cd; cd vnmrsys
tar cf - psglib/myseq.c tablib/myseq parlib/myseq.par \

maclib/myseq manual/myseq | compress | \
uuencode myseq.tar.Z > myseq.uu

Chapter 23. Putting It All Together

258 VNMR Pulse Sequences 01-999014-00 A0398

Now you can send the submission form and the data to theuserlib librarian:

cat myseq.README myseq.uu | \
mail -s ‘myseq submission’ rolf@nmr.varian.ch

• If you want to send the submission by floppy, you create a compressed tar file:

cd; cd vnmrsys
tar cf - psglib/myseq.c tablib/myseq parlib/myseq.par \

maclib/myseq manual/myseq | compress > myseq.tar.Z

Then you store bothmyseq.READMEandmyseq.tar.Z on a floppy and send it
to the librarian: Rolf Kyburz, Varian International AG, Chollerstrasse 38, CH-6303
Zug / Switzerland.

01-999014-00 A0398 VNMR Pulse Sequences 259

Chapter 24. Syntax Guidelines

It is planned to include a complete style guide for writing pulse sequences in a future
version of this manual. For the time being (as long as that style guide hasn’t been
defined yet), we’ll just include some hints for writing pulse sequences such that they
are portable to other systems and readable and easily understood by other users.

24.1 General C Syntax

Being disciplined in the use if the C syntax can be a great help in keeping a pulse
sequence readable. A few points in more detail:

Comments

Adding comments is definitely recommended, but add reasonable comments: enough
to explain what is not obvious, but don’t pack too much theory into the comments (you
can add a literature reference. Too many comments can also clutter a C program! You
can have a larger comment segment at the top of the sequence, but for the actual C code
it is better to use one-line comments only.

Indentation

Using proper and systematic indentation helps in two ways: it definitely makes a
sequence more readable, and (even more important) it helps avoiding mistakes! The
author recommends using the following indentation rules (no examples shown—there
are enough examples for C coding in the rest of this manual!):

• Use indentation, but don’t indent too much (such as an entire tab stop: this would
lead to excessive line lengths in nested if statements etc.). For short sequences (one
page or less), two spaces per indentation level should be enough. For longer
sequences, it may be better to indent by three or four spaces.

• Always have corresponding opening and closing braces at the same indentation
level. Donot add the opening brace to the end of anif line!

• Haveif and the correspondingelse at the same indentation level.

• Where anif or anelse branch contains only one function call or statement,
braces are not really necessary, and you should leave them away, to keep the
coding shorter (although with beginners in C, this is a possible source for errors if
additional statements are added to any of the branches.

• If the splitting intostatus fields is a prominent feature in a pulse sequence (most
traditional pulse sequences were written this way), you can use an additional
indentation afterstatus calls.

• Additional indentation should also be used for functions betweenifzero ,
elsenz , andendif calls, as well as for statements betweenloop andendloop ,
and betweenstarthardloop andendhardloop .

• Place comments either behind a C line (preferably at an identical tab stop) or, for
longer comments, at the same indentation level as the surrounding C statements

Chapter 24. Syntax Guidelines

260 VNMR Pulse Sequences 01-999014-00 A0398

(starting comments at the beginning of a line would destroy the effect of the
indentation).

When dealing with a program that has been coded with a “strange” indentation style,
the author often uses the UNIXindent command to fix it up (seeman indent for
more information).indent can be used with arguments, but it is much easier if it is
configured with a local~/.indent.pro profile. A good set of indent settings would
be the following line in~/.indent.pro :

-bap -bad -bl -ncdb -nce -d0 -di2 -eei \
-nfc1 -i3 -nip -lp -npsl -sc -nsob

Using-in is the principal indentation. Use-i2 , -i3 , or -i4 , as appropriate. The
indent program usually does a very nice job, but of course it does not “know” about
pulse sequence specifics (i.e., you will have to fix up the result by adding indentations
after status, afterifzero andelsenz , afterloop , and afterstarthardloop).

Variables

Try keeping things simple and short! Doing variable initialization within the variable
declaration saves many lines of code,and it ensures that all variables are initialized!
For numeric parameter values that are use only once, you don’t need to define a
variable at all—you can use thegetval function directly as function argument.

24.2 Outdated PSG Utilities

The use of outdated PSG utilities may not affect the functionality of a pulse sequence
on your system, andthe way you use it; however, it makes a sequence less portable, in
that it may be incompatible with different hardware or with the way an other person
uses the spectrometer1.

Device Addresses

A number of pulse sequence functions require specifying a device (rf channel) address.
The device names used in earlier versions of VNMR areTODEV (observe channel),
DODEV (decoupler channel),DO2DEV, andDO3DEV. As of VNMR 5.1, things have
changed! These device addresses still exist, but they now refer to the physical, rf
channels (TODEV is channel 1,DODEV is channel 2, etc.) anddon’t reflect the setting
of therfchannel parameter in VNMR (i.e.,TODEV, DODEV, etc. will always point
to the same physical channel).

If you ever want to use therfchannel mechanism for re-assigning thephysical
channels to differentlogical channels (and if you don’t, some other user of your pulse
sequence may!), you should now use the new symbolsOBSch (the logical observe
channel),DECch(the logical decoupler channel),DEC2ch, DEC3ch instead.Table 17
summarizes the old and new naming conventions. A simple translation will make your
pulse sequence compatible with therfchannel mechanism.

1 On the other hand, using new utilities may make a sequence partly incompatible with previous
versions of VNMR, but as the majority of the VNMR users use the current release, “horizontal”
portability (same release, but different platforms) is more important that trying to keep a sequence
compatible with older versions of VNMR.

24.2 Outdated PSG Utilities

01-999014-00 A0398 VNMR Pulse Sequences 261

Functions with Device Addresses

The channel naming complication above can be avoided if functions requiring a device
address are replaced by functions that addresses that logical channel directly. There are
only very few exceptions (namely, somegenpulse type function calls) where this
isn’t possible (or at least not straightforward).Table 18gives some guidelines on what
functions to use:

Note that, strictly speaking,power andrlpower (and alsopwrf andrlpwrf) are
not equivalent functions, because they require different argument types (real-time
integer vs. C double). The next section covers this difference further.

The “gen” type functions are “not officially supported” (i.e., there is no manual page
for these utilities). They have been used by people that wanted to implement rf channel
independent pulse sequences before therfchannel mechanism existed. This feature

Table 18. Equivalent PSG functions with and without device address

Functions with
device address

Equivalent functions without device address

rlpower, power obspower, decpower, dec2power, dec3power

rlpwrf, pwrf obspwrf, decpwrf, dec2pwrf, dec3pwrf

offset obsoffset, decoffset, dec2offset, dec3offset

stepsize
obsstepsize, decstepsize, dec2stepsize,
dec3stepsize

genqdphase txphase, decphase, dec2phase, dec3phase

gensaphase
xmtrphase, dcplrphase, dcplr2phase,
dcplr3phase

genpulse pulse, decpulse

genrgpulse rgpulse, decrgpulse, dec2rgpulse, dec3rgpulse

genshaped_pulse
shaped_pulse, decshaped_pulse,
dec2shaped_puls, /dec3shaped_pulse

gen_apshaped_pulse
apshaped_pulse, apshaped_decpulse,
apshaped_dec2pulse

genspinlock
spinlock, decspinlock, dec2spinlock,
dec3spinlock

prg_dec_on obsprgon, decprgon, dec2prgon, dec3prgon

prg_dec_off obsprgoff, decprgoff, dec2prgoff, dec3prgoff

Table 17. RF channel naming convention

Old symbol New symbol

TODEV OBSch

DODEV DECch

DO2DEV DEC2ch

DO3DEV DEC3ch

Chapter 24. Syntax Guidelines

262 VNMR Pulse Sequences 01-999014-00 A0398

alone added considerable complexity to such sequences and made them very hard to
read. Also, the “gen” type functions have the additional disadvantage of not being
recognized by thedps utility. All these sequences can now be written for fixed logical
rf channels, and the channel switching can be achieved much more easily using the
rfchannel parameter.

The only case where “gen” type functions are still recommended is for some particular
types of simultaneous pulses (shaped and rectangular). For pulses on “adjacent” logical
channels (starting withOBSch), simpulse , sim3pulse , simshaped_pulse and
sim3shaped_pulse are perfectly adequate. However, if simultaneous pulses are to
be performed on either non-adjacent channels (e.g.,OBSch, DEC2ch) or on adjacent
channels not includingOBSch, it is still better to use “gen” type functions. The simpler
“sim” pulse functions don’t handle the case the case of any of the pulse lengths being
set to zero very well.2 Such functions may be acceptable for testing purposes, but for
a real experiment you don’t want to really use these functions with any of the pulse
widths set to zero (at least for the current VNMR release). As mentioned before, using
“gen” type functions will unfortunately make these pulses “invisible” todps .

Replacing power and pwrf Statements

The following construct was used in a large number of pulse sequences:

double pwxlvl;
(..)
pwxlvl = getval(“pwxlvl”);
(..)
initval(pwxlvl,v10);
(..)
power(v10,TODEV);

This has numerous disadvantages:
• It is complicated and lengthy;
• It requires reserving one of the few real-time variables (remember that with

initval youmust not use this real-time variable for anything else in the
sequence!);

• There are often pages between theinitval call and the actual use of the real-time
variable containing the power value. Upon reading such sequences, it is often very
hard to tell what power level is actually used, because with everypower statement
you have to go back in the sequence and look for the correspondinginitval call.

It is much preferable to simply use

obspower(getval(“pwxlvl”));

which avoids using and initializing a real-time variable and avoids an extra C variable
declaration and initialization, and the VNMR parameter name occurs where it is
actually used in the sequence.

2 In the case ofsimpulse andsim3pulse , some extra (non-sense) FIFO words are produced for
the pulse on the “unused” channel (i.e., it tries performing a timer word of zero length), and for
simshaped_pulse andsim3shaped_pulse the waveform generator on the unused channel is
still being reset (as if there was a shaped pulse of zero length).

24.3 General Considerations

01-999014-00 A0398 VNMR Pulse Sequences 263

C Constructs for Phase-Sensitive nD NMR

Many pulse sequences use outdated (rather complicated and sometimes even
questionable) constructs for fn coherence selection (States, TPPI, FAD). A preferred
set of constructs is described in detail inChapter 19, “Multidimensional Experiments,”
on page 215. In particular, it should be noted that the contents of the VNMRphase ,
phase2 andphase3 parameters are now already extracted and can be used in the
integer variablesphase1 (not phase !), phase2 , andphase3 . Also, the real-time
variablesid2 , id3 , andid4 should be used for setting up TPPI or FAD. This not only
is simpler than referring the constructs used earlier, it also is safer and easier to
understand.

24.3 General Considerations

This sections just provides a few additional hints of more “philosophical” nature.

Multipurpose Sequences

One of the nice features of VNMR pulse sequences is that you can have logical
branchings based on VNMR parameters, allowing combining a number of related
experiments into a single pulse sequence. But don’t overuse this feature by trying to
“pack the world” into a single sequence! You can use this feature to combineclosely
related experiments (such as HMQC, HMQC with nulling by partial inversion
recovery, and HMBC). Essentially use this capability to turn on or off specific features
of a single experiment, and write separate sequences where the combination would be
hard to understand or would result in most of the pulse sequence being in anif or
else branch!

Using dps

Thedps command is a useful and powerful tool for quickly controlling the experiment
setup before starting a real acquisition. We fully appreciate the value of this command
(we use it ourselves all the time!), and we will continue to further developdps .
However, nothing is perfect, anddps has its deficiencies, mainly:

• It does not display “gen”-type pulses and simpulses. “G” type functions (not
discussed in this manual) have the same problem.

• It does not display pre-pulse and post-pulse delays.
• It does not display a number of other statements that may be relevant to certain

users.
• The statementzgradpulse is not displayed (this has been fixed in VNMR 5.1).
• The number of events that can be displayed is limited and may not be sufficient for

very complex experiments (like certain heteronuclear 3D PFG sequences).
• Anumber of other—perhaps minor—problems have been noticed by users.

Most of these problems can be circumvented, and different approaches have been used
to achieve this:

• Some users have created a modified version of a pulse sequence just for the
purpose of usingdps , while the “real” pulse sequence is used for the “real”

Chapter 24. Syntax Guidelines

264 VNMR Pulse Sequences 01-999014-00 A0398

acquisition only (with the known deficiencies ofsim2shaped_pulse and
sim3shaped_pulse , this may actually make real sense!).

• Others have resorted to explicit coding of pre-pulse and post-pulse delays by using
explicit gating and extra delays around rf pulses, instead of relying on the features
built into functions likergpulse .

• Even extraif andelse branchings were built into certain sequences (one branch
for dps , one for acquisition).

In all these cases, you should ask yourself: is it worth the effort? Is it worth giving up
the readability of a sequence, just to makedps work?

Some of the approaches like the explicit coding of pre-pulse and post-pulse delays may
not work because they result in more pulse sequence elements thandps can display!
In any case, it will be a long way untildps can display each and every detail (many
users may not want that, because it can lead to excessively complexdps displays).

The question then would be: couldn’t tools, such asapdecode 3 that display the Acode
instructions, replace certain aspects ofdps (because theyreally show every detail)?
Displaying the Acode, on the other hand, can be too complex for routine use, but it
certainly can be useful for certain stages of pulse sequence debugging!

3 apdecode is available from the user library, see alsoSection 8.2, “Looking at Acode,” on page
69. It is a tool to display the data and instructions in the Acode, as they are executed by the acquisition
CPU.

01-999014-00 A0398 VNMR Pulse Sequences 265

Chapter 25. Debugging a Pulse Sequence

Many of today’s pulse sequences have grown into an astounding complexity, and in
order to cope with the growing range of experimental demands, modern NMR
instruments have become extremely complex machines. Even though Varian tries hard
to keep the rf and digital scheme as simple as possible (not because this is cheaper but
because in most cases simpler schemes are better and less prone to failures). On the
other hand, every programmer makes mistakes1, and in a complex instrument there is
also a certain chance that something fails or does not work as expected.

Overall, there is a fair chance that a new, complex experiment does not work as
expected in a first attempt. If this happens, it would be a bad idea to just call a Varian
service or customer support person claiming that “my xyz sequence does not work.”
At the very least one should be able to tell the following:

• What is the instrument type and configuration?
• What was the exact VNMR software release?
• Is this a standard sequence? A sequence from the user library (in this case you

should consider contacting the author of the sequence directly, e.g., via e-mail or
telephone)? One that you modified yourself?

• What exactly are the symptoms? (Can you fax a plot illustrating the problem or
send an FID by e-mail, or mail it on a floppy?)

• Was there any error message?
• What exactly were the parameters in use? (You may want to consider sending a

parameter printout by fax or sending an entire parameter set by e-mail or on a
floppy!)

• What did you do to further locate the problem? (The sections below should give
you some hints on what you could do to track down a problem.)

• Do other (similar or simpler) experiments work without problems? (Very often it
is not really clear whether one is dealing with a hardware or a software problem!)

• What was the last experiment that worked properly?
• What happened since then?

Even with all this information, you might spend considerable time on the phone or
exchanging e-mail, and it is in the last two points where the user can be most helpful
in diagnosing and fixing the problem, saving service time and costs, making e-mail or
telephone calls more efficient, and—last but not least—speeding up the entire process
of getting the experiment to work.

Given the complexity of modern experiments, this may not always be an easy task. It
may require a fair amount of analytical and creative thinking to locate and fix a
particular problem, and certainly knowledge about the functionality of the experiment,
as well as about the internal functionality of the NMR instrument is most helpful for
this task. Of course, it takes time to acquire the knowledge that is necessary to debug
a pulse sequence. One motivation for creating this manual was to shorten the learning
curve for advanced spectrometer operation and debugging. With the right approach,
you should not only be faster in designing and debugging new pulse sequences, but you

1 Many people go as far as claiming that there is no software without bugs!

Chapter 25. Debugging a Pulse Sequence

266 VNMR Pulse Sequences 01-999014-00 A0398

will also be able to save service time and costs by providing a more accurate
description of eventual problems.

It is difficult, if not impossible, to provide a general recipe fro debugging a pulse
sequence or locating an instrumental problem. The tips below are just options. The
“correct” choice and sequence of actions is depending on the nature of the problem.

25.1 Debugging the Parameters

First, you want to find out whether the problem is due to a simple parameter mis-
setting, because this would be the easiest and fastest problem to solve.

• Checkdg anddgs for obvious parameter errors.

• Check withdps whether the parameters really are what you think they are. You
may have used a pulse type parameter for a delay or, much worse, a delay
parameter for a pulse duration (this can burn your probe and damage your
sample!).

• Important parameter may be hidden from the display. Check for the values of all
parameters on which you do agetval or agetstr in the pulse sequence.

Parameter mis-settings may result from errors or omissions in the setup macro—you
may want to check for problems there. Certainly, if there is a parameter problem, this
should be fixed in the setup macro, to avoid the same problem next time.

25.2 Debugging the Software

Next, you want to check whether thereis a software problem, either a faulty sequence
or a malfunction in the acquisition software.

• You also may want to killAcqproc , restart it, and retry the experiment, just to
check whether the problem is reproducible. Power surges, vibrations or
temperature variations can severely affect cancellation experiments.

• Analyzing the FID or the spectrum can often indicate the nature of a problem (lack
of cancellation, artifacts, etc.).

• Usedps to verify that the sequence corresponds to what you intended it to do.

If you don’t see any obvious source for the problem, try narrowing down the area in
which the problem is located:

• Simplify the experiment either by setting selective parameters to zero or by
changing flag parameters (if there are any).

• Check for phase cycling errors by usingnt=1,2,4,8,16,32,64,128 . In
cancellation experiments, you should see whether you get cancellation, and how
much. Apart from the cancellation, you should see a steady increase of the signal-
to-noise ratio by a factor of 1.4 with every increment. For 2D experiments, use
ni=0 (measure the first increment only)2. For multiple-quantum filtered
experiments (ornD experiments that acquire echo-type signals in general), it is
also necessary to do the same test withd2=ni/(2*sw1) to check whether

2 In non-PFG absolute-value 2D experiments, there will be one step in thent array that shows no
increase in signal-to-noise. This is the point where f1 quadrature detection is achieved by subtracting
(N+P) from (N-P) type spectra.

25.3 Debugging the Hardware

01-999014-00 A0398 VNMR Pulse Sequences 267

multiple-quantum signals are collected at all (the first increment should contain
only noise if the experiment is functioning properly). For States-type phase-
sensitive nD experiments, usephase=1 (and/orphase2=1).

• Useapdecode (supplied in the VNMR user library) to verify that the sequence
of events in the pulse sequence is what you want, including events that are not
shown by thedps command.

• Make the pulse sequence print parameter values and variables, maybe at several
points in the sequence. This can reveal misconceptions such as the use of real-time
variables in C calculations or any attempts to extract values from a displ.ay or
processing parameter (only acquisition parameters can be accessed in a pulse
sequence).

• It is easy to get mixed up in C decisions (or complex C constructs, in general). If
the execution path within a complex sequence is not clear from looking at thedps
or apdecode output, you may want to check points at certain places in the
sequence, such as the line:

printf(“starting refocusing period\n”);

• If all this doesn’t help, simplify the pulse sequence code by progressively
removing or commenting out sections of the pulse sequence (of course, you should
keep a copy of the original sequence!) to try locating the problem within the
sequence.

25.3 Debugging the Hardware

WARNING: High voltages are present inside the console!

WARNING: Always have all cables properly connected or terminated when
performing experiments, or while rf output is being generated (you
could damage expensive power amplifiers!). For analyzing the output
of power amplifiers (in particular for the 1 KW amplifiers used in solids
NMR) you will need special power attenuators.

WARNING: Don’t pull boards while the power is switched on, and never pull
boards without protection against static electricity!

The one important rule for debugging hardware problems is to usesimpletools (pulse
sequences and experiments)! Complex pulse sequences may be a good measure for
testing the overall performance of a spectrometer, but they are useless for locating a
specific hardware problem in an NMR spectrometer.

• Is the probe tuned properly?Can it be tuned at all, and on all channels?

• Has the proper quarter-wavelength cable been selected?

• Is there no problem with the lock?

• Try a similar, but different experiments (a different pulse sequence), just to double-
check whether you have a hardware problem.

• If that fails as well, try very simple experiments, likes2pul , d2pul , sh2pul ,
g2pul or the like, to further narrow down the possibilities.

• Double-check connections between the console, magnet leg, preamplifiers, and
probe.

Chapter 25. Debugging a Pulse Sequence

268 VNMR Pulse Sequences 01-999014-00 A0398

• Check fuses in the console.

• Periodically check the fans in the console: overheated boards can easily cause a
malfunction of the spectrometer!

Further hardware troubleshooting requires hardware diagnostics tools such as an
oscilloscope, BNC cables and a set of rf attenuators. You may want to seek the help of
a local expert for accessing cables and connectors within the console and for analyzing
power rf output.

• Check whether rf (pulses, decoupler frequency) is generated and gated properly at
the output of the transmitter board.

• Then follow the signal path and check the input of the amplifiers (after the
attenuators).

• Given the appropriate attenuators (observe the warnings above!), you may now
check the power output at the amplifier outlets.

• To check the rf path in the magnet leg, you can then repeat this test at the input to
the probe.

• To check for the signal pathfrom the probe, you need a strong sample; otherwise,
you just observe noise. First, check for the presence of the L.O. frequency at the
preamplifier (without L.O. you will not even observe noise behind the mixer!). The
signal at the input to the preamplifier may be difficult or impossible to see on the
oscilloscope, because the signal level is very low at this point. You may have a
better chance at the input to the receiver.

• Carefully analyze the FID: Do the signals look normal? Is there truncation? Do
you see unnatural “spikes”? Do both channels have the same or a similar
amplitude? A good and easy way to check for signal overload at the ADC is the
commandddff(1) that shows the numeric contents of the FID.

01-999014-00 A0398 VNMR Pulse Sequences 269

Index
Index

Symbols
+= notation, 118
.DEC file extension, 179, 180
.RF file extension, 173
.rootmenu file, 63

Numerics
180-degree phase shift, 41
63-dB attenuator, 139
90-degree phase shifts, 41, 45, 163

A
aa command, 60
abort function, 155
aborting a sequence, 155
Acode, 57, 66

AP bus words, 140
contents, 71
data, 15
decoder, 59, 70
fast bits, 94
file header, 74
file structure, 69
from waveform generator modulation, 183
generation, 58
instruction section, 79
interpretation, 66, 82
interpreter, 149
loops, 147
phase calculations, 98
real-time decisions, 160
saving space, 117
segment, 60, 61
space, 111
space efficiency, 123
structure, 74
tables in instructions segment, 122
timer words, 94

acoustic ringing, 48
acq directory, 59
acqi command, 58, 59
acqi.Code file, 69
acqi.RF file, 170
acqparms.h file, 20, 156
acqpresent file, 59
acqproc account, 63
Acqproc error messages, 56
Acqproc not active, 56
Acqproc process, 15, 55, 59, 61, 63, 167, 266
acqqueue directory, 15, 15, 57, 57, 62, 69, 167
acqtriggers variable, 205
acquire statement, 151, 205, 206
acquisition

explicit, 208
implicit, 205
lock, 62
multi-FID, 209
parameters, 20, 55
process, 55, 59
queue, 56

queue directory, 57
queuing, 60
status window, 62
trigger, 205

acquisition bootup selector switch, 146
acquisition control boards, 151
acquisition control parameters, 57
acquisition CPU, 15, 59, 60, 61, 66, 85, 145, 172

bus, 67
data blocks, 69

acquisition operating system, 59, 66, 69
acquisition process, 15
actively shielded gradient coils, 202
ADC (Analog-to-Digital Converter), 67, 207
ADC overflow, 214
alfa parameter, 51, 51, 52, 206
algorithm for phases, 95
algorithms for phase cycling, 124
aliasing, 205
alock parameter, 58
alternating phase cycles, 102
AM/PM transmitter board, 164
amplifier blanking, 45
amplifier stabilization, 47
amplifier timing, 41
amplitude modulation circuitry, 163
amplitude multiplier for shaped gradients, 170
analog-to-digital converter (ADC), 16
angled bracket notation, 32
angled brackets convention, 14
anti-parallel switching, 44
AP bus, 67, 67, 86, 137, 163

addressing, 163
delays, 141
indirect mode, 86
shaping gradients, 202
statements, 21
traffic, 140, 200

AP bus chip, 137
AP interface board, 88, 137, 140
AP words, 86, 137
apdecode program, 71, 75, 140, 267
apdelay.h file, 21, 142
aph command, 52
aph parameter, 50
apovrride statement, 139
apshaped_pulse statement, 191, 194, 195
aptable.h file, 21
argument type-checking, 23
arraydim parameter, 74
artifact cancellation, 95
artifacts, relative intensity, 135
as command, 25
assembly language compiler, 25
attenuator, 211
au command, 55
au(’wait’) command, 56
audio filter, 67
audio filter bandwidth, 139
audio frequencies, 50
audio signal, 211
AUTOD data structure, 74, 75, 76, 78
autoincrement attribute, 118, 119
autoincrementing tables, 119, 151

270 VNMR Pulse Sequences 01-999014-00 A0398

Index

autolocking, 66
automated flag, 156
automatic statement, 39
automation control board, 66, 66, 78, 145
autophasing, 50, 52
autoshimming, 59, 66, 78, 80
autshm.out file, 59

B
background VNMR, 62
base counter for phase cycling, 110
baseline roll, 51
bc command, 51
BCD information, 137
Bessel filters, 51
beta constant, 51, 206
binary coded decimal (BCD) information, 137
biological NMR, 52
BIRD pulses, 122, 156, 158
blanking the amplifier, 44
blocksize transients, 96
boot PROMs, 66
bootup selector switch, 67, 214
BR-24 sequence, 150
braces notation, 117
brackets notation, 101, 117
broadband rf, 156
broadband-type transmitter boards, 165
bs parameter, 77
bsctr variable, 96
bsval constant, 77, 96
buffered acquisitio, 61
bug fixes, 29
bus decoder, 86
bus structures, 67
Butterworth filters, 51

C
C based decisions, 155
C compiler and linker, 18
C constructs, 95
C language errors, 18
C loop, 147
C preprocessor, 18, 19, 21, 22, 23
calculating complex phase cycles, 162
calfa macro, 52
cancellation experiments, 109, 266
cancellation of artifacts, 95
cancellation quality, 134
cc command, 18, 19, 24
cccc.c file, 129
CD-ROM drive, 59
celem parameter, 62
center glitch, 95, 212
change macro, 61
channel imbalance, 95
chown command, 63
CIDNP experiments, 88
class A/B linear amplifiers, 45
class C amplifiers, 45, 139, 156

COCONOESY sequence, 206
code optimizer option, 25
code section for pulse sequences, 106
code segments in Acode file, 74
codeint variable, 75
coherence pathway selection, 95, 199
coherent signal buildup, 206
coil inductance, 47, 48
coil mechanical movements, 48
combined COSY and NOESY pulse sequence, 209
combining two pulse sequences, 158
command to convert (CTC) bit, 87, 89, 205
comments for phase cycles, 101
compilation, 18, 24

conditional, 22
pulse sequences, 15, 15

complex phase cycle generation, 103
composite pulse inadequate, 129
composite pulses, 50
conditional compilation, 22
conditional processing, 62
config program, 60
configuration parameters, 15
conpar directory, 15
constants definition, 20
cp command, 31
cp parameter, 58, 76
cpp program, 18, 19, 23
cps.c file, 189, 205
CPU address space, 69
CPU boards, 66
CRAMPS experiments, 150
createPS function, 205
ct counter, 214
ct variable, 62, 75, 95, 96, 102, 109, 118, 119
curly brackets notation, 117
cycle phase flag, 76
CYCLOPS phase cycling, 130

D
d1-randomization, 135
data acquisition, 205
date inconsistencies, 31
date parameter, 63
dc offset, 51
dc offset cancellation, 212
dead times, 37, 41
debuggers, 25
debugging a pulse sequence, 265
dec2apshaped_pulse statement, 191
dec2prgoff statement, 181
dec2prgon statment, 180
dec2rgpulse statement, 48
dec2shaped_pulse statement, 172
dec2spinlock statement, 181
dec3prgoff statement, 181
dec3prgon statement, 180
dec3rgpulse statement, 48
dec3shaped_pulse statement, 172
dec3spinlock statement, 181
decapshaped_pulse statement, 191
DECch device, 40, 48, 172

01-999014-00 A0398 VNMR Pulse Sequences 271

Index

decompose a complex phase cycle, 103
decoupler amplifier blanking control, 52
decoupler gating, 49
decoupler high-power level, 139
decoupler low-power attenuator, 139
decoupler modulation mode, 53, 88
decoupler modulator, 138
decoupler modulator frequency., 139
decoupler waveform generator, 171
decoupling during acquisition, 159
decprgoff statement, 181
decprgon statement, 180
decpulse statement, 21, 48
decrementing phase cycles, 102
decrgpulse statement, 48, 157
decshaped_pulse statement, 172
decspinlock statement, 181
degree of randomization, 112
delay, 37
delay constants, 21
delay for AP bus traffic, 141
delay statement, 37, 150, 235
delayer statement, 37
dephasing amount, 201
depth of the FIFO, 86
device addresses, 20
dg command, 266
dgs command, 266
diagnosing experiment problems, 265
diagnostics terminal, 66, 66, 146, 214
diffusion experiments, 202
digital components, 68
diode switches, 43
direct addressing mode, 138
direct binary information, 137
direct gating, 52
direct synthesis boards, 165
direct synthesis rf, 139, 156
displaying warning message, 156
division factor, 117, 118, 119
division return factor, 117
DLINT option, 19, 24
dm parameter, 178
dmf parameter, 178, 185
dmf, dmf2, dmf3 parameters, 179
dmm parameter, 53, 88, 140, 178
dmm, dmm2, dmm3 parameters, 179
double quotes notation, 32
double-precision flag, 76
double-precision timer words, 91
double-quantum filtered COSY, 106
dp parameter, 58, 76
dps command, 17, 18, 70, 266
dps_ps_gen program, 17
dpsdata file, 18
dps -modified file, 17
dres parameter, 180, 185, 187
dres, dres2, dres3 parameters, 189
dseq, dseq2, dseq3 parameters, 179
dumb terminals, 146
dwell time, 208
dwell_time argument, 205
dynamic binding, 26
dynamic run-time linking, 26

E
E.COSY experiment, 106
eddy currents, 199, 200, 202
elsenz statement, 162
enabling statements, 156
endhardloop statement, 150, 154, 236
endif statement, 161
endloop statement, 148, 149
errmsg file, 18, 24, 24
error detection, 22
error message file, 18, 24, 24
error messages, 22, 146
EVENT1_TWRD instructions, 93
EVENT2_TWRD instructions, 93
evolution phase, 110
evolution time, 143, 157
excitation point, 52
excitation pulse data, 48
execkillacqproc shell script, 63
executable file, 18
executable target file, 25
EXORCYCLE phase cycling, 131
experiment startup, 61
explicit 90-degree phase shifting, 52
explicit acquisition, 208
explicit modulation, 149
expn.username.PID file, 62
expn.username.PID.Code file, 69
expn.username.PID.RF file, 61, 167, 167,

170
external declarations, 20
external definitions, 20
external phase tables, 15, 57, 116
external trigger, 88
externally defined code addresses, 20

F
fall-through time, 151
FALSE constant, 20
fast bits, 20, 76, 86, 87, 88, 160

assignment, 88, 89
speed, 137

fast status lines, 163, 168
fast switching lines, 68, 88
fb parameter, 51
FID data block, 69
FID file, 15
fid file, 62
fidpath parameter, 63, 63, 63, 63, 63
field gradient shapes, 196
FIFO (first-in-first-out) buffer, 67, 85
FIFO full message, 86
FIFO type, 59
FIFO underflow, 82
FIFO underflow message, 147
FIFO width, 87
FIFO words, 82, 86, 138, 138, 151
fifolpsize flag, 156
filter delay, 50, 52, 81
fine attenuators, 139, 190
first-order phase correction, 51
fixed frequency rf, 156

272 VNMR Pulse Sequences 01-999014-00 A0398

Index

fixed frequency transmitter boards, 165
flag fields, 53
flag handling, 39
flag variable generation, 162
flags feature, 156
flipback experiment, 208
flow-through (FIFO) buffer, 165
fm-fm modulation, 178
forced relaxation, 208
foreground VNMR, 62
fuses, 268

G
G_Delay statement, 20, 37
G_Power statement, 21
G_Pulse statement, 20, 21, 40, 49
G_Simpulse function, 50
ga command, 55
gain parameter, 58, 62, 214
GARP-1 decoupling, 178
GARP-1 modulation pattern, 187
gate statement, 89
gate switching, 45
gating directly, 52
gating information, 68, 76
gauss.RF file, 174
Gaussian distribution, 135
Gaussian pulse, 174
gen_apshaped_pulse statement, 191
general (object-oriented) routines, 20
general power statement, 21
generic shapes, 165
genpulse statement, 40, 48
genshaped_pulse statement, 172, 177
gensim2pulse function, 50
gensim3pulse function, 50
gensim3shaped_pulse statement, 173
genspinlock function, 181
getelem statement, 115, 118, 119, 122, 122
getval statement, 55
gf macro, 58, 58, 70, 74
Gilbert multipliers, 46
glitch peak, 206
go command, 15, 55, 170
go(’acqi’) command, 58, 58
go(’debug’) command, 71
gradient amplifier, 199
gradient amplitude, 199
gradient coil, 200
gradient control unit, 202
gradient identifier, 199
gradient MQCOSY experiment, 201
gradient pulse shape, 200
gradient recovery delay, 201
granularity, 149
grise time, 201
gstab time, 201

H
HAL (Host-to-Acquisition Link), 15, 66, 207

hard abort, 181
hard-coded software, 69
hardware diagnostics tools, 268
hardware loops, 86, 92, 150, 151
hardware modulator, 178
hardware troubleshooting, 267
HDLOOP instruction, 154
hetcor sequence, 157
heteronuclear correlation experiment, 158
hidden AP delays, 141
hierarchically stacking, 161
high-level statement, 39
high-power amplifiers, 47
high-power decoupling, 159
HighSpeedLINES instruction, 94
HMQC pulse sequence, 156, 157
hmult parameter, 157
homospoil flag, 38
homospoil pulse, 39, 204
host computer, 59, 66
host computer peripherals, 67
host I/O bus, 145
Host-to-Acquisition Link (HAL), 15, 59, 66
hoult command, 52
Hoult delay, 51
housekeeping delay, 146, 206
HouseKEEPing instruction, 214
HS (High-Speed) bus, 68
hs parameter, 38
hsdelay statement, 38, 39, 39
HSgate statement, 39, 39
hsine-shaped gradient, 196
HSLINES instruction, 147
hst parameter, 38, 39
hwlooping.c file, 206
hypercomplex spectra, 110

I
I/O bus, 67
I/O functions, 20
IB_DELAYTB instruction, 169, 170
IB_LOOPEND instruction, 170
IB_PATTB instruction, 170, 176, 185
IB_SCALE instruction, 170, 196
IB_SEQEND instruction, 170, 171
IB_START instruction, 169, 171, 172
IB_STOP instruction, 169, 170, 171
IB_WAITHS instruction, 170, 172, 175
id parameter, 63
idelay statement, 39
ifnotzero statement, 162
IFNotZeroFUNC instruction, 161, 162
ifzero statement, 161
imaging experiments, 195, 200
imaging gradient amplitudes, 139
implicit acquisition, 81, 205
implicit decisions, 159
implicit gating statement, 53
improper refocusing, 95
inadqt.c file, 98, 124
incdelay statement, 39
include files, 21

01-999014-00 A0398 VNMR Pulse Sequences 273

Index

include notation, 32
include statements, 19
incrementing phase cycles, 102
index of current FID, 76
index to phase table, 116
indirect detection, 189
inductance of rf coil, 48
initval statement, 77, 97, 98, 147
inline tables, 120
instruction block for RF pattern, 169
instrument problems, 265
interactive acquisition program, 59
interactive FID or spectrum mode, 58
interactive statements, 39
interleave parameter, 62
intermediate frequency (I.F.), 46, 210
intermodulation distortions, 212
internal periodicities, 103
internal propagation delay, 166
inverse spectral window, 205

J
J-coupling, 95

K
knobs information, 78

L
laser control, 88
LC data structure, 75
lc.h file, 78
ld program, 25
ldcontrol file, 57, 61, 167
lib-lc.ln file, 23
libparam.a file, 26, 29
libpsglib.a directory, 26, 29, 30
libpsglib.so.1.0 file, 31
libpsglib.so.x.y file, 56
linear amplifiers, 44, 138, 156, 190

stabilization, 45
linear amplitude modulator, 140, 190
linear ramp, 203
link editor, 25
link loader, 26
lint program, 17, 18, 19, 22, 22
lintfile.c file, 23, 35
llib-lpsg file, 29
llib-lpsg.ln file, 23, 24
load parameter, 58, 78
local oscillator (L.O.), 163, 210
lock command, 61
lock file, 61, 61
lock parameters, 145
lock power, gain, and phase, 140
lock_n.primary file, 61, 61
log file, 62
look-up offsets, 47
loop count, 149

loop counter, 149
loop cycle, 208
loop FIFO, 87, 151, 156, 208
loop statement, 148
loops, 147
low-core data structure, 74, 75
low-level statement, 39
lp parameter, 51, 52

M
maclib directory, 15
macro for pulse sequence, 15
macros, 20, 21
macros.h file, 20, 21, 23, 172
macroscopic phase cycling, 130, 131
magnet leg pneumatics, 66, 145
make file, 18, 30, 33
make program, 18, 24, 30
makefid command, 213
makesuacqproc shell script, 63
makeuser command, 56
makeuserpsg file, 30, 33, 34
Masterlog file, 62
math libraries, 26, 33
math.h file, 33
mathematical algorithm for phases, 95
mbond parameter, 157
mechanical movements in the coil, 48
method parameter, 56
mirror images, 211
mixer, 211
mixing product, 164
mixing time variabtion, 112
mixvar scaling factor, 112
MLEV-16 decoupling, 178
MLEV-16 spinlocking, 186
mod2 statement, 162
mod4 statement, 162
modn statement, 162
modulation algorithms, 190
modulation files, 180
modulo function, 97
modulo statements, 162
Motorola 68000 CPU chip, 66
MREV-8 sequence, 150
multiecho imaging experiments, 146, 206
multi-FID experiments, 206, 209
multifield flags, 159
multiple hardware loops, 151
multiple-quantum filtering experiments, 199, 201,

266
multiplexer switch, 86
multipulse experiments, 150
multipulse line narrowing, 208

N
nesting shorthand notation, 117
newdec flag, 156
newdecamp flag, 156
newtrans flag, 156

274 VNMR Pulse Sequences 01-999014-00 A0398

Index

newtransamp flag, 156
NextSCan keyword, 81
nf parameter, 206
ni parameter, 266
NOESY experiments, 110, 112
noise measurement, 80
np parameter, 75, 206, 207, 209
NSC (next scan) instruction, 206
nt parameter, 75, 266
NUMch flag, 156
numeric constants, 96

O
object archive files, 31
object dependencies, 31, 33
object file, 27
object library, 31
object library creation, 29
object module, 25
OBSch device, 40, 40, 48, 172
observe channel pulses, 40, 40
obsprgoff statement, 181
obsprgon statement, 180
obspulse statement, 40
od command, 69, 170
off-resonance effects, 95
offset statement, 138
offset synthesizers, 138, 139
one constant, 96, 97
oopc.h file, 20, 20
oph variable, 119
oscilloscope, 268
output boards, 151, 207
overflow, 67
Oxford VTC-4, 66
Oxford vttype flag, 156

P
p1pat parameter, 173, 175
pad parameter, 80
parameter debugging, 266
parameter tree, 55
parameters for pulse sequences, 15
parentheses notation, 101, 116
parlib directory, 15
passive diodes, 43
pattern time base, 170
pfgon parameter, 199
phase alternation, 212
phase calculations, 95, 98
phase changes, 150
phase cycles

alternating, 102
creating phase math, 101
decrementing, 102
evaluation, 99
generating complex cycles, 103
incrementing, 102
length, 123
real-time construction, 106

shifted patterns, 103
shorthand syntax, 101
simple, 101

phase cycling, 95
base counter, 110
during steady-state pulses, 109
errors, 266
order, 135
real-time phase calculations, 111
refocusing periods, 110

phase generator and frequency divider, 211
phase mathematics, 95
phase modulation circuitry, 163
phase modulator, 163
phase parameter, 110, 267
phase shifting, 46
phase shifting times, 45
phase table names, 191
phase tables, 15, 115, 129
phase-pulse techniqu, 214
phase-sensitive NMR, 110
phase-settling delay, 47
phaseshift statement, 213
PIN diodes, 43, 190
pointer generation and incrementation, 118
polling rate, 61
post-pulse delay, 50, 51
power level storage, 98
power.h file, 21
preacquisition delay, 80
preamplifier, 210
preamplifier saturation, 48
precompiled files, 15
precompiled modules, 24
precompiled objects, 32
predefined variables, 96
preloop FIFO, 86, 87
preprocessor, 19
pre-pulse delay, 50
prg_dec_off function, 181
prg_dec_on function, 180
primary lock file, 61
probe, 164

PFG, 201
preamplifier, 210
ring-down, 48, 48

programmable audio filters, 211
programmable pulse modulator, 163
programmed decoupling, 189
programmed modulation, 177
proton flipback sequence, 209
proton frequency, 156
psg directory, 15, 15, 19, 26, 29, 31, 32, 56, 70
psggen command, 15, 29, 34
psglib directory, 15
PTS frequency synthesizer, 79, 138, 139, 163, 214
pulse break-through, 47
pulse length, 41
pulse programmer, 15, 37, 53, 66, 67, 82, 163

AP words, 138
compared to waveform generator, 165
Gemini, 151
timers, 89

pulse sequence control boards, 151, 206

01-999014-00 A0398 VNMR Pulse Sequences 275

Index

pulse sequences
adding acquisition parameters, 55
C errors, 18
code section, 106
compilation libraries, 29
compilation time, 32
compiling, 15
creation, 17
dead times, 37, 41
executable, 57
execution, 15, 56
generation, 15
macros, 15, 21
parameters, 15
purpose, 53
source coded, 29
troubleshooting, 265

pulse shape definition file, 173
pulse shaping speed, 166
pulse statement, 40, 49, 119, 161
pulse turn-off time, 47
pulse turn-on time, 47
pulsed field gradients (PFG), 139, 199
pulsed NMR experiments, 95
pulsesequence function, 21
pwpat parameter, 173, 175

Q
quad image suppression, 130
quadrature detection, 211
quadrature image suppression, 212
quadrature images, 95
quadrature phase shifting, 45, 103
quadrature phases, 206, 212
quality factor Q, 48
quarter-wavelength cable, 43, 43, 267
queue files, 62
queuing of acquisitions, 60
quiescent states, 89

R
rampgrad function, 202
random function, 112
random number generator, 113
random number table, 112, 135
random seed, 113
random variation of variables, 112
rc.local file, 59
rc.vnmr file, 59
rcvroff statement, 41, 41
rcvroff_flag variable, 41
read switch, 42
real-time branching, 107
real-time calculations vs. tables, 123
real-time calculations with phase tables, 129
real-time decisions, 160
real-time loops, 148
real-time math in hardware loops, 151
real-time math operands, 96
real-time math operators, 96

real-time numeric constants, 97
real-time phase calculations, 111
real-time phase math, 106
real-time pseudo-random number generator, 112
real-time variables, 96
real-time variables vs. table math, 121
receiver, 211
receiver board, 67
receiver gain, 78, 80, 140, 145
receiver gate, 45, 47, 52
receiver gating time, 40, 40
receiver phase, 115
receiver phase shifting, 212
receiver timing, 41
refocusing period, 160
refocusing pulses, 110
relay parameter, 110
relayed COSY experiment, 110
relayh pulse sequence, 147
relayh sequence, 110
relocation bits, 25
reverse synthesis, 103
revision check, 56
revision number, 26
rf channels, 156
rf channels indices, 20
rf gates, 47
rf power amplifier, 164
rf power attenuators, 139
rf ring-down, 48
rfchan_device.c file, 119
rfchannel parameter, 40, 50, 173
rfconst.h file, 20, 89
rgpulse statement, 23, 40, 45, 49, 150, 161, 235
rgradient statement, 199
rhmon.out file, 59
rof1 parameter, 40, 45
rof2 parameter, 40, 51, 52
root ownership ofAcqproc , 63
round-off timing error, 91
RS-232 ports, 145
run-time linker, 56
run-time linking, 26, 29

S
s2pul pulse sequence, 21, 159
s2pul.i file, 23
sa command, 60
sample changer, 66, 78, 145
sample heating, 159
sample macro, 61
sample-and-hold circuitry, 67
scalar math on tables, 121
scan number, 95
SCCSid string, 24
SCSI, 15
SCSI bus, 15, 59, 67
SCSI interface, 66
second FIFO, 86
secondary lock file, 61
send2Vnmr call, 62
seqfil parameter, 55

276 VNMR Pulse Sequences 01-999014-00 A0398

Index

seqgen command, 15, 17
seqgenmake file, 18, 24, 35
seqlib directory, 15, 18, 55, 55, 56
sequence of events, 157
serial ports, 66, 66
setacq program, 59, 60
setautoincrement statement, 119, 120
setdivnfactor statement, 118, 120
SETICM (set input card mode) instruction, 212
SETPHAS90 instruction, 94
setquadphase statement, 119
setreceiver statement, 119, 122
settable statement, 120
setuserpsg command, 29
SETVT instruction, 80
sh2pul pulse sequence, 173
shape_pulse.c file, 32, 147, 190
shaped gradients, 202
shaped pulse statements, 172
shaped_pulse statement, 172, 173, 177
shapelib directory, 15, 57, 168, 172, 179, 197
shaping field gradients, 195
shared object libraries, 29
shared objects, 26, 26
shell script, 17
shifted phase cycle patterns, 103
shim coils used for PFG, 204
shim command, 61
shim DAC values, 139
shim methods, 56
shimmethods directory, 56
shorthand notation for phase tables files, 116
shorthand syntax disadvantages, 127
shorthand syntax for phase cycles, 101
shorthand table, 117
signal measurement, 210
signal-to-noise ratio, 50
sim3pulse statement, 49
sim3shaped_pulse statement, 172
sim4pulse statement, 49, 50
simple delays, 37
simpulse statement, 49, 49, 123, 157, 158
simshaped_pulse statement, 172
simultaneous pulses, 49
simultaneous shaped pulses, 172
single-point acquisition, 208
single-precision timer words, 91
slew rate, 200
slice duration unit, 168
slice phase, 180
small-angle phase shifts, 45, 46, 139, 163
small-angle receiver phase shifting, 213
software debugging, 266
software loops, 148
solid-state NMR, 47
source code, 29
spare gates, 52
spare lines, 94
spatial dimension, 196
spatial encoding, 196
spectral artifacts, 199
spectrometer hardware, 155
spin command, 61
spin diffusion, 201

spinlock statement, 181, 183
spinlocking pulse train, 182
spinner control circuitry, 66, 145
spinner speed regulation, 66
square-wave modulation, 178
srandom function, 112
ss parameter, 58, 76, 109
ssctr real-time variable, 109
ssctr variable, 77, 96
ssval constant, 76, 96
stand-alone data stations, 56
standard include file, 32
standard.h file, 19, 32
standing wave reflection, 43
STartFIFO instruction, 82
starthardloop statement, 150, 235
static buffer, 165
static linking, 25, 26
static RAM, 165
status field constants, 20
status registers, 82
status statement, 53, 159, 160, 178, 178
status-field controlled modulation, 189
statusindex variable, 38
statusindx variable, 53
stdio.h file, 19, 20
steady-state phase cycling, 109
steady-state transients, 96
STM (Sum-to-Memory), 16, 67
STM counter, 207
StopFIFO instruction, 83
strobe command, 138
su macro, 61
submitting experiment to acquisition, 55
SUID protection bit, 63
Sum-to-Memory (STM), 16, 211
SunOS 4, 26
sw parameter, 51, 206
swept square-wave modulation, 178
switching time, 44
symbol table, 25
symbolic links, 30, 31
syntax check, 19, 22
system configuration parameters, 55
systemdir parameter, 63

T
T/R switch, 190
table addresses t1–t60, 121
table contents, 119
table index, 97, 118, 119
table math vs. real-time variables, 121
table name, 122
tablert variable, 119
tables constants definition, 21
tables vs real-time calculations, 123
table-to-table math operation, 117
tablib directory, 15, 57, 115
target operand, 96
Televideo terminals, 146
terminal for diagnostics, 146
test4acquire function, 206

01-999014-00 A0398 VNMR Pulse Sequences 277

Index

testing flag fields, 160
third rf channel, 88
three constant, 96, 97
time base, 86
time count, 86, 89
time event, 37
timers, 89
timing resolution, 87
tip angle, 180
tip-angle resolution, 189
TOCSY pulse sequence, 181
TODEV device, 40
touch command , 34
TPPI (time-proportional phase incrementation), 110
transient counter, 95, 96
transmit switch, 42
transmitter board, 68
transmitter digital control board, 163
transmitter frequency, 211
transmitter gates, 47, 52
transmitter timing, 41
transversal relaxation, 201
trapezoidal gradients, 202
traymax parameter, 145
TRUE constant, 20
tsadd statement, 121
tsdiv statement, 121
tsmult statement, 121
tssub statement, 121
T-switch, 42
ttadd statement, 117, 121
ttdiv statement, 117, 121
ttmult statement, 117, 121
ttsub statement, 117, 121
TUNE_FREQ instructions, 79
twisted ring shift register, 45
two constant, 96, 97
txphase statement, 119, 119
types.h file, 20

U
unary operators, 96
unblanking time, 45, 45
UNIX kernel, 59
user library, 71
userdir parameter, 63

V
v1, v2, . . .v14 real-time variables, 96
variable phase cycle, 110
vdelay statement, 39
vector math with tables, 121
VERSAbus, 67
vgradient statement, 199
vmunix file, 59
VT controller, 66, 80, 145
vttype flag, 156
vttype parameter, 145

W
WALTZ decoupling, 148, 149, 152, 171
WALTZ-16 decoupling, 185
WALTZ-16 modulation, 178
warning message, 156
waveform generator, 68, 88, 163

compared to pulse programmer, 165
data, 61, 170
explicit modulation, 180
gate settings, 180
initialization, 79
shapes, 57, 139
timer, 169

waveform generator board, 165
wbs parameter, 62
werr parameter, 62
wexp parameter, 62
wg.c file, 171, 183
WG3 instruction, 176
WGCMD instruction, 176, 177
wgdecode program, 171
while loop, 147
wnt parameter, 62
writefid command), 213
wshim parameter, 58, 78, 80

X
x_ file prefix, 18
xmtron statement, 181
xmtrphase statement, 214
xr.conf file, 60
xr.out file, 60
xrop.out file, 59
xrxrh.out file, 59
xrxrp.out file, 59
XY-32 modulation, 178

Z
Z gradient coil, 199
zero constant, 96, 97
zero power RAM, 67
zero pulse length, 41
Z-filters, 112, 135
zgradpulse statement, 200

	Online Menu

	Overview of Contents
	Table of Contents
	List of Figures
	List of Tables

	Disclaimer
	Foreword
	Acknowledgments
	Conventions in This Manual
	Chapter 1.� Overview
	1.1� Pulse Sequence Execution
	1.2� What to Expect in This Manual

	Chapter 2.� Sequence Generation: seqgen
	2.1� Modifying the File for dps
	2.2� Running the make Program
	2.3� Calling the C Preprocessor
	2.4� Checking Syntax with lint
	2.5� Compiling and Linking

	Chapter 3.� Object Library Generation: psggen
	3.1� How Are Object Libraries Generated?
	3.2� Adding Changes to the Object Libraries
	3.3� Adding a New Precompiled Object

	Chapter 4.� Time Events
	4.1� How Do Delays Work?
	Simple Delays
	Delays With Homospoil Pulse
	Other Delays

	4.2� How Do Pulses Work?
	Pulses on the Observe Channel
	Simple Pulses on Other RF Channels
	Simultaneous Pulses on Different RF Channels
	Composite Pulses
	Considerations for the Delays Following the Last Pulse

	4.3� Other State-Related Pulse Sequence Statements
	Direct Gating
	Implicit Gating

	4.4� Basic Purpose of a Pulse Sequence

	Chapter 5.� Submit to Acquisition: go
	5.1� The Tasks for go
	5.2� Tasks for the Pulse Sequence Executable
	5.3� Using go('acqi')

	Chapter 6.� Acquisition Process
	6.1� Starting the Acquisition Operating System
	6.2� Queuing and Starting the Acquisition
	6.3� Downloading the FID
	6.4� Controlling Acqproc

	Chapter 7.� Digital Components
	7.1� Main Boards
	7.2� Bus Structures

	Chapter 8.� Acquisition CPU and Acode
	8.1� CPU Address Space
	8.2� Looking at Acode
	Methods of Interpreting the Contents of Acode Files

	8.3� Structure of Acode Files
	Acode File Header
	LC Data Structure
	The AUTOD Data Structure
	The Instruction Section

	8.4� Acode Interpretation
	FIFO Flow
	Acode Size Limitations, Acode Buffering

	Chapter 9.� Pulse Programmers
	9.1� Layout of the Pulse Programmer
	9.2� Fast Bits
	9.3� Timers and Timer Words
	9.4� Problems with Timer Word Errors
	9.5� Timer Words and Fast Bits in the Acode

	Chapter 10.� Phase Calculations
	10.1� How Do Phase Calculations Work?
	The Tools
	Phase Calculations in the Acode

	10.2� Case 1: Decoding Phase Calculations
	10.3� Case 2: Creating Phase Math for Given Phase Tables
	Simple Phase Cycles
	Complex Phase Cycles
	Phase Cycles for Many Pulses

	10.4� Real-Time Logical Decisions
	10.5� Steady-State Phase Cycling
	10.6� C Constructs and Phase Calculations
	10.7� Why Phase Calculations?
	10.8� Real-Time Random Numbers

	Chapter 11.� Phase Tables
	11.1� Basic Syntax
	Shorthand Notation
	Advanced Features
	How Does a Table Work?

	11.2� Inline Phase Tables
	11.3� Table Math
	11.4� Phase Tables in the Acode
	11.5� Tables vs. Real-Time Calculations
	Point-to-Point Comparison
	Comparison by Examples

	11.6� Combining the Best of the Two Worlds
	11.7� Using Tables as Source for Random Numbers

	Chapter 12.� AP Bus Traffic
	12.1� What Is the AP Bus
	12.2� What Devices are Driven by the AP Bus?
	12.3� AP Bus Words in the Acode
	12.4� Timing Considerations

	Chapter 13.� Acquisition CPU Communication
	13.1� Regular Pulse Sequence Communication
	13.2� Diagnostics and Error Output

	Chapter 14.� Repeating Events
	14.1� C Loops
	14.2� Real-Time Loops
	14.3� Hardware Loops

	Chapter 15.� Decisions
	15.1� Decisions and Branchings in C
	Decisions Set by the status Statement
	Checking Flag Parameters

	15.2� Real-Time Decisions
	Programming Real-Time Decisions
	Generating the Flag Variable

	Chapter 16.� Waveform Generators
	16.1� How Does a Waveform Generator Fit Into the System?
	16.2� How Does a Waveform Generator Work?
	Sequence of Events in a Waveform Generator
	How Are Patterns Stored in a Waveform Generator?
	Waveform Generator Instruction Words
	Waveform Generator Data File
	Executing Waveform Generator Patterns

	16.3� Using Waveform Generators for Shaped Pulses
	Programming Shaped Pulses: An Example

	16.4� Using Waveform Generators for Programmed Modulation
	Programming Pattern Decoupling and Spinlock Experiments
	How Does Pattern Modulation Work Internally?

	16.5� What If a Waveform Generator Is Not Available
	Programmed Decoupling
	Shaped Pulses

	16.6� Using a Waveform Generator for Shaping Gradient Pulses

	Chapter 17.� Pulsed Field Gradients
	17.1� Pulse Sequence Statements for PFG Gradient Control
	17.2� Shaping Pulsed Field Gradients
	17.3� PFG Experiments Using Homospoil Pulses

	Chapter 18.� Acquiring Data
	18.1� Implicit Acquisition
	18.2� Explicit Acquisition
	18.3� Multi-FID Sequences
	18.4� Receiver Phase Shifting
	Detection of NMR signals
	Quadrature Receiver Phase Shifts
	Small Angle Receiver Phase Shifting

	18.5� Housekeeping Delays

	Chapter 19.� Multidimensional Experiments
	19.1� Indirect Time Domain Incrementation
	19.2� nD Quadrature Detection
	Absolute Value nD Experiments
	Phase-Sensitive nD Experiments: States/Haberkorn/Ruben
	Axial Peak Displacement (FAD)
	Phase-Sensitive nD Experiments: TPPI
	Phase-Sensitive nD Experiments: Arrayed TPPI
	Folding in Indirect Dimensions
	Combined Implementations
	Coherence Selection through Gradients

	Chapter 20.� Solid-State NMR Experiments
	20.1� Cross-Polarization MAS Experiments
	AP Bus Events in CP/MAS Experiments
	Using a Waveform Generator in CP/MAS Experiments

	20.2� Sideband Suppression in MAS Experiments
	20.3� Rotor Synchronization
	Measuring the Rotor Period Duration
	Waiting for Triggers
	Rotor-Synchronized Experiments

	20.4� Multipulse Experiments
	20.5� Other Line-Narrowing Techniques

	Chapter 21.� (Micro)Imaging Experiments
	Chapter 22.� Role of Macros and Parameters
	22.1� Creating New Parameters in VNMR
	22.2� Using New Parameters in C
	Numeric Parameters
	String Parameters

	22.3� Adding New Parameters to the Display
	22.4� Doing It All by Macro
	Macros for 1D Pulse Sequences
	Macros for 2D Pulse Sequences

	22.5� Switching Between Similar Sequences

	Chapter 23.� Putting It All Together
	23.1� Starting a New Sequence
	Programming by Modifying an Existing Pulse Sequence
	Programming by the Top-Down Approach

	23.2� Testing a Sequence and Related Files
	23.3� Submitting a Pulse Sequence to the User Library

	Chapter 24.� Syntax Guidelines
	24.1� General C Syntax
	Comments
	Indentation
	Variables

	24.2� Outdated PSG Utilities
	Device Addresses
	Functions with Device Addresses
	Replacing power and pwrf Statements
	C Constructs for Phase-Sensitive nD NMR

	24.3� General Considerations
	Multipurpose Sequences
	Using dps

	Chapter 25.� Debugging a Pulse Sequence
	25.1� Debugging the Parameters
	25.2� Debugging the Software
	25.3� Debugging the Hardware

	Index

