• HOME
  • DANNY
  • GROUP
  • RESEARCH
  • PUBLICATIONS
  • SOFTWARE
  • LAB TOUR
  • IRD
  • INTERACTIVE SOLID STATE CHEMISTRY
  • SCIENCE THROUGH COMICS

Chemistry in the
          Fredrickson Group: revealing the chemical origins of structural
          complexity in alloys

    Fredrickson, R. T.; Fredrickson, D. C. Chemical Torque in Y14Ag39.3Zn12.1: Unwinding the Disordered Triangles of the Gd14Ag51 Type Chem. Mater. 2024. 36, 24, 11966-11975


    Van Buskirk, J. S.; Peterson, G. G. C.; Fredrickson, D. C. Machine Learning-Based Investigation of Atomic Packing Effects: Chemical Pressures at the Extremes of Intermetallic Complexity J. Am. Chem. Soc. 2024. 146, 41, 28459-28467


    Gressel, D. G.; Sanders, K. M.; Fredrickson, D. C. Interface Nucleus Complementarity: An Iterative Process for the Discovery of Modular Intermetallics Guided by Chemical Pressure J. Am. Chem. Soc. 2024. 146, 37, 25439-25444


    Garmen, L. C.; Fredrickson, D. C. The Mott-Jones Hamilton Population: Energetics of Fermi Sphere-Jones Zone Interactions in Intermetallic Structures J. Phys. Chem. C 2024. 128, 34, 14442-14457


    Lim, A.; Fredrickson, D. C. Navigating the 18-n+m Isomers of PdSn2: Chemical Pressure Relief through Isolobal Bonds and Main Group Clustering Inorg. Chem. 2024. 63, 25, 11726-11736


    Sparks, T. D.; Curtis, F. E.; Fredrickson, D. C.; Benedek, N. A. Insights and Innovations from the SSMCDAT 2023: Bridging Solid-State Materials Chemistry and Data Science Chem. Mater. 2024. 36, 11, 5293-5296


    Fredrickson, R. T.; Fredrickson, D. C. Interface Nuclei in the Y-Ag-Zn System: Three Chemical Pressure-Templated Phases with Lamellar Mg2Zn11- and CaPd5+x-Type Domains Inorg. Chem. 2024. 63, 20, 9252-9264


    Sanders, K. M.; Gressel, D. G.; Fredrickson, R. T.; Fredrickson, D. C. Toward Predicting the Assembly of Modular Intermetallics from Chemical Pressure Analysis: The Interface Nucleus Approach Inorg. Chem. 2024. 63, 15, 6626-6637


    ___________

    Kraus, J. D.; Van Buskirk, J. S.; Fredrickson, D. C. The Zintl Concept Applied to Intergrowth Structures: Electron-Hole Matching, Stacking Preferences, and Chemical Pressures in Pd5InAs Z. Anorg. Allg. Chem. 2023, e202300125


    ___________

    Fredrickson, R. T.; Fredrickson, D. C. As predicted and more: modulated channel occupation in YZn5+x Acta Cryst. B 2023. 79, 2052-5206


    ___________

    Lim, Amber; Fredrickson, D. C. Entropic Control of Bonding, Guided by Chemical Pressure: Phase Transitions and 18-n+m Isomerism of IrIn3 Inorg. Chem. 2023. 62, 27, 10833-10846


    ___________

    Sanders K. M.; Van Buskirk J. S.; Fredrickson, D. C. Self-Consistent Chemical Pressure Analysis: Resolving Atomic Packing Effects through the Iterative Partitioning of Space and Energy J. Chem. Theory Comput. 2023. 19, 13, 4273-4285


    ___________

    Van Buskirk J. S.; Kraus J. D.; Fredrickson, D. C. The Intermetallic Reactivity Database: Compiling Chemical Pressure and Electronic Metrics toward Materials Design and Discovery Chem. Mater. 2023. 35, 3582-3591.


    ___________

    Lim, Amber; Hilleke, K. P.; Fredrickson, D. C. Emergent Transitions: Discord between Electronic and Chemical Pressure Effects in the REAl3 (RE = Sc, Y, Lanthanides) Series. Inorg. Chem. 2023. 62, 4405-4416.


    ___________

    Hübner, J.; Bierman, B. C.; Wallenberg, R.; Fredrickson, D. C. Temporary Cohabitation: The Metastable Phase Au4Si. J. Am. Chem. Soc. 2022. 144, 21016-21021.


    ___________

    Kamp, K. R.; Fredrickson, D. C. A Tour of Soft Atomic Motions: Chemical Pressure Quadrupoles Across Transition Metal-Main Group 1:2 Structure Types. Chem. Mater. 2022, 34, 10011-10024.


    ___________

    Fredrickson, R. T.; Fredrickson, D. C. Chemical Pressure-Derived Assembly Principles for Dodecagonal Quasicrystal Approximants and Other Complex Frank-Kasper Phases. Inorg. Chem. 2022, 61, 17682-17691.


    ___________

    Lu, E.; Gressel, D. G.; Fredrickson, D. C. Buffering Octahedra in Mo4Zr9P: Intergrowth as a Solution to the Frustrated Packing of Tricapped Trigonal Prisms and Icosahedra. Inorg. Chem. 2022, 61, 8298-8308.

    ___________

    Fredrickson, R. T.; Kamp, K. R.; Fredrickson, D. C. Local Stability to Periodicity in the EuMg5+x Type: Chemical Pressure, Disordered Channels, and Predicted Superstructure in YZn5.225. Z. Anorg. Allg. Chem. 2022, e202200068.

    ___________

    Hilleke, K. P.; Kamp, K. R.; Lin, Y.; Fredrickson, D. C. Structural Plasticity in the Frank-Kasper Realm: Chemical Pressure Roles of the μ- and χ-Phase Units in the Mo-Fe-Cr System. Z. Anorg. Allg. Chem. 2021, 647, 64.

    ___________

    Lu, E.; Van Buskirk J. S.; Cheng J.; Fredrickson. D.C. Tutorial on Chemical Pressure Analysis: How Atomic Packing Drives Laves/Zintl Intergrowth in K3Au5Tl. Crystals 2021, 11, 906.

    ___________

    Kamp, K. R.; Fredrickson. D.C. Frustrated Packing in Simple Structures: Chemical Pressure Hindrance to Isolobal Bonds in the TiAl3 type and ZrAl2.6Sn0.4. Inorg. Chem. 2021, 60, 4779-4791.

    ___________

    Yannello V. J.; Lu E.; Fredrickson D. C. At the Limits of Isolobal Bonding: π-Based Covalent Magnetism in Mn2Hg5 Inorg. Chem. 2020, 59, 12304-12313.

    ___________

    Mitchell Warden H. E.; Lee S. B.; Fredrickson D. C. Frustrated and Allowed Structural Transitions at the Limits of the BaAl4 Type: The (3 + 2)D Modulated Structure of Dy(Cu0.18Ga0.82)3.71 Inorg. Chem. 2020, 59, 10208-10222.

    ___________

    Peterson, G. G.; Berns V. M.; Fredrickson D. C.; Mn39Si9Nx: Epitaxial Stabilization as a Pathway to the Formation of Intermetallic Nitrides J. Am. Chem. Soc. 2020, 142, 8575-8579.

    ___________

    Folkers C. L.; Mitchell Warden H. E.; Fredrickson D. C.; Lidin S. Entropy-Driven Incommensurability: Chemical Pressure-Guided Polymorphism in PdBi and the Origins of Lock-In Phenomena in Modulated Systems Inorg. Chem. 2020, 59, 4936-4949.

    ___________

    Peterson, G. G.; Geisler E. E.; Fredrickson D. C. Intermetallic Reactivity: Ca3Cu7.8Al26.2 and the Role of Electronegativity in the Stabilization of Modular Structures Inorg. Chem. 2020, 59, 5018-5029.

    ___________

    Mitchell Warden H. E.; Fredrickson D. C. Frustrated and Allowed Structural Transitions: The Theory-Guided Discovery of the Modulated Structure of IrSi J. Am. Chem. Soc. 2019, 141, 19424-19435.

    ___________

    Park, S-W.; Hosono, H.; Fredrickson D. C. Cation Clustering in Intermetallics: The Modular Bonding Schemes of CaCu and Ca2Cu Inorg. Chem. 2019, 58, 10313-10322.

    ___________

    Lu, E.; Fredrickson D. C. Templating Structural Progessions in Intermetallics: How Chemical Pressure Directs Helix Formation in the Nowotny Chimney Ladders Inorg. Chem. 2019, 58, 4063-4066.

    ___________

    Wu, J.; Lu, E.; Li, J.; Lu, Y.; Kitano, M.; Fredrickson D. C.; Inoshita, T.; Hosono, H. Pseudogap Control of Physical and Chemical Properties in CeFeSi-Type Intermetallics Inorg. Chem. 2019, 58, 2848-2855.

    ___________

  • Vinokur A. I.; Hilleke, K. P.; Fredrickson D. C. Principles of weakly ordered domains in intermetallics: the cooperative effects of atomic packing and electronics in Fe2Al5. Acta Crystallorg. A. 2018, 75.

    ___________

  • Mitchell Warden H. E.; Fredrickson D. C. Paths to Stabilizing Electronically Aberrant Compounds: A Defect-Stabilized Polymorph and Constrained Atomic Motion in PtGa2. Inorg. Chem. 2018, 57, 13880-13894.

    ___________

  • Hilleke, K. P.; Fredrickson D. C. Discerning Chemical Pressure amidst Weak Potentials: Vibrational Modes and Dumbbell/Atom Substitution in Intermetallic Aluminides. J. Phys. Chem. A. 2018, 122, 8412-8426.

    ___________

    Fredrickson D. C. Parallels in Structural Chemistry between the Molecular and Metallic Realms Revealed by Complex Intermetallic Phases. Acc. Chem. Res. 2018, 51, 248-257.

    ___________

  • Fredrickson D. C.; Miller G.J. Intermetallic Chemistry: New Advances in Humanity's Age-Old Exploration of Metals and Alloys. Acc. Chem. Res. 2018, 51, 213-213.

    ___________

  • Peterson, G. G.; Yannello V. J.; Fredrickson, D. C. Inducing Complexity in Intermetallics through Electron‐Hole Matching: The Structure of Fe14Pd17Al69. Angew. Chem. 2017, 129, 10279-10284.

    ___________

  • Miyazaki, K.; Yannello V. J.; Fredrickson D. C. Electron-counting in intermetallics made easy: the 18-n rule and isolobal bonds across the Os‐Al system. Z. Kristallogr. 2017, 232, 487-496.

    ___________

  • Osman H. H.; Salvadó M. A.; Pertierra P.; Engelkemier J.; Fredrickson D. C.; Recio M. J. Chemical Pressure Maps of Molecules and Materials: Merging the Visual and Physical in Bonding Analysis. J. Chem. Theory Comput. 2018, 14, 104-114.

    ___________

  • Hilleke, K. P.; Fredrickson, R.T.; Vinokur, A.I.; Fredrickson, D. C. Substitution Patterns Understood through Chemical Pressure Analysis: Atom/dumbbell and Ru/Co Ordering in Derivatives of YCo5. Cryst. Growth Des. 2017, 17, 1610-1619.

    ___________

  • Vinokur, A.I.; Fredrickson, D. C. 18-Electron Resonance Structures in the BCC Transition Metals and Their CsCl-type Derivatives. Inorg. Chem. 2017, 56, 2834-2842.

    ___________

  • Fredrickson, D. C. A Pressurized Exploration of Intermetallic Chemistry. ACS Cent. Sci 2016, 2, 773-774.

    ___________

  • Guo, Y.; Fredrickson, D. C. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y11Ni60C6. Inorg. Chem. 2016, 55, 10397-10405.

    ___________

  • Engelkemier, J.; Green, L.M.; McDougald, R.N.; McCandless, G.T.; Chan, J.Y.; Fredrickson, D. C. Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type. Cryst. Growth Des. 2016, 55, 6781-6793.

    ___________

  • Kilduff, B.J.; Fredrickson, D. C. Chemical Pressure-Driven Incommensurabilityin CaPd5: Clues to High-Pressure Chemistry Offered by Complex Intermetallics. Inorg. Chem. 2016, 55, 6781-6793.

    ___________

  • Vinokur, A. I.; Fredrickson, D. C. Toward Design Principles for Diffusionless Transformations: The Frustrated Formation of Co-Co Bonds in a Low-Temperature Polymorph of GdCoSi2. Inorg. Chem. 2016, 55, 6148-6160.

    ___________

  • Engelkemier, J.; Fredrickson, D. C. Chemical Pressure Schemes for the Prediction of Soft Phonon Modes: A Chemist's Guide to the Vibrations of Solid State Materials. Chem. Mater. 2016, 28,3171-3183.

    ___________

  • Guo, Y.; Fredrickson, D. C. PRINCEPS:A Computer-Based Approach to the Structural Description and Recognition of Trends within Structural Databases, and Its Application to the Ce-Ni-Si System. Crystals 2016, 6, 35.

    ___________

  • Fredrickson, R.T.; Guo, Y.; Fredrickson, D. C. Epitaxial Stabilization between Intermetallic and Carbide Domains in the Structures of Mn16SiC4 and Mn17Si2C4. J. Am. Chem. Soc. 2016, 138, 248-256.

    ___________

  • Yannello, V. J.; Fredrickson, D. C. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes. Inorg. Chem. 2015, 54, 11385-11398.

    ___________

  • Kilduff, B.J.; Yannello, V. J.; Fredrickson, D. C. Defusing Complexity in Intermetallics: How Covalently Shared Electron Pairs Stabilize the FCC Variant Mo2CuxGa6-x (x ≈ 0.9). Inorg. Chem. 2015, 54, 8103-8110.

    ___________

  • Fredrickson, R.T.; Kilduff, B.J.; Fredrickson, D. C. Homoatomic Clustering in T4Ga5 (T = Ta, Nb, Ta/Mo): A Story of Reluctant Intermetallics Crystallizing in a New Binary Structure Type. Inorg. Chem. 2015, 54, 821-831.

    ___________

  • Berns, V.M.; Fredrickson, D. C. Structural Plasticity: How Intermetallics Deform Themselves in Response to Chemical Pressure, and the Complex Structures that Result. Inorg. Chem. 2014, 53, 10762-10771.

    ___________

  • Yannello, V.J.; Fredrickson, D. C. Orbital Origins of Helices and Magic Electron Counts in the Nowotny Chimney Ladders: The 18 - n Rule and a Path to Incommensurability. Inorg. Chem. 2014, 53, 10627-10631.

    ___________

  • Hadler, A. B.; Yannello, V. J.; Bi, W.; Alp, E. E.; Fredrickson, D. C. Pi-Conjugation in Gd13Fe10C13 and Its Oxycarbide: Unexpected Connections between Complex Carbides and Simple Organic Molecules. J. Am. Chem. Soc. 2014, 136, 12073-12084.

    ___________

  • Berns, V. M.; Engelkemier, J.; Guo, Y.; Kilduff, B. J.; Fredrickson, D. C. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics. J. Chem. Theory Comput. 2014, 10, 3380-3392.

    ___________

  • Guo, Y.; Stacey, T. E.; Fredrickson, D. C. Acid-Base Chemistry in the Formation of Mackay-Type Icosahedral Clusters: μ3-Acidity Analysis of Sc-Rich Phases of the Sc-Ir System. Inorg. Chem. 2014, 53, 5280-5293.

    ___________

  • Yannello, V. J.; Kilduff, B. J.; Fredrickson, D. C. Isolobal Analogies in Intermetallics: The Reversed Approximation MO Approach and Applications to CrGa4- and Ir3Ge7-type Phases. Inorg. Chem. 2014, 53, 2730-2741.

    ___________

  • Fulfer, B. W.; McAlpin, J. D.; Engelkemier, J.; McCandless, G. T.; Prestigiacomo, J.; Stadler, S.; Fredrickson, D. C.; Chan, J. Y. Filling in the holes: Structural and magnetic properties of the chemical pressure stabilized LnMnxGa3 (Ln = Ho-Tm; x < 0.15). Chem. Mat. 2014, 26, 1170-1179.

    ___________

  • Berns, V. M.; Fredrickson, D. C. Problem Solving with Pentagons: Tsai-Type Quasicrystal as a Structural Response to Chemical Pressure. Inorg. Chem. 2013, 52, 12875-12877.

    ___________

  • Hadler, A. B.; Harris, N. A.; Fredrickson, D. C. New roles for icosohedral clusters in intermetallic phases: Micelle-like segregation of Ca-Cd and Cu-Cd interactions in Ca10Cd27Cu2. J. Am. Chem. Soc. 2013, 135, 17369-17378.

    ___________

  • Fredrickson, D. C.; Doverbratt, I.; Ponou, S.; Lidin, S. Bonding Schemes for Polar Intermetallics through Molecular Orbital Models: Ca-Supported Pt-Pt Bonds in Ca10Pt7Si3. Crystals. 2013, 3, 504-516.

    ___________

  • Engelkemier, J.; Berns, V. M.; Fredrickson, D. C. First-principles elucidation of atomic size effects using DFT-chemical pressure analysis: Origins of Ca36Sn23's long-period superstructure. J. Chem. Theory Comput. 2013, 9, 3170-3180.

    ___________

  • Fredrickson, R. T.; Fredrickson, D. C. The Modulated Structure of Co3Al4Si2: Incommensurability and Co-Co Interactions in Search of Filled Octadecets. Inorg. Chem. 2013, 52, 3178-3189.

    ___________

  • Stacey, T. E.; Fredrickson, D. C. Structural Acid-Base Chemistry in the Metallic State: How μ3-Neutralization Drives Interfaces and Helices in Ti21Mn25. Inorg. Chem. 2013, 52, 8349-8359.

    ___________

  • Fredrickson, R. T.; Fredrickson, D. C. Fragmentation of the Fluorite Type in Fe8Al17.4Si7.6: Structural Complexity in Intermetallics Dictated by the 18 Electron Rule. Inorg. Chem. 2012, 51, 10341-10349.

    ___________

  • Hadler, A. B.; Fredrickson, D. C. Gd13Fe10C13: Indications of Fe-Fe Multiple Bonding Emerging from Chemical Frustration. J. Am. Chem. Soc. 2012, 134, 10361-10364.

    ___________

  • Stacey, T. E. and Fredrickson, D. C. (2012), Perceiving Molecular Themes in the Structure and Bonding of Intermetallic Phases: The Role of Hückel Theory in an Ab Initio Era. Dalton Transactions, 41: 7801-7813.

    ___________

  • Fredrickson, D. C. DFT-Chemical Pressure Analysis: Visualizing the Role of Atomic Size in Shaping the Structures of Inorganic Materials. J. Am. Chem. Soc. 2012, 134, 5991-5999.

    ___________

  • Stacey, T. E.; Fredrickson D. C. The µ3 Model of Acids and Bases: Extending the Lewis Theory to Intermetallics. Inorg. Chem. 2012, 51, 4250-4264.

    ___________

  • Harris, N. A., Hadler, A. B. and Fredrickson, D. C. (2011), In Search of Chemical Frustration in the Ca-Cu-Cd System: Chemical Pressure Relief in the Crystal Structures of Ca5Cu2Cd and Ca2Cu2Cd9. Zeitschrift für anorganische und allgemeine Chemie, 637: 1961-1974.

    ___________

  • Berns, V. M., Stacey, T. E., Sapiro, M. and Fredrickson, D. C. (2011), Mg11Cu6Al12, A New Link in the Structural Chemistry of MgCu2-Type Clusters. European Journal of Inorganic Chemistry, 2011: 3936-3949.

    ___________

  • Fredrickson, D. C. Electronic Packing Frustration in Complex Intermetallic Structures: The Role of Chemical Pressure in Ca2Ag7. J. Am. Chem. Soc. 2011, 133, 10070-10073.

    ___________

  • Fredrickson, D. C.; Lidin, S.; Venturini, G.; Malaman, B.; Christensen, J. Origins of Superstructure Ordering and Incommensurability in Stuffed CoSn-Type Phases. J. Am. Chem. Soc. 2008, 130, 8195-8214.

    ___________

  • Fredrickson, D., Lee, S. and Hoffmann, R. (2007), Interpenetrating Polar and Nonpolar Sublattices in Intermetallics: The NaCd2 Structure. Angewandte Chemie International Edition, 46: 1958-1976.

    ___________

  • Schmidt, J., Lee, S., Fredrickson, D., Conrad, M., Sun, J. and Harbrecht, B. (2007), Pd0.213Cd0.787 and Pd0.235Cd0.765 Structures: Their Long c Axis and Composite Crystals, Chemical Twinning, and Atomic Site Preferences. Chemistry - A European Journal, 13: 1394-1410.

    ___________

  • Peter Michael Clark, Stephen Lee, Daniel C. Fredrickson, Transition metal intermetallics: Structure maps based on quantum mechanical stability, Journal of Solid State Chemistry, Volume 178, Issue 4, April 2005, Pages 1269-1283.

    ___________

  • Fredrickson, D. C.; Lee, S.; Hoffmann, R. The Nowotny Chimney Ladder Phases: Whence the 14 Electron Rule?. Inorg. Chem. 2004, 43, 6159-6167.

    ___________

  • Fredrickson, D. C.; Lee, S.; Hoffmann, R.; Lin, J. The Nowotny Chimney Ladder Phases: Following the cpseudo Clue toward an Explanation of the 14 Electron Rule. Inorg. Chem. 2004, 43, 6151-6158.

    ___________

  • Lee, S.; Chen, B.; Fredrickson, D. C.; DiSalvo, F. J.; Lobkovsky, E.; Adams, J. A. Crystal Structures of (Pyrene)10(I3-)4(I2)10 and [1,3,6,8-Tetrakis(methylthio)pyrene]3(I3-)3(I2)7: Structural Trends in Fused Aromatic Polyiodides. Chem. Mater. 2003, 15, 1420-1433.

    ___________

The University of Wisconsin Madison